Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Review Article

Phyto-derived Products as Matrix Metalloproteinases Inhibitors in Cardiovascular Diseases

Author(s): Alejandro F. do Prado, Cahy M. Bannwart, Victoria M.T. Shinkai, Ildercílio M. de Souza Lima and César A. Meschiari*

Volume 17, Issue 1, 2021

Published on: 09 May, 2020

Page: [47 - 58] Pages: 12

DOI: 10.2174/1573402116666200510011356

Price: $65

Abstract

Matrix metalloproteinases (MMPs) are enzymes that present a metallic element in their structure. These enzymes are ubiquitously distributed and function as extracellular matrix (ECM) remodelers. MMPs play a broad role in cardiovascular biology regulating processes such as cell adhesion and function, cellular communication and differentiation, integration of mechanical force and force transmission, tissue remodeling, modulation of damaged-tissue structural integrity, cellular survival or apoptosis and regulation of inflammation-related cytokines and growth factors. MMPs inhibition and downregulation are correlated with minimization of cardiac damage, i.e., Chinese herbal medicine has shown to stabilize abdominal aorta aneurysm due to its antiinflammatory, antioxidant and MMP-2 and 9 inhibitory properties. Thus phyto-derived products rise as promising sources for novel therapies focusing on MMPs inhibition and downregulation to treat or prevent cardiovascular disorders.

Keywords: Matrix metalloproteinase, phytotherapy, matrix metalloproteinase inhibitor, flavonoid, cardiovascular disease, extracellular matrix, phyto-derived products.

Graphical Abstract
[1]
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res 2003; 92(8): 827-39.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[2]
Iyer RP, Patterson NL, Fields GB, Lindsey ML. The history of matrix metalloproteinases: Milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol 2012; 303(8): H919-30.
[http://dx.doi.org/10.1152/ajpheart.00577.2012] [PMID: 22904159]
[3]
Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc Natl Acad Sci USA 1962; 48(6): 1014-22.
[http://dx.doi.org/10.1073/pnas.48.6.1014] [PMID: 13902219]
[4]
Woolley DE, Roberts DR, Evanson JM. Inhibition of human collagenase activity by a small molecular weight serum protein. Biochem Biophys Res Commun 1975; 66(2): 747-54.
[http://dx.doi.org/10.1016/0006-291X(75)90573-2] [PMID: 170930]
[5]
Wart HEV, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 1990; 87(14): 5578-82.
[http://dx.doi.org/10.1073/pnas.87.14.5578] [PMID: 2164689]
[6]
Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011; 41(2): 271-90.
[http://dx.doi.org/10.1007/s00726-010-0689-x] [PMID: 20640864]
[7]
Johnson JL. Metalloproteinases in atherosclerosis. Eur J Pharmacol 2017; 816: 93-106.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.007] [PMID: 28893577]
[8]
Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13(12): 904-27.
[http://dx.doi.org/10.1038/nrd4390] [PMID: 25376097]
[9]
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8(3): 221-33.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[10]
Gonçalves AN, Meschiari CA, Stetler-Stevenson WG, et al. Expression of soluble and functional full-length human matrix metalloproteinase-2 in Escherichia coli. J Biotechnol 2012; 157(1): 20-4.
[http://dx.doi.org/10.1016/j.jbiotec.2011.09.030] [PMID: 22001844]
[11]
Gaubatz JW, Ballantyne CM, Wasserman BA, et al. Association of circulating matrix metalloproteinases with carotid artery characteristics: The ARIC carotid MRI study. Arterioscler Thromb Vasc Biol 2010; 30(5): 1034-42.
[http://dx.doi.org/10.1161/ATVBAHA.109.195370] [PMID: 20167662]
[12]
Liu P, Sun M, Sader S. Matrix metalloproteinases in cardiovascular disease. Can J Cardiol 2006; 22(Suppl. B): 25B-30B.
[http://dx.doi.org/10.1016/S0828-282X(06)70983-7] [PMID: 16498509]
[13]
Das A, Monteiro M, Barai A, Kumar S, Sen S. MMP proteolytic activity regulates cancer invasiveness by modulating integrins. Sci Rep 2017; 7(1): 14219.
[http://dx.doi.org/10.1038/s41598-017-14340-w]
[14]
Fernandez-Patron C, Zouki C, Whittal R, Chan JS, Davidge ST, Filep JG. Matrix metalloproteinases regulate neutrophil-endothelial cell adhesion through generation of endothelin-1.[1-32] FASEB J 2001; 15(12): 2230-40.
[http://dx.doi.org/10.1096/fj.01-0178com] [PMID: 11641250]
[15]
Toba H, Cannon PL, Yabluchanskiy A, Iyer RP, D’Armiento J, Lindsey ML. Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis. Am J Physiol Heart Circ Physiol 2017; 312(3): H375-83.
[http://dx.doi.org/10.1152/ajpheart.00633.2016] [PMID: 28011588]
[16]
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130(21): 3619-30.
[http://dx.doi.org/10.1242/jcs.200667] [PMID: 29025971]
[17]
Lindsey ML, Escobar GP, Mukherjee R, et al. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation 2006; 113(25): 2919-28.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.612960] [PMID: 16769909]
[18]
Vaisar T, Kassim SY, Gomez IG, et al. MMP-9 sheds the beta2 integrin subunit (CD18) from macrophages. Mol Cell Proteomics 2009; 8(5): 1044-60.
[http://dx.doi.org/10.1074/mcp.M800449-MCP200] [PMID: 19116209]
[19]
DeLeon-Pennell KY, Tian Y, Zhang B, et al. CD36 Is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling. Circ Cardiovasc Genet 2016; 9(1): 14-25.
[http://dx.doi.org/10.1161/CIRCGENETICS.115.001249] [PMID: 26578544]
[20]
Yabluchanskiy A, Ma Y, DeLeon-Pennell KY, et al. Myocardial Infarction superimposed on aging: MMP-9 deletion promotes M2 macrophage polarization. J Gerontol A Biol Sci Med Sci 2016; 71(4): 475-83.
[http://dx.doi.org/10.1093/gerona/glv034] [PMID: 25878031]
[21]
Voorhees AP, DeLeon-Pennell KY, Ma Y, et al. Building a better infarct: Modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. J Mol Cell Cardiol 2015; 85: 229-39.
[http://dx.doi.org/10.1016/j.yjmcc.2015.06.006] [PMID: 26080361]
[22]
Zile MR, Baicu CF, Ikonomidis JS, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: Contributions of collagen and titin. Circulation 2015; 131(14): 1247-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013215] [PMID: 25637629]
[23]
Ali MAM, Cho WJ, Hudson B, Kassiri Z, Granzier H, Schulz R. Titin is a target of matrix metalloproteinase-2: Implications in myocardial ischemia/reperfusion injury. Circulation 2010; 122(20): 2039-47.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.930222] [PMID: 21041693]
[24]
Chow AK, Cena J, Schulz R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 2007; 152(2): 189-205.
[http://dx.doi.org/10.1038/sj.bjp.0707344] [PMID: 17592511]
[25]
Meschiari CA, Jung M, Iyer RP, et al. Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing after myocardial infarction. Am J Physiol Heart Circ Physiol 2018; 314(2): H224-35.
[http://dx.doi.org/10.1152/ajpheart.00453.2017]
[26]
Lindsey M, Wedin K, Brown MD, et al. Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 2001; 103(17): 2181-7.
[http://dx.doi.org/10.1161/01.CIR.103.17.2181] [PMID: 11331260]
[27]
Wilson EM, Moainie SL, Baskin JM, et al. Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation 2003; 107(22): 2857-63.
[http://dx.doi.org/10.1161/01.CIR.0000068375.40887.FA] [PMID: 12771000]
[28]
George J, Patal S, Wexler D, Roth A, Sheps D, Keren G. Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. Am Heart J 2005; 150(3): 484-7.
[http://dx.doi.org/10.1016/j.ahj.2004.11.016] [PMID: 16169329]
[29]
Matsunaga T, Abe N, Kameda K, et al. Circulating level of gelatinase activity predicts ventricular remodeling in patients with acute myocardial infarction. Int J Cardiol 2005; 105(2): 203-8.
[http://dx.doi.org/10.1016/j.ijcard.2005.01.011] [PMID: 16243114]
[30]
Nilsson L, Hallén J, Atar D, Jonasson L, Swahn E. Early measurements of plasma matrix metalloproteinase-2 predict infarct size and ventricular dysfunction in ST-elevation myocardial infarction. Heart 2012; 98(1): 31-6.
[http://dx.doi.org/10.1136/heartjnl-2011-300079] [PMID: 21727201]
[31]
Squire IB, Evans J, Ng LL, Loftus IM, Thompson MM. Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J Card Fail 2004; 10(4): 328-33.
[http://dx.doi.org/10.1016/j.cardfail.2003.11.003] [PMID: 15309700]
[32]
Yamazaki T, Lee J-D, Shimizu H, Uzui H, Ueda T. Circulating matrix metalloproteinase-2 is elevated in patients with congestive heart failure. Eur J Heart Fail 2004; 6(1): 41-5.
[http://dx.doi.org/10.1016/j.ejheart.2003.05.002] [PMID: 15012917]
[33]
Hua Y, Song L, Wu N, et al. Polymorphisms of MMP-2 gene are associated with systolic heart failure prognosis. Clin Chim Acta 2009; 404(2): 119-23.
[http://dx.doi.org/10.1016/j.cca.2009.03.030] [PMID: 19332048]
[34]
Vasků A, Goldbergová M, Hollá LI, et al. Two MMP-2 promoter polymorphisms (-790T/G and -735C/T) in chronic heart failure. Clin Chem Lab Med 2003; 41(10): 1299-303.
[http://dx.doi.org/10.1515/CCLM.2003.197] [PMID: 14580155]
[35]
Castro MM, Rizzi E, Figueiredo-Lopes L, et al. Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 2008; 198(2): 320-31.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.10.011] [PMID: 18054360]
[36]
Castro MM, Rizzi E, Rodrigues GJ, et al. Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med 2009; 46(9): 1298-307.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.011] [PMID: 19248829]
[37]
Ceron CS, Rizzi E, Guimaraes DA, et al. Time course involvement of matrix metalloproteinases in the vascular alterations of renovascular hypertension. Matrix Biol 2012; 31(4): 261-70.
[http://dx.doi.org/10.1016/j.matbio.2012.01.009] [PMID: 22342460]
[38]
Guimaraes DA, Rizzi E, Ceron CS, et al. Doxycycline dose-dependently inhibits MMP-2-mediated vascular changes in 2K1C hypertension. Basic Clin Pharmacol Toxicol 2011; 108(5): 318-25.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00656.x] [PMID: 21176109]
[39]
Rizzi E, Castro MM, Prado CM, et al. Matrix metalloproteinase inhibition improves cardiac dysfunction and remodeling in 2-kidney, 1-clip hypertension. J Card Fail 2010; 16(7): 599-608.
[http://dx.doi.org/10.1016/j.cardfail.2010.02.005] [PMID: 20610236]
[40]
Rizzi E, Ceron CS, Guimaraes DA, et al. Temporal changes in cardiac matrix metalloproteinase activity, oxidative stress, and TGF-β in renovascular hypertension-induced cardiac hypertrophy. Exp Mol Pathol 2013; 94(1): 1-9.
[http://dx.doi.org/10.1016/j.yexmp.2012.10.010] [PMID: 23073243]
[41]
Odenbach J, Wang X, Cooper S, et al. MMP-2 mediates angiotensin II-induced hypertension under the transcriptional control of MMP-7 and TACE. Hypertension 2011; 57(1): 123-30.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.159525] [PMID: 21079048]
[42]
Fernandez-Patron C, Radomski MW, Davidge ST. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res 1999; 85(10): 906-11.
[http://dx.doi.org/10.1161/01.RES.85.10.906] [PMID: 10559137]
[43]
Martínez A, Oh H-R, Unsworth EJ, et al. Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem J 2004; 383(Pt. 3): 413-8.
[http://dx.doi.org/10.1042/BJ20040920] [PMID: 15307819]
[44]
Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JRB, Sawicki G, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 2002; 106(12): 1543-9.
[http://dx.doi.org/10.1161/01.CIR.0000028818.33488.7B] [PMID: 12234962]
[45]
Sung MM, Schulz CG, Wang W, Sawicki G, Bautista-López NL, Schulz R. Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 2007; 43(4): 429-36.
[http://dx.doi.org/10.1016/j.yjmcc.2007.07.055] [PMID: 17854826]
[46]
Sawicki G, Leon H, Sawicka J, et al. Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: A new intracellular target for matrix metalloproteinase-2. Circulation 2005; 112(4): 544-52.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.531616] [PMID: 16027249]
[47]
Prado AF, Pernomian L, Azevedo A, et al. Matrix metalloproteinase-2-induced epidermal growth factor receptor transactivation impairs redox balance in vascular smooth muscle cells and facilitates vascular contraction. Redox Biol 2018; 18: 181-90.
[http://dx.doi.org/10.1016/j.redox.2018.07.005] [PMID: 30029165]
[48]
Laxton RC, Hu Y, Duchene J, et al. A role of matrix metalloproteinase-8 in atherosclerosis. Circ Res 2009; 105(9): 921-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.200279] [PMID: 19745165]
[49]
Rodrigues SF, Tran ED, Fortes ZB, Schmid-Schönbein GW. Matrix metalloproteinases cleave the β2-adrenergic receptor in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2010; 299(1): H25-35.
[http://dx.doi.org/10.1152/ajpheart.00620.2009] [PMID: 20382857]
[50]
Schmid-Schönbein GW. Matrix metalloproteinases activities in hypertension: Emerging opportunities. Hypertension 2011; 57(1): 24-5.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.162032] [PMID: 21079046]
[51]
Nagareddy PR, Rajput PS, Vasudevan H, et al. Inhibition of matrix metalloproteinase-2 improves endothelial function and prevents hypertension in insulin-resistant rats. Br J Pharmacol 2012; 165(3): 705-15.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01583.x] [PMID: 21740410]
[52]
Ferraz KC, Sousa-Santos O, Neto-Neves EM, et al. Recombinant human matrix metalloproteinase-2 impairs cardiovascular β-adrenergic responses. Basic Clin Pharmacol Toxicol 2013; 112(2): 103-9.
[http://dx.doi.org/10.1111/bcpt.12001] [PMID: 22913757]
[53]
Bergman MR, Teerlink JR, Mahimkar R, et al. Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol Heart Circ Physiol 2007; 292(4): H1847-60.
[http://dx.doi.org/10.1152/ajpheart.00434.2006] [PMID: 17158653]
[54]
Iyer RP, de Castro Brás LE, Patterson NL, et al. Early matrix metalloproteinase-9 inhibition post-myocardial infarction worsens cardiac dysfunction by delaying inflammation resolution. J Mol Cell Cardiol 2016; 100: 109-17.
[http://dx.doi.org/10.1016/j.yjmcc.2016.10.005] [PMID: 27746126]
[55]
Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML. The impact of aging on cardiac extracellular matrix. Geroscience 2017; 39(1): 7-18.
[http://dx.doi.org/10.1007/s11357-017-9959-9] [PMID: 28299638]
[56]
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2(3): 161-74.
[http://dx.doi.org/10.1038/nrc745] [PMID: 11990853]
[57]
Seto SW, Chang D, Kiat H, Wang N, Bensoussan A. Chinese herbal medicine as a potential treatment of abdominal aortic aneurysm. Front Cardiovasc Med 2018; 5: 33.
[http://dx.doi.org/10.3389/fcvm.2018.00033] [PMID: 29732374]
[58]
de Azevedo Bentes Monteiro Neto M, de Souza Lima IM, Furtado RA, Bastos JK, da Silva Filho AA, Tavares DC. Antigenotoxicity of artepillin C in vivo evaluated by the micronucleus and comet assays. J Appl Toxicol 2011; 31(8): 714-9.
[http://dx.doi.org/10.1002/jat.1614] [PMID: 21259290]
[59]
Falzon CC, Balabanova A. Phytotherapy: An introduction to herbal medicine. Prim Care 2017; 44(2): 217-27.
[http://dx.doi.org/10.1016/j.pop.2017.02.001] [PMID: 28501226]
[60]
Pedrollo CT, Kinupp VF, Shepard G Jr, Heinrich M. Medicinal plants at Rio Jauaperi, Brazilian Amazon: Ethnobotanical survey and environmental conservation. J Ethnopharmacol 2016; 186: 111-24.
[http://dx.doi.org/10.1016/j.jep.2016.03.055] [PMID: 27058631]
[61]
Munari CC, de Oliveira PF, de Souza Lima IM, et al. Evaluation of cytotoxic, genotoxic and antigenotoxic potential of Solanum lycocarpum fruits glicoalkaloid extract in V79 cells. Food Chem Toxicol 2012; 50(10): 3696-701.
[http://dx.doi.org/10.1016/j.fct.2012.07.028] [PMID: 22842122]
[62]
Senedese JM, Alves JM, Lima IM de S, et al. Chemopreventive effect of Copaifera langsdorffii leaves hydroalcoholic extract on 1,2-dimethylhydrazine-induced DNA damage and preneoplastic lesions in rat colon. BMC Complement Altern Med 2013; 13: 3.
[http://dx.doi.org/10.1186/1472-6882-13-3] [PMID: 23295131]
[63]
de Oliveira PF, de Souza Lima IM, Munari CC, Bastos JK, da Silva Filho AA, Tavares DC. Comparative evaluation of antiproliferative effects of Brazilian green propolis, its main source Baccharis dracunculifolia, and their major constituents artepillin C and baccharin. Planta Med 2014; 80(6): 490-2.
[http://dx.doi.org/10.1055/s-0034-1368298] [PMID: 24687736]
[64]
Acésio NO, de Oliveira PF, Mastrocola DFP, et al. Modulatory effect of betulinic acid on the genotoxicity induced by different mutagens in V79 cells. Evid Based Complement Alternat Med 2016; 20168942730
[http://dx.doi.org/10.1155/2016/8942730] [PMID: 27195016]
[65]
Haddad MHF, Mahbodfar H, Zamani Z, Ramazani A. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine. Iran J Basic Med Sci 2017; 20(4): 415-22.
[PMID: 28804611]
[66]
Choy KW, Murugan D, Leong X-F, Abas R, Alias A, Mustafa MR. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front Pharmacol 2019; 10: 1295.
[http://dx.doi.org/10.3389/fphar.2019.01295] [PMID: 31749703]
[67]
Ortiz A, Sansinenea E. Macrolactin antibiotics: Amazing natural products. Mini Rev Med Chem 2020; 20(7): 584-600.
[http://dx.doi.org/10.2174/1389557519666191205124050] [PMID: 31804166]
[68]
Tauchen J, Huml L, Bortl L, et al. Screening of medicinal plants traditionally used in Peruvian Amazon for in vitro antioxidant and anticancer potential. Nat Prod Res 2019; 33(18): 2718-21.
[http://dx.doi.org/10.1080/14786419.2018.1462180] [PMID: 29658320]
[69]
de Oliveira PF, de Souza Lima IM, de Azevedo Bentes Monteiro Neto M, Bastos JK, da Silva Filho AA, Tavares DC. Evaluation of genotoxicity and antigenotoxicity of artepillin C in V79 cells by the comet and micronucleus assays. Nutr Cancer 2013; 65(7): 1098-103.
[http://dx.doi.org/10.1080/01635581.2013.815233] [PMID: 23915392]
[70]
da Rocha CQ, Queiroz EF, Meira CS, et al. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity. J Nat Prod 2014; 77(6): 1345-50.
[http://dx.doi.org/10.1021/np401060j] [PMID: 24871307]
[71]
Vasanthi HR. ShriShriMal N, Das DK. Phytochemicals from plants to combat cardiovascular disease. Curr Med Chem 2012; 19(14): 2242-51.
[http://dx.doi.org/10.2174/092986712800229078] [PMID: 22414106]
[72]
Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017; 46(3): 1029-56.
[http://dx.doi.org/10.1093/ije/dyw319]
[73]
Ashraf R, Khan RA, Ashraf I, Qureshi AA. Effects of Allium sativum (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak J Pharm Sci 2013; 26(5): 859-63.
[PMID: 24035939]
[74]
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002; 96(2-3): 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[75]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016.5e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[76]
Arora S, Itankar P. Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. J Tradit Complement Med 2018; 8(4): 476-82.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.002] [PMID: 30302328]
[77]
Gifford I, Battenberg K, Vaniya A, et al. Distinctive patterns of flavonoid biosynthesis in roots and nodules of Datisca glomerata and Medicago spp. Revealed by metabolomic and gene expression profiles. Front Plant Sci 2018; 9: 1463.
[http://dx.doi.org/10.3389/fpls.2018.01463] [PMID: 30364174]
[78]
Terao J. Dietary flavonoids as antioxidants. Forum Nutr 2009; 61: 87-94.
[http://dx.doi.org/10.1159/000212741] [PMID: 19367113]
[79]
Bubols GB, Vianna D da R, Medina-Remon A, et al. The antioxidant activity of coumarins and flavonoids. Mini Rev Med Chem 2013; 13(3): 318-34.
[PMID: 22876957]
[80]
Harborne JB. Nature, distribution and function of plant flavonoids. Prog Clin Biol Res 1986; 213: 15-24.
[PMID: 3520585]
[81]
Martens S, Preuss A, Matern U. Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 2010; 71(10): 1040-9.
[http://dx.doi.org/10.1016/j.phytochem.2010.04.016] [PMID: 20457455]
[82]
Bowles D, Isayenkova J, Lim E-K, Poppenberger B. Glycosyltransferases: Managers of small molecules. Curr Opin Plant Biol 2005; 8(3): 254-63.
[http://dx.doi.org/10.1016/j.pbi.2005.03.007] [PMID: 15860422]
[83]
Ferrer J-L, Austin MB, Stewart C Jr, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 2008; 46(3): 356-70.
[http://dx.doi.org/10.1016/j.plaphy.2007.12.009] [PMID: 18272377]
[84]
Dai H, Zhang X, Yang Z, Li J, Zheng J. Effects of baicalin on blood pressure and left ventricular remodeling in rats with renovascular hypertension. Med Sci Monit 2017; 23: 2939-48.
[http://dx.doi.org/10.12659/MSM.902536] [PMID: 28622281]
[85]
Wang F, Chen H, Yan Y, Liu Y, Zhang S, Liu D. Baicalein protects against the development of angiotensin II-induced abdominal aortic aneurysms by blocking JNK and p38 MAPK signaling. Sci China Life Sci 2016; 59(9): 940-9.
[http://dx.doi.org/10.1007/s11427-015-0277-8] [PMID: 27333787]
[86]
Belaaouaj AA, Li A, Wun TC, Welgus HG, Shapiro SD. Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation. J Biol Chem 2000; 275(35): 27123-8.
[http://dx.doi.org/10.1074/jbc.M004218200] [PMID: 10859319]
[87]
Chen H, Guan B, Chen X, et al. Baicalin attenuates blood-brain barrier disruption and hemorrhagic transformation and improves neurological outcome in ischemic stroke rats with delayed t-PA treatment: Involvement of ONOO--MMP-9 pathway. Transl Stroke Res 2018; 9(5): 515-29.
[http://dx.doi.org/10.1007/s12975-017-0598-3] [PMID: 29275501]
[88]
Changwei A, Anping L, Elzaawely A, Tawata S. MMP-13 Inhibitory activity of thirteen selected plant species from Okinawa. Int J Pharmacol 2008; 4(3): 202-7.
[89]
Boarescu P-M, Chirilă I, Bulboacă AE, et al. Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxid Med Cell Longev 2019; 20197847142
[http://dx.doi.org/10.1155/2019/7847142] [PMID: 31205590]
[90]
Bandyopadhyay D. Farmer to pharmacist: Curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer. Front Chem 2014; 2: 113.
[http://dx.doi.org/10.3389/fchem.2014.00113] [PMID: 25566531]
[91]
Swarnakar S, Ganguly K, Kundu P, Banerjee A, Maity P, Sharma AV. Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem 2005; 280(10): 9409-15.
[http://dx.doi.org/10.1074/jbc.M413398200] [PMID: 15615723]
[92]
Li Y-F, Wang H, Fan Y, et al. Epigallocatechin-3-Gallate inhibits matrix metalloproteinase-9 and monocyte chemotactic protein-1 expression through the 67-κDa laminin receptor and the TLR4/MAPK/NF-κB signalling pathway in lipopolysaccharide-induced macrophages. Cell Physiol Biochem 2017; 43(3): 926-36.
[http://dx.doi.org/10.1159/000481643] [PMID: 28957799]
[93]
You Y-P. Epigallocatechin gallate extends the therapeutic window of recombinant tissue plasminogen activator treatment in ischemic rats. J Stroke Cerebrovasc Dis 2016; 25(4): 990-7.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.01.014] [PMID: 26851971]
[94]
Xu L, Liu J-T, Li K, Wang S-Y, Xu S. Genistein inhibits Ang II-induced CRP and MMP-9 generations via the ER-p38/ERK1/2-PPARγ-NF-κB signaling pathway in rat vascular smooth muscle cells. Life Sci 2019; 216: 140-6.
[http://dx.doi.org/10.1016/j.lfs.2018.11.036] [PMID: 30452971]
[95]
Lian N, Tong J, Li W, Wu J, Li Y. Ginkgetin ameliorates experimental atherosclerosis in rats. Biomed Pharmacother 2018; 102: 510-6.
[http://dx.doi.org/10.1016/j.biopha.2018.03.107] [PMID: 29579712]
[96]
Shi Y, Yan W, Lin Q, Wang W. Icariin influences cardiac remodeling following myocardial infarction by regulating the CD147/MMP-9 pathway. J Int Med Res 2018; 46(6): 2371-85.
[http://dx.doi.org/10.1177/0300060518762060] [PMID: 29734850]
[97]
Zhang Z-K, Li J, Yan D-X, Leung W-N, Zhang B-T. Icaritin inhibits collagen degradation-related factors and facilitates collagen accumulation in atherosclerotic lesions: A potential action for plaque stabilization. Int J Mol Sci 2016 Feb; 17(2): 169.
[http://dx.doi.org/10.3390/ijms17020169] [PMID: 26828485]
[98]
Vishwakarma A, Singh TU, Rungsung S, et al. Effect of kaempferol pretreatment on myocardial injury in rats. Cardiovasc Toxicol 2018; 18(4): 312-28.
[http://dx.doi.org/10.1007/s12012-018-9443-5] [PMID: 29353381]
[99]
Potue P, Wunpathe C, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct 2019; 10(4): 1880-92.
[http://dx.doi.org/10.1039/C8FO02408A] [PMID: 30864566]
[100]
Parkar NA, Bhatt LK, Addepalli V. Efficacy of nobiletin, a citrus flavonoid, in the treatment of the cardiovascular dysfunction of diabetes in rats. Food Funct 2016; 7(7): 3121-9.
[http://dx.doi.org/10.1039/C6FO00294C] [PMID: 27279123]
[101]
Zhang L, Zhang X, Zhang C, et al. Nobiletin promotes antioxidant and anti-inflammatory responses and elicits protection against ischemic stroke in vivo. Brain Res 2016; 1636: 130-41.
[http://dx.doi.org/10.1016/j.brainres.2016.02.013] [PMID: 26874072]
[102]
Ma Y, Li L, Kong L, et al. Pinocembrin protects blood-brain barrier function and expands the therapeutic time window for tissue-type plasminogen activator treatment in a rat thromboembolic stroke model. BioMed Res Int 2018; 20188943210
[http://dx.doi.org/10.1155/2018/8943210] [PMID: 29850586]
[103]
Martín-Fernández B, de las Heras N, Valero-Muñoz M, et al. Beneficial effects of proanthocyanidins in the cardiac alterations induced by aldosterone in rat heart through mineralocorticoid receptor blockade. PLoS One 2014; 9(10)e111104
[http://dx.doi.org/10.1371/journal.pone.0111104] [PMID: 25353961]
[104]
Wang Q, Sui X, Sui D-J, Yang P. Flavonoid extract from propolis inhibits cardiac fibrosis triggered by myocardial infarction through upregulation of SIRT1. Evid Based Complement Alternat Med 2018; 20184957573
[http://dx.doi.org/10.1155/2018/4957573] [PMID: 30050588]
[105]
Saavedra N, Cuevas A, Cavalcante MF, et al. Polyphenols from chilean propolis and pinocembrin reduce MMP-9 gene expression and activity in activated macrophages. BioMed Res Int 2016; 20166505383
[http://dx.doi.org/10.1155/2016/6505383] [PMID: 27119082]
[106]
Pereira SC, Parente JM, Belo VA, et al. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis 2018; 270: 146-53.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.031] [PMID: 29425960]
[107]
Barteková M, Šimončíková P, Fogarassyová M, et al. Quercetin improves postischemic recovery of heart function in doxorubicin-treated rats and prevents doxorubicin-induced matrix metalloproteinase-2 activation and apoptosis induction. Int J Mol Sci 2015; 16(4): 8168-85.
[http://dx.doi.org/10.3390/ijms16048168] [PMID: 25872140]
[108]
Calabriso N, Massaro M, Scoditti E, et al. Red grape skin polyphenols blunt matrix metalloproteinase-2 and -9 activity and expression in cell models of vascular inflammation: Protective role in degenerative and inflammatory diseases. Molecules 2016; 21(9)E1147
[http://dx.doi.org/10.3390/molecules21091147] [PMID: 27589705]
[109]
Wang C, Wang Y, Yu M, et al. Grape-seed polyphenols play a protective role in elastase-induced abdominal aortic aneurysm in mice. Sci Rep 2017; 7(1): 9402.
[http://dx.doi.org/10.1038/s41598-017-09674-4]
[110]
Singh AP, Singh R, Verma SS, et al. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39(5): 1851-91.
[http://dx.doi.org/10.1002/med.21565] [PMID: 30741437]
[111]
Wei H, Wang S, Zhen L, et al. Resveratrol attenuates the blood-brain barrier dysfunction by regulation of the MMP-9/TIMP-1 balance after cerebral ischemia reperfusion in rats. J Mol Neurosci 2015; 55(4): 872-9.
[http://dx.doi.org/10.1007/s12031-014-0441-1] [PMID: 25330860]
[112]
Wu P, Han N, Yu H, et al. Amelioration of salvianolic acid C on aortic structure in apolipoprotein E-deficient mice treated with angiotension II. Life Sci 2016; 166: 75-81.
[http://dx.doi.org/10.1016/j.lfs.2016.09.012] [PMID: 27663582]
[113]
Cheng NT, Kim AS. Intravenous thrombolysis for acute ischemic stroke within 3 hours versus between 3 and 4.5 hours of symptom onset. Neurohospitalist 2015; 5(3): 101-9.
[http://dx.doi.org/10.1177/1941874415583116] [PMID: 26288668]
[114]
Wang X-H, You Y-P. Epigallocatechin gallate extends therapeutic window of recombinant tissue plasminogen activator treatment for brain ischemic stroke: A Randomized double-blind and placebo-controlled trial. Clin Neuropharmacol 2017; 40(1): 24-8.
[PMID: 27941526]
[115]
Guangzhou University of Traditional Chinese Medicine. The effect of erigeron injection on acute cerebral infarction serum VEGF, MMP-9 and EPC levels. 2013. Available from: https://clinicaltrials.gov/ct2/show/NCT01926834
[116]
Ruel G, Pomerleau S, Couture P, Lemieux S, Lamarche B, Couillard C. Plasma matrix metalloproteinase (MMP)-9 levels are reduced following low-calorie cranberry juice supplementation in men. J Am Coll Nutr 2009; 28(6): 694-701.
[http://dx.doi.org/10.1080/07315724.2009.10719803] [PMID: 20516270]
[117]
Demacq C, Metzger IF, Gerlach RF, Tanus-Santos JE. Inverse relationship between markers of nitric oxide formation and plasma matrix metalloproteinase-9 levels in healthy volunteers. Clin Chim Acta 2008; 394(1-2): 72-6.
[http://dx.doi.org/10.1016/j.cca.2008.04.008] [PMID: 18455513]
[118]
Metzger IF, Sandrim VC, Tanus-Santos JE. Endogenous nitric oxide formation correlates negatively with circulating matrix metalloproteinase (MMP)-2 and MMP-9 levels in black subjects. Mol Cell Biochem 2012; 360(1-2): 393-9.
[http://dx.doi.org/10.1007/s11010-011-1079-8] [PMID: 21956669]
[119]
Nagababu E, Rifkind JM. Measurement of plasma nitrite by chemiluminescence. Methods Mol Biol 2010; 610: 41-9.
[http://dx.doi.org/10.1007/978-1-60327-029-8_3] [PMID: 20013171]
[120]
Xiao LZ, Huang Z, Ma SC, et al. Study on the effect and mechanism of puerarin on the size of infarction in patients with acute myocardial infarction. Zhongguo Zhong Xi Yi Jie He Za Zhi 2004; 24(9): 790-2.
[PMID: 15495821]
[121]
Chen J, Bai Q, Zhao Z, Sui H, Xie X. Resveratrol improves delayed r-tPA treatment outcome by reducing MMPs. Acta Neurol Scand 2016; 134(1): 54-60.
[http://dx.doi.org/10.1111/ane.12511] [PMID: 26455907]
[122]
Bardagjy AS, Hu Q, Giebler KA, Ford A, Steinberg FM. Effects of grape consumption on biomarkers of inflammation, endothelial function, and PBMC gene expression in obese subjects. Arch Biochem Biophys 2018; 646(646): 145-52.
[http://dx.doi.org/10.1016/j.abb.2018.04.003] [PMID: 29649425]
[123]
University of California. Davis 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT01674231
[124]
Zhang Y, Miao L, Lin L, Ren C-Y, Liu J-X, Cui Y-M. Repeated administration of Sailuotong, a fixed combination of Panax ginseng, Ginkgo biloba, and Crocus sativus extracts for vascular dementia, alters CYP450 activities in rats. Phytomedicine 2018; 38: 125-34.
[http://dx.doi.org/10.1016/j.phymed.2017.02.007] [PMID: 29425645]
[125]
Jia J, Wei C, Chen S, et al. Efficacy and safety of the compound Chinese medicine SaiLuoTong in vascular dementia: A randomized clinical trial. Alzheimers Dement (N Y) 2018; 4: 108-17.
[http://dx.doi.org/10.1016/j.trci.2018.02.004] [PMID: 29955654]
[126]
Xuan Wu Hospital of Capital Medical University. 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT03789760

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy