General Review Article

天然植物靶向化合物在癌症治疗中的自噬通路

卷 21, 期 12, 2020

页: [1237 - 1249] 页: 13

弟呕挨: 10.2174/1389450121666200504072635

价格: $65

Open Access Journals Promotions 2
摘要

近年来,植物源性天然抗肿瘤化合物因其临床安全性和广泛的疗效而受到越来越多的关注。自噬是一个多步骤的溶酶体降解途径,可能有一个独特的潜在临床效益的癌症治疗设置。通过谷歌Scholar、Web of sciences、Medline和Scopus数据库检索与本研究相关的文章,检索关键词:自噬途径;研究了中草药、致癌自噬途径、抑癌自噬途径和肿瘤。虽然白藜芦醇、姜黄素、冬米冬素、棉酚、紫杉醇等天然植物化合物已被证实通过自噬信号通路具有抗癌潜力,但仍需要寻找新的天然化合物并研究其机制,以促进其通过自噬诱导作为潜在的抗癌药物在临床应用。

关键词: 自噬途径,草药,癌症,姜黄素,白藜芦醇,冬凌草素

图形摘要
[1]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016; 38(7): 1551-66.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[2]
Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell death & disease 2013; 4(10): e838.
[http://dx.doi.org/10.1038/cddis.2013.350]
[3]
Harding TM, Morano KA, Scott SV, Klionsky DJ. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 1995; 131(3): 591-602.
[http://dx.doi.org/10.1083/jcb.131.3.591] [PMID: 7593182]
[4]
Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 1993; 333(1-2): 169-74.
[http://dx.doi.org/10.1016/0014-5793(93)80398-E] [PMID: 8224160]
[5]
Marinković M, Šprung M, Buljubašić M, Novak I. Autophagy Modulation in Cancer: Current Knowledge on Action and Therapy. Oxidative Medicine and Cellular Longevity 2018.: 8023821.
[6]
Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 2014; 24(1): 92-104.
[http://dx.doi.org/10.1038/cr.2013.153] [PMID: 24281265]
[7]
White E. The role for autophagy in cancer. J Clin Invest 2015; 125(1): 42-6.
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[8]
Wang SY, Yu QJ, Zhang RD, Liu B. Core signaling pathways of survival/death in autophagy-related cancer networks. Int J Biochem Cell Biol 2011; 43(9): 1263-6.
[http://dx.doi.org/10.1016/j.biocel.2011.05.010] [PMID: 21640844]
[9]
Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011; 36(6): 320-8.
[http://dx.doi.org/10.1016/j.tibs.2011.03.006] [PMID: 21531565]
[10]
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13(4): 251-62.
[http://dx.doi.org/10.1038/nrm3311] [PMID: 22436748]
[11]
Brech A, Ahlquist T, Lothe RA, Stenmark H. Autophagy in tumour suppression and promotion. Mol Oncol 2009; 3(4): 366-75.
[http://dx.doi.org/10.1016/j.molonc.2009.05.007] [PMID: 19559660]
[12]
Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer 2007; 7(12): 961-7.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[13]
Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18(4): 571-80.
[http://dx.doi.org/10.1038/cdd.2010.191] [PMID: 21311563]
[14]
Maiuri MC, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 2009; 16(1): 87-93.
[http://dx.doi.org/10.1038/cdd.2008.131] [PMID: 18806760]
[15]
Zhou F, Yang Y, Xing D. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 2011; 278(3): 403-13.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07965.x] [PMID: 21182587]
[16]
Miracco C, Cosci E, Oliveri G, et al. Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 2007; 30(2): 429-36.
[PMID: 17203225]
[17]
Ryan KM. p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. Eur J Cancer 2011; 47(1): 44-50.
[http://dx.doi.org/10.1016/j.ejca.2010.10.020] [PMID: 21112207]
[18]
Ling LU, Tan KB, Lin H, Chiu GN. The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell Death Dis 2011; 2(3): e129.
[http://dx.doi.org/10.1038/cddis.2011.12] [PMID: 21390063]
[19]
Zhao Y, Wang L, Yang J, et al. Anti-neoplastic activity of the cytosolic FoxO1 results from autophagic cell death. Autophagy 2010; 6(7): 988-90.
[http://dx.doi.org/10.4161/auto.6.7.13289] [PMID: 20798610]
[20]
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8(9): 741-52.
[http://dx.doi.org/10.1038/nrm2239] [PMID: 17717517]
[21]
Mousavi SAA, Robson GD. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology 2004; 150(Pt 6): 1937-45.
[http://dx.doi.org/10.1099/mic.0.26830-0] [PMID: 15184579]
[22]
Mousavi SH, Tayarani-Najaran Z, Hersey P. Apoptosis: from signalling pathways to therapeutic tools. Iran J Basic Med Sci 2008; 11(3): 121-42.
[23]
Mousavi SH, Moosavi SH. Lysosome: as a proposed target for rose bengal in inducing cell death in melanoma cells. Journal of Medical Hypotheses and Ideas 2008; 2: 12-3.
[24]
Abbastabar H, Hamidifard P, Roustazadeh A, et al. Relationships between breast cancer and common non- communicable disease risk factors: an ecological study. Asian Pac J Cancer Prev 2013; 14(9): 5123-5.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.5123] [PMID: 24175787]
[25]
Su M, Mei Y, Sinha S. Role of the crosstalk between autophagy and apoptosis in cancer. Journal of oncology 2013 2013.
[http://dx.doi.org/10.1155/2013/102735]
[26]
Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol 2009; 47(8): 1909-13.
[http://dx.doi.org/10.1016/j.fct.2009.05.017] [PMID: 19457443]
[27]
Tavakkol-Afshari J, Brook A, Mousavi SH. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol 2008; 46(11): 3443-7.
[http://dx.doi.org/10.1016/j.fct.2008.08.018] [PMID: 18790714]
[28]
Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh-Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol 2011; 49(10): 1039-45.
[http://dx.doi.org/10.3109/13880209.2011.563315] [PMID: 21936628]
[29]
Malaekeh-Nikouei B, Mousavi SH, Shahsavand S, Mehri S, Nassirli H, Moallem SA. Assessment of cytotoxic properties of safranal and nanoliposomal safranal in various cancer cell lines. Phytother Res 2013; 27(12): 1868-73.
[http://dx.doi.org/10.1002/ptr.4945] [PMID: 23494763]
[30]
Zaker A, Asili J, Abrishamchi P, Tayarani-Najaran Z, Mousavi SH. Cytotoxic and apoptotic effects of root extract and tanshinones isolated from Perovskiaabrotanoides Kar. Iran J Basic Med Sci 2017; 20(12): 1377-84.
[PMID: 29238474]
[31]
Geryani MA, Mahdian D, Mousavi SH, Hosseini A. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines. Avicenna J Phytomed 2016; 6(4): 410-7.
[PMID: 27516981]
[32]
Parsaee H, Asili J, Mousavi SH, Soofi H, Emami SA, Tayarani-Najaran Z. Apoptosis induction of Salvia chorassanica root extract on human cervical cancer cell line. Iranian journal of pharmaceutical research. Iran J Pharm Res 2013; 12(1): 75-83.
[PMID: 24250574]
[33]
Tayarani-Najaran Z, Mousavi SH, Tajfard F, et al. Cytotoxic and apoptogenic properties of three isolated diterpenoids from Salvia chorassanica through bioassay-guided fractionation. Food Chem Toxicol 2013; 57: 346-51.
[http://dx.doi.org/10.1016/j.fct.2013.03.037] [PMID: 23583484]
[34]
Tayarani-Najaran Z, Mousavi SH, Asili J, Emami SA. Growth-inhibitory effect of Scutellaria lindbergii in human cancer cell lines. Food Chem Toxicol 2010; 48(2): 599-604.
[http://dx.doi.org/10.1016/j.fct.2009.11.038] [PMID: 19932732]
[35]
Tayarani-Najaran Z, Emami SA, Asili J, Mirzaei A, Mousavi SH. Analyzing cytotoxic and apoptogenic properties of Scutellaria litwinowii root extract on cancer cell lines. Evid Based Complement and Alternat Med 2011; 2011: 160682.
[36]
Tayarani-Najarani Z, Asili J, Parsaee H, Mousavi SH, Mashhadian NV, Mirzaee A, et al. Wogonin and neobaicalein from Scutellaria litwinowii roots are apoptotic for HeLa cells. Rev Bras Farmacogn 2012; 22(2): 268-76.
[http://dx.doi.org/10.1590/S0102-695X2011005000161]
[37]
Hosseini A, Saeidi Javadi S, Fani-Pakdel A, Mousavi SH. Kelussia odoratissima potentiates cytotoxic effects of radiation in HeLa cancer cell line. Avicenna J Phytomed 2017; 7(2): 137-44.
[PMID: 28348969]
[38]
Shiezadeh F, Mousavi SH, Amiri MS, Iranshahi M, Tayarani-Najaran Z, Karimi G. Cytotoxic and apoptotic potential of Rheum turkestanicum Janisch root extract on human cancer and normal cells. Iranian journal of pharmaceutical research. Iran J Pharm Res 2013; 12(4): 811-9.
[PMID: 24523761]
[39]
Tayarani-Najaran Z, Amiri A, Karimi G, Emami SA, Asili J, Mousavi SH. Comparative studies of cytotoxic and apoptotic properties of different extracts and the essential oil of Lavandula angustifolia on malignant and normal cells. Nutr Cancer 2014; 66(3): 424-34.
[http://dx.doi.org/10.1080/01635581.2013.878736] [PMID: 24571090]
[40]
Hosseini A, Shafiee-Nick R, Mousavi SH. Combination of Nigella sativa with Glycyrrhiza glabra and Zingiber officinale augments their protective effects on doxorubicin-induced toxicity in h9c2 cells. Iran J Basic Med Sci 2014; 17(12): 993-1000.
[PMID: 25859303]
[41]
Pourgonabadi S, Amiri MS, Mousavi SH. Cytotoxic and apoptogenic effects of Bryonia aspera root extract against Hela and HN-5 cancer cell lines. Avicenna J Phytomed 2017; 7(1): 66-72.
[PMID: 28265548]
[42]
Mousavi SH, Motaez M, Zamiri-Akhlaghi A, Emami SA, Tayarani-Najaran Z. In-Vitro evaluation of cytotoxic and apoptogenic properties of Sophora Pachycarpa. Iranian journal of pharmaceutical research. Iran J Pharm Res 2014; 13(2): 665-73.
[PMID: 25237363]
[43]
Cupit-Link MC, Kirkland JL, Ness KK, et al. Biology of premature ageing in survivors of cancer. ESMO Open 2017; 2(5): e000250.
[http://dx.doi.org/10.1136/esmoopen-2017-000250] [PMID: 29326844]
[44]
Phillips SM, Padgett LS, Leisenring WM, et al. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol Biomarkers Prev 2015; 24(4): 653-63.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-1418] [PMID: 25834148]
[45]
Manju K, Jat R, Anju G. A review on medicinal plants used as a source of anticancer agents. International Journal of Drug Research and Technology 2017; 2(2): 6.
[46]
Hosseini A, Ghorbani A. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed 2015; 5(2): 84-97.
[PMID: 25949949]
[47]
Saklani A, Kutty SK. Plant-derived compounds in clinical trials. Drug Discov Today 2008; 13(3-4): 161-71.
[http://dx.doi.org/10.1016/j.drudis.2007.10.010] [PMID: 18275914]
[48]
Bai L-Y, Chiu C-F, Chu P-C, Lin W-Y, Chiu S-J, Weng J-R. A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci Rep 2016; 6: 22419.
[http://dx.doi.org/10.1038/srep22419] [PMID: 26926586]
[49]
Chuang C-Y, Hsu C, Chao C-Y, Wein Y-S, Kuo Y-H, Huang CJ. Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L.). J Biomed Sci 2006; 13(6): 763-72.
[http://dx.doi.org/10.1007/s11373-006-9109-3] [PMID: 16955349]
[50]
Liaw C-C, Huang H-C, Hsiao P-C, et al. 5β,19-epoxycucurbitane triterpenoids from Momordica charantia and their anti-inflammatory and cytotoxic activity. Planta Med 2015; 81(1): 62-70.
[PMID: 25469855]
[51]
Hsu C, Tsai T-H, Li Y-Y, Wu W-H, Huang C-J, Tsai P-J. Wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) extract and its bioactive components suppress Propionibacterium acnes-induced inflammation. Food Chem 2012; 135(3): 976-84.
[http://dx.doi.org/10.1016/j.foodchem.2012.05.045] [PMID: 22953813]
[52]
Ray RB, Raychoudhuri A, Steele R, Nerurkar P. Bitter melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis. Cancer Res 2010; 70(5): 1925-31.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3438] [PMID: 20179194]
[53]
Nagasawa H, Watanabe K, Inatomi H. 45er The American journal of Chinese medicine. 2002; 30(02n03): 195-205.
[54]
Ru P, Steele R, Nerurkar PV, Phillips N, Ray RB. Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model. Cancer Prev Res (Phila) 2011; 4(12): 2122-30.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0376] [PMID: 21911444]
[55]
Rajamoorthi A, Shrivastava S, Steele R, et al. Bitter melon reduces head and neck squamous cell carcinoma growth by targeting c-Met signaling. PLoS One 2013; 8(10): e78006.
[http://dx.doi.org/10.1371/journal.pone.0078006] [PMID: 24147107]
[56]
Kwatra D, Subramaniam D, Ramamoorthy P, Standing D, Moran E, Velayutham R. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy. Evid Based Complement and Alternat Med 2013; 2013: 702869.
[http://dx.doi.org/10.1155/2013/702869]
[57]
Gao Y, Su Y, Qu L, et al. Mitochondrial apoptosis contributes to the anti-cancer effect of Smilax glabra Roxb. Toxicol Lett 2011; 207(2): 112-20.
[http://dx.doi.org/10.1016/j.toxlet.2011.08.024] [PMID: 21920417]
[58]
Wang J, Li Q, Ivanochko G, Huang Y. Anticancer effect of extracts from a North American medicinal plant--wild sarsaparilla. Anticancer Res 2006; 26(3A): 2157-64.
[PMID: 16827159]
[59]
Galhena PB, Samarakoon SR, Thabrew MI, Weerasinghe G, Thammitiyagodage MG, Ratnasooriya W, et al. Anti-inflammatory activity is a possible mechanism by which the polyherbal formulation comprised of Nigella sativa (seeds), Hemidesmus indicus (root), and Smilax glabra (rhizome) mediates its antihepatocarcinogenic effects. Evidence-Based Complementary and Alternative Medicine 2012 2012.
[60]
Huang YG, Li QZ, Ivanochko G, Wang R. Novel selective cytotoxicity of wild sarsaparilla rhizome extract. J Pharm Pharmacol 2006; 58(10): 1399-403.
[http://dx.doi.org/10.1111/j.2042-7158.2006.tb01658.x] [PMID: 17034664]
[61]
She T, Qu L, Wang L, et al. Sarsaparilla (smilax glabra rhizome) extract inhibits cancer cell growth by S phase arrest, apoptosis, and autophagy via redox-dependent ERK1/2 pathway. Cancer Prev Res (Phila) 2015; 8(5): 464-74.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0372] [PMID: 25732255]
[62]
She T, Feng J, Lian S, et al. Sarsaparilla (Smilax Glabra Rhizome) Extract Activates Redox-Dependent ATM/ATR Pathway to Inhibit Cancer Cell Growth by S Phase Arrest, Apoptosis, and Autophagy. Nutr Cancer 2017; 69(8): 1281-9.
[http://dx.doi.org/10.1080/01635581.2017.1362447] [PMID: 29111814]
[63]
Son Y-O, Kim J, Lim J-C, Chung Y, Chung G-H, Lee J-C. Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem Toxicol 2003; 41(10): 1421-8.
[http://dx.doi.org/10.1016/S0278-6915(03)00161-3] [PMID: 12909277]
[64]
Sultana S, Perwaiz S, Iqbal M, Athar M. Crude extracts of hepatoprotective plants, Solanum nigrum and Cichorium intybus inhibit free radical-mediated DNA damage. J Ethnopharmacol 1995; 45(3): 189-92.
[http://dx.doi.org/10.1016/0378-8741(94)01214-K] [PMID: 7623482]
[65]
Lin H-M, Tseng H-C, Wang C-J, et al. Induction of autophagy and apoptosis by the extract of Solanum nigrum Linn in HepG2 cells. J Agric Food Chem 2007; 55(9): 3620-8.
[http://dx.doi.org/10.1021/jf062406m] [PMID: 17419635]
[66]
Huang H-C, Syu K-Y, Lin J-K. Chemical composition of Solanum nigrum linn extract and induction of autophagy by leaf water extract and its major flavonoids in AU565 breast cancer cells. J Agric Food Chem 2010; 58(15): 8699-708.
[http://dx.doi.org/10.1021/jf101003v] [PMID: 20681660]
[67]
Campbell FC, Collett GP. Chemopreventive properties of curcumin 2005.
[http://dx.doi.org/10.1517/14796694.1.3.405]
[68]
Oyama Y, Masuda T, Nakata M, et al. Protective actions of 5′-n-alkylated curcumins on living cells suffering from oxidative stress. Eur J Pharmacol 1998; 360(1): 65-71.
[http://dx.doi.org/10.1016/S0014-2999(98)00635-9] [PMID: 9845274]
[69]
Pal S, Choudhuri T, Chattopadhyay S, et al. Mechanisms of curcumin-induced apoptosis of Ehrlich’s ascites carcinoma cells. Biochem Biophys Res Commun 2001; 288(3): 658-65.
[http://dx.doi.org/10.1006/bbrc.2001.5823] [PMID: 11676493]
[70]
Pal S, Bhattacharyya S, Choudhuri T, Datta GK, Das T, Sa G. Amelioration of immune cell number depletion and potentiation of depressed detoxification system of tumor-bearing mice by curcumin. Cancer Detect Prev 2005; 29(5): 470-8.
[http://dx.doi.org/10.1016/j.cdp.2005.05.003] [PMID: 16188398]
[71]
Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer 2005; 41(13): 1955-68.
[http://dx.doi.org/10.1016/j.ejca.2005.05.009] [PMID: 16081279]
[72]
Jia Y-L, Li J, Qin Z-H, Liang Z-Q. Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J Asian Nat Prod Res 2009; 11(11): 918-28.
[http://dx.doi.org/10.1080/10286020903264077] [PMID: 20183254]
[73]
Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim) 2010; 343(9): 489-99.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[74]
Ryan Wolf J, Heckler CE, Guido JJ, et al. Oral curcumin for radiation dermatitis: a URCC NCORP study of 686 breast cancer patients. Support Care Cancer 2018; 26(5): 1543-52.
[PMID: 29192329]
[75]
Choi YH, Han DH, Kim SW, et al. A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate 2019; 79(6): 614-21.
[http://dx.doi.org/10.1002/pros.23766] [PMID: 30671976]
[76]
Mahammedi H, Planchat E, Pouget M, et al. The new combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: a pilot phase II study. Oncology 2016; 90(2): 69-78.
[http://dx.doi.org/10.1159/000441148] [PMID: 26771576]
[77]
Kanai M, Yoshimura K, Asada M, et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 2011; 68(1): 157-64.
[http://dx.doi.org/10.1007/s00280-010-1470-2] [PMID: 20859741]
[78]
Ryan JL, Heckler CE, Ling M, et al. Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res 2013; 180(1): 34-43.
[http://dx.doi.org/10.1667/RR3255.1] [PMID: 23745991]
[79]
Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 2007; 72(1): 29-39.
[http://dx.doi.org/10.1124/mol.106.033167] [PMID: 17395690]
[80]
O’Sullivan-Coyne G, O’Sullivan GC, O’Donovan TR, Piwocka K, McKenna SL. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer 2009; 101(9): 1585-95.
[http://dx.doi.org/10.1038/sj.bjc.6605308] [PMID: 19809435]
[81]
Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 2007; 3(6): 635-7.
[http://dx.doi.org/10.4161/auto.4916] [PMID: 17786026]
[82]
Fu H, Wang C, Yang D, Zhang X, Wei Z, Zhu Z, et al. Curcumin regulates proliferation, autophagy and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J Cell Physiol 2017.
[PMID: 28926094]
[83]
Guan F, Ding Y, Zhang Y, Zhou Y, Li M, Wang C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One 2016; 11(1): e0146553.
[http://dx.doi.org/10.1371/journal.pone.0146553] [PMID: 26752181]
[84]
Wang A, Wang J, Zhang S, Zhang H, Xu Z, Li X. Curcumin inhibits the development of non-small cell lung cancer by inhibiting autophagy and apoptosis. Exp Ther Med 2017; 14(5): 5075-80.
[http://dx.doi.org/10.3892/etm.2017.5172] [PMID: 29201217]
[85]
Agarwal A, Kasinathan A, Ganesan R, et al. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr Res 2018; 51: 67-81.
[http://dx.doi.org/10.1016/j.nutres.2017.12.011] [PMID: 29673545]
[86]
Kim JY, Cho TJ, Woo BH, et al. Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch Oral Biol 2012; 57(8): 1018-25.
[http://dx.doi.org/10.1016/j.archoralbio.2012.04.005] [PMID: 22554995]
[87]
Zhuang W, Long L, Zheng B, et al. Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy. Cancer Sci 2012; 103(4): 684-90.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02198.x] [PMID: 22192169]
[88]
Liu F, Gao S, Yang Y, et al. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549. Oncol Lett 2017; 14(3): 2775-82.
[http://dx.doi.org/10.3892/ol.2017.6565] [PMID: 28928819]
[89]
Lee YJ, Kim N-Y, Suh Y-A, Lee C. Involvement of ROS in curcumin-induced autophagic cell death. Korean J Physiol Pharmacol 2011; 15(1): 1-7.
[http://dx.doi.org/10.4196/kjpp.2011.15.1.1] [PMID: 21461234]
[90]
Zhou GZ, Xu SL, Sun GC, Chen XB. Novel curcumin analogue IHCH exhibits potent anti-proliferative effects by inducing autophagy in A549 lung cancer cells. Mol Med Rep 2014; 10(1): 441-6.
[http://dx.doi.org/10.3892/mmr.2014.2183] [PMID: 24788478]
[91]
Qian H, Yang Y, Wang X. Curcumin enhanced adriamycin-induced human liver-derived Hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy. Eur J Pharm Sci 2011; 43(3): 125-31.
[http://dx.doi.org/10.1016/j.ejps.2011.04.002] [PMID: 21514382]
[92]
Bertelli AA, Das DK. Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 2009; 54(6): 468-76.
[http://dx.doi.org/10.1097/FJC.0b013e3181bfaff3] [PMID: 19770673]
[93]
Sabolovic N, Heurtaux T, Humbert A-C, Krisa S, Magdalou J. cis- and trans-Resveratrol are glucuronidated in rat brain, olfactory mucosa and cultured astrocytes. Pharmacology 2007; 80(2-3): 185-92.
[http://dx.doi.org/10.1159/000104149] [PMID: 17579296]
[94]
Aras A, Khokhar AR, Qureshi MZ, et al. Targeting cancer with nano-bullets: curcumin, EGCG, resveratrol and quercetin on flying carpets. Asian Pac J Cancer Prev 2014; 15(9): 3865-71.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.3865] [PMID: 24935565]
[95]
Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997; 275(5297): 218-20.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[96]
Aziz MH, Kumar R, Ahmad N. Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms.(review) Int J Oncol 2003; 23(1): 17-28.
[http://dx.doi.org/10.3892/ijo.23.1.17] [PMID: 12792772]
[97]
Valentovic MA. Evaluation of resveratrol in cancer patients and experimental models Advances in cancer research 137. Elsevier 2018; pp. 171-88.
[98]
Patel KR, Brown VA, Jones DJ, et al. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 2010; 70(19): 7392-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2027] [PMID: 20841478]
[99]
Howells LM, Berry DP, Elliott PJ, et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila) 2011; 4(9): 1419-25.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0148] [PMID: 21680702]
[100]
Opipari AW Jr, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 2004; 64(2): 696-703.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2404] [PMID: 14744787]
[101]
Cheng Y, Qiu F, Huang J, Tashiro S, Onodera S, Ikejima T. Apoptosis-suppressing and autophagy-promoting effects of calpain on oridonin-induced L929 cell death. Arch Biochem Biophys 2008; 475(2): 148-55.
[http://dx.doi.org/10.1016/j.abb.2008.04.027] [PMID: 18468506]
[102]
Lao F, Shang Y, Liu D. Autophagy pathway of Raji cell death induced by resveratrol. Zhongguo Shengwuzhipinxue Zazhi 2009; 22(7): 654-8.
[103]
Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 2008; 15(8): 1318-29.
[http://dx.doi.org/10.1038/cdd.2008.51] [PMID: 18421301]
[104]
Fu Y, Chang H, Peng X, et al. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One 2014; 9(7): e102535.
[http://dx.doi.org/10.1371/journal.pone.0102535] [PMID: 25068516]
[105]
Scarlatti F, Bauvy C, Ventruti A, et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 2004; 279(18): 18384-91.
[http://dx.doi.org/10.1074/jbc.M313561200] [PMID: 14970205]
[106]
Puissant A, Robert G, Fenouille N, et al. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 2010; 70(3): 1042-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3537] [PMID: 20103647]
[107]
Liu Q, Fang Q, Ji S, Han Z, Cheng W, Zhang H. Resveratrol-mediated apoptosis in renal cell carcinoma via the p53/AMP-activated protein kinase/mammalian target of rapamycin autophagy signaling pathway. Mol Med Rep 2018; 17(1): 502-8.
[PMID: 29115429]
[108]
Wu S-L, Sun Z-J, Yu L, Meng K-W, Qin X-L, Pan C-E. Effect of resveratrol and in combination with 5-FU on murine liver cancer. World J Gastroenterol 2004; 10(20): 3048-52.
[http://dx.doi.org/10.3748/wjg.v10.i20.3048] [PMID: 15378791]
[109]
Ferraresi A, Phadngam S, Morani F, et al. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol Carcinog 2017; 56(3): 1164-81.
[http://dx.doi.org/10.1002/mc.22582] [PMID: 27787915]
[110]
Chang C-H, Lee C-Y, Lu C-C, et al. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol 2017; 50(3): 873-82.
[http://dx.doi.org/10.3892/ijo.2017.3866] [PMID: 28197628]
[111]
Fried LE, Arbiser JL. Honokiol, a multifunctional antiangiogenic and antitumor agent Antioxidants & redox signaling 2009; 11(8): 1139-48.
[http://dx.doi.org/10.1089/ars.2009.2440]
[112]
Yeh P-S, Wang W, Chang Y-A, Lin C-J, Wang J-J, Chen R-M. Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Lett 2016; 370(1): 66-77.
[http://dx.doi.org/10.1016/j.canlet.2015.08.030] [PMID: 26454217]
[113]
Lu C-H, Chen S-H, Chang Y-S, et al. Honokiol, a potential therapeutic agent, induces cell cycle arrest and program cell death in vitro and in vivo in human thyroid cancer cells. Pharmacol Res 2017; 115: 288-98.
[http://dx.doi.org/10.1016/j.phrs.2016.11.038] [PMID: 27940017]
[114]
Luo L-X, Li Y, Liu Z-Q, et al. Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells. Front Pharmacol 2017; 8: 199.
[http://dx.doi.org/10.3389/fphar.2017.00199] [PMID: 28443025]
[115]
Hahm ER, Sakao K, Singh SV. Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells. Prostate 2014; 74(12): 1209-21.
[http://dx.doi.org/10.1002/pros.22837] [PMID: 25043291]
[116]
Lin C-J, Chen T-L, Tseng Y-Y, et al. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway. Toxicol Appl Pharmacol 2016; 304: 59-69.
[http://dx.doi.org/10.1016/j.taap.2016.05.018] [PMID: 27236003]
[117]
Huang KJ, Kuo CH, Chen SH, Lin CY, Lee YR. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J Cell Mol Med 2018; 22(3): 1894-908.
[http://dx.doi.org/10.1111/jcmm.13474] [PMID: 29363886]
[118]
Chang KH, Yan MD, Yao CJ, Lin PC, Lai GM. Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells. Oncol Lett 2013; 6(5): 1435-8.
[http://dx.doi.org/10.3892/ol.2013.1548] [PMID: 24179537]
[119]
Cheng Y-C, Hueng D-Y, Huang H-Y, Chen J-Y, Chen Y. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas. Oncotarget 2016; 7(20): 29116-30.
[http://dx.doi.org/10.18632/oncotarget.8674] [PMID: 27074557]
[120]
Wessely R, Schömig A, Kastrati A. Sirolimus and Paclitaxel on polymer-based drug-eluting stents: similar but different. J Am Coll Cardiol 2006; 47(4): 708-14.
[http://dx.doi.org/10.1016/j.jacc.2005.09.047] [PMID: 16487832]
[121]
Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19(21): 5720-8.
[http://dx.doi.org/10.1093/emboj/19.21.5720] [PMID: 11060023]
[122]
Xi G, Hu X, Wu B, et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett 2011; 307(2): 141-8.
[http://dx.doi.org/10.1016/j.canlet.2011.03.026] [PMID: 21511395]
[123]
Klimaszewska-Wisniewska A, Halas-Wisniewska M, Tadrowski T, Gagat M, Grzanka D, Grzanka A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int 2016; 16(1): 10.
[http://dx.doi.org/10.1186/s12935-016-0288-3] [PMID: 26884726]
[124]
Guo Y, Yuan J, Yin S, Wang X, Shuai R, Kang J. MAP2K6-FP Enhances the Sensitiveness of Paclitaxel for Ovarian Cancer via Inducing Autophagy. Int J Gynecol Cancer 2017; 27(6): 1082-7.
[http://dx.doi.org/10.1097/IGC.0000000000001003] [PMID: 28604448]
[125]
Hayashi S, Yamamoto A, You F, et al. The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy. Am J Pathol 2009; 175(5): 2226-34.
[http://dx.doi.org/10.2353/ajpath.2009.090152] [PMID: 19815708]
[126]
Apel A, Zentgraf H, Büchler MW, Herr I. Autophagy-A double-edged sword in oncology. Int J Cancer 2009; 125(5): 991-5.
[http://dx.doi.org/10.1002/ijc.24500] [PMID: 19452527]
[127]
Yu L, Lenardo MJ, Baehrecke EH. Autophagy and caspases: a new cell death program. Cell Cycle 2004; 3(9): 1124-6.
[http://dx.doi.org/10.4161/cc.3.9.1097] [PMID: 15326383]
[128]
Ajabnoor GM, Crook T, Coley HM. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis 2012; 3(1): e260.
[http://dx.doi.org/10.1038/cddis.2011.139] [PMID: 22278287]
[129]
Li CY, Wang EQ, Cheng Y, Bao JK. Oridonin: An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int J Biochem Cell Biol 2011; 43(5): 701-4.
[http://dx.doi.org/10.1016/j.biocel.2011.01.020] [PMID: 21295154]
[130]
Cui Q, Tashiro S, Onodera S, Ikejima T. Augmentation of oridonin-induced apoptosis observed with reduced autophagy. J Pharmacol Sci 2006; 101(3): 230-9.
[http://dx.doi.org/10.1254/jphs.FPJ06003X] [PMID: 16861822]
[131]
Tiwari RV, Parajuli P, Sylvester PW. Synergistic anticancer effects of combined γ-tocotrienol and oridonin treatment is associated with the induction of autophagy. Mol Cell Biochem 2015; 408(1-2): 123-37.
[http://dx.doi.org/10.1007/s11010-015-2488-x] [PMID: 26112904]
[132]
Hu HZ, Yang YB, Xu XD, et al. Oridonin induces apoptosis via PI3K/Akt pathway in cervical carcinoma HeLa cell line. Acta Pharmacol Sin 2007; 28(11): 1819-26.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00667.x] [PMID: 17959034]
[133]
Cheng Y, Qiu F, Ikejima T. Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells. Autophagy 2009; 5(3): 430-1.
[http://dx.doi.org/10.4161/auto.5.3.7896] [PMID: 19202353]
[134]
Yao Z, Xie F, Li M, et al. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 2017; 8(2): e2633.
[http://dx.doi.org/10.1038/cddis.2017.35] [PMID: 28230866]
[135]
Li CY, Wang Q, Shen S, Wei XL, Li GX. Oridonin inhibits migration, invasion, adhesion and TGF-β1-induced epithelial-mesenchymal transition of melanoma cells by inhibiting the activity of PI3K/Akt/GSK-3β signaling pathway. Oncol Lett 2018; 15(1): 1362-72.
[PMID: 29399187]
[136]
Indo HP, Sriburee S, Tomita K, Matsui H, Yen H-C, Ozawa T, et al. Quercetin induced autophagy in rat gastric mucosal cells RGM1 and its tumor cells RGK1. Free Radic Biol Med 2010; 49: S185-6.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.530]
[137]
Cruz-Correa M, Shoskes DA, Sanchez P, et al. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol 2006; 4(8): 1035-8.
[http://dx.doi.org/10.1016/j.cgh.2006.03.020] [PMID: 16757216]
[138]
Wang K, Liu R, Li J, et al. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy 2011; 7(9): 966-78.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[139]
Psahoulia FH, Moumtzi S, Roberts ML, Sasazuki T, Shirasawa S, Pintzas A. Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis 2007; 28(5): 1021-31.
[http://dx.doi.org/10.1093/carcin/bgl232] [PMID: 17148506]
[140]
Granato M, Rizzello C, Gilardini Montani MS, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem 2017; 41: 124-36.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.011] [PMID: 28092744]
[141]
He Y, Cao X, Guo P, et al. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic Biol Med 2017; 103: 165-76.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.016] [PMID: 27979659]
[142]
Chang JL, Chow JM, Chang JH, et al. Quercetin simultaneously induces G0/G1 -phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells. Environ Toxicol 2017; 32(7): 1857-68.
[http://dx.doi.org/10.1002/tox.22408] [PMID: 28251795]
[143]
Yu L, Liu S, Eds. Autophagy contributes to modulating the cytotoxicities of Bcl-2 homology domain-3 mimetics Seminars in cancer biology. Elsevier 2013.
[144]
Lian J, Wu X, He F, et al. A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ 2011; 18(1): 60-71.
[http://dx.doi.org/10.1038/cdd.2010.74] [PMID: 20577262]
[145]
Lian J, Ni Z, Dai X, et al. Sorafenib sensitizes (-)-gossypol-induced growth suppression in androgen-independent prostate cancer cells via Mcl-1 inhibition and Bak activation. Mol Cancer Ther 2012; 11(2): 416-26.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0559] [PMID: 22188816]
[146]
Zhang X-Q, Huang X-F, Hu X-B, et al. Apogossypolone, a novel inhibitor of antiapoptotic Bcl-2 family proteins, induces autophagy of PC-3 and LNCaP prostate cancer cells in vitro. Asian J Androl 2010; 12(5): 697-708.
[http://dx.doi.org/10.1038/aja.2010.57] [PMID: 20657602]
[147]
Yuan Y, Tang AJ, Castoreno AB, et al. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis 2013; 4(6): e690.
[http://dx.doi.org/10.1038/cddis.2013.191] [PMID: 23807219]
[148]
Keshmiri-Neghab H, Goliaei B, Nikoofar A. Gossypol enhances radiation induced autophagy in glioblastoma multiforme. Gen Physiol Biophys 2014; 33(4): 433-42.
[http://dx.doi.org/10.4149/gpb_2014017] [PMID: 24968413]
[149]
Kim N-Y, Lee M. Autophagy-mediated growth inhibition of malignant glioma cells by the BH3-mimetic gossypol. Mol Cell Toxicol 2014; 10(2): 157-64.
[http://dx.doi.org/10.1007/s13273-014-0017-8]
[150]
Lu MD, Li LY, Li PH, et al. Gossypol induces cell death by activating apoptosis and autophagy in HT-29 cells. Mol Med Rep 2017; 16(2): 2128-32.
[http://dx.doi.org/10.3892/mmr.2017.6804] [PMID: 28656225]
[151]
Irimie AI, Braicu C, Zanoaga O, et al. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells. OncoTargets Ther 2015; 8: 461-70.
[PMID: 25759589]
[152]
Tsai C-Y, Chen C-Y, Chiou Y-H, et al. Epigallocatechin-3-Gallate Suppresses Human Herpesvirus 8 Replication and Induces ROS Leading to Apoptosis and Autophagy in Primary Effusion Lymphoma Cells. Int J Mol Sci 2017; 19(1): 16.
[http://dx.doi.org/10.3390/ijms19010016] [PMID: 29267216]
[153]
Chu Y-L, Ho C-T, Chung J-G, Rajasekaran R, Sheen L-Y. Allicin induces p53-mediated autophagy in Hep G2 human liver cancer cells. J Agric Food Chem 2012; 60(34): 8363-71.
[http://dx.doi.org/10.1021/jf301298y] [PMID: 22860996]
[154]
Wang L, Hu T, Shen J, et al. Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. Phytomedicine 2015; 22(12): 1079-87.
[http://dx.doi.org/10.1016/j.phymed.2015.08.009] [PMID: 26547530]
[155]
Jiang H, Sun J, Xu Q, et al. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells. Cell Death Dis 2013; 4(8): e761.
[http://dx.doi.org/10.1038/cddis.2013.285] [PMID: 23928700]
[156]
Gossner G, Choi M, Tan L, et al. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol Oncol 2007; 105(1): 23-30.
[http://dx.doi.org/10.1016/j.ygyno.2006.11.009] [PMID: 17234261]
[157]
Suzuki R, Kang Y, Li X, Roife D, Zhang R, Fleming JB. Genistein potentiates the antitumor effect of 5-Fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res 2014; 34(9): 4685-92.
[PMID: 25202045]
[158]
Prietsch RF, Monte LG, da Silva FA, et al. Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Mol Cell Biochem 2014; 390(1-2): 235-42.
[http://dx.doi.org/10.1007/s11010-014-1974-x] [PMID: 24573886]
[159]
Law BY, Wang M, Ma D-L, et al. Alisol B, a novel inhibitor of the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase pump, induces autophagy, endoplasmic reticulum stress, and apoptosis. Mol Cancer Ther 2010; 9(3): 718-30.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0700] [PMID: 20197400]
[160]
Wang R, Xiao X, Wang P-Y, et al. Stimulation of autophagic activity in human glioma cells by anti-proliferative ardipusilloside I isolated from Ardisia pusilla. Life Sci 2014; 110(1): 15-22.
[http://dx.doi.org/10.1016/j.lfs.2014.06.016] [PMID: 24984215]
[161]
Leng S, Hao Y, Du D, et al. Ursolic acid promotes cancer cell death by inducing Atg5-dependent autophagy. Int J Cancer 2013; 133(12): 2781-90.
[http://dx.doi.org/10.1002/ijc.28301] [PMID: 23737395]
[162]
Dyshlovoy SA, Hauschild J, Amann K, et al. Marine alkaloid Monanchocidin a overcomes drug resistance by induction of autophagy and lysosomal membrane permeabilization. Oncotarget 2015; 6(19): 17328-41.
[http://dx.doi.org/10.18632/oncotarget.4175] [PMID: 26093146]
[163]
Chan M-L, Liang J-W, Hsu L-C, Chang W-L, Lee S-S, Guh J-H. Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(11): 1223-36.
[http://dx.doi.org/10.1007/s00210-015-1152-z] [PMID: 26246051]
[164]
Chiang P-K, Tsai W-K, Chen M, Lin W-R, Chow Y-C, Lee C-C, et al. Zerumbone Regulates DNA Repair Responding to Ionizing Radiation and Enhances Radiosensitivity of Human Prostatic Cancer Cells. Integr Cancer Ther 2018 Jun; 17(2): 292-8.
[PMID: 28602099]
[165]
Ohnishi K, Nakahata E, Irie K, Murakami A. Zerumbone, an electrophilic sesquiterpene, induces cellular proteo-stress leading to activation of ubiquitin-proteasome system and autophagy. Biochem Biophys Res Commun 2013; 430(2): 616-22.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.104] [PMID: 23219816]
[166]
Kumar S, Guru SK, Pathania AS, Kumar A, Bhushan S, Malik F. Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis 2013; 4(10): e889.
[http://dx.doi.org/10.1038/cddis.2013.399] [PMID: 24176847]
[167]
Kumar S, Kumar A, Pathania AS, et al. Tiron and trolox potentiate the autophagic cell death induced by magnolol analog Ery5 by activation of Bax in HL-60 cells. Apoptosis 2013; 18(5): 605-17.
[http://dx.doi.org/10.1007/s10495-013-0805-y] [PMID: 23494480]
[168]
de Fátima A, Zambuzzi WF, Modolo LV, et al. Cytotoxicity of goniothalamin enantiomers in renal cancer cells: involvement of nitric oxide, apoptosis and autophagy. Chem Biol Interact 2008; 176(2-3): 143-50.
[http://dx.doi.org/10.1016/j.cbi.2008.08.003] [PMID: 18771661]
[169]
Innajak S, Mahabusrakum W, Watanapokasin R. Goniothalamin induces apoptosis associated with autophagy activation through MAPK signaling in SK-BR-3 cells. Oncol Rep 2016; 35(5): 2851-8.
[http://dx.doi.org/10.3892/or.2016.4655] [PMID: 26987063]
[170]
Ma D, Tremblay P, Mahngar K, et al. A novel synthetic C-1 analogue of 7-deoxypancratistatin induces apoptosis in p53 positive and negative human colorectal cancer cells by targeting the mitochondria: enhancement of activity by tamoxifen. Invest New Drugs 2012; 30(3): 1012-27.
[http://dx.doi.org/10.1007/s10637-011-9668-7] [PMID: 21494837]
[171]
Ma D, Tremblay P, Mahngar K, Akbari-Asl P, Pandey S, Collins J, et al. Induction of apoptosis and autophagy in human pancreatic cancer cells by a novel synthetic C-1 analogue of 7-deoxypancratistatin. Am J Biomed Sci 2011; 3(4)
[http://dx.doi.org/10.5099/aj110400278]
[172]
Poornima P, Weng CF, Padma VV. Neferine from Nelumbo nucifera induces autophagy through the inhibition of PI3K/Akt/mTOR pathway and ROS hyper generation in A549 cells. Food Chem 2013; 141(4): 3598-605.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.138] [PMID: 23993526]
[173]
Kim WK, Pyee Y, Chung H-J, et al. Antitumor Activity of Spicatoside A by Modulation of Autophagy and Apoptosis in Human Colorectal Cancer Cells. J Nat Prod 2016; 79(4): 1097-104.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00006] [PMID: 27064730]
[174]
Kim WK, Pyee Y, Park HJ, Hong J-Y, Lee SK. Antitumor activity of spicatoside A, a steroidal saponin, via induction of switch from autophagy to apoptotic cell death. AACR 2017.
[175]
Liu J, Zhang Y, Qu J, et al. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer 2011; 11(1): 183.
[http://dx.doi.org/10.1186/1471-2407-11-183] [PMID: 21595977]
[176]
Zhao S, Ma C-M, Liu C-X, et al. Autophagy inhibition enhances isobavachalcone-induced cell death in multiple myeloma cells. Int J Mol Med 2012; 30(4): 939-44.
[http://dx.doi.org/10.3892/ijmm.2012.1066] [PMID: 22824846]
[177]
Liu J, Zheng L, Zhong J, Wu N, Liu G, Lin X. Oleanolic acid induces protective autophagy in cancer cells through the JNK and mTOR pathways. Oncol Rep 2014; 32(2): 567-72.
[http://dx.doi.org/10.3892/or.2014.3239] [PMID: 24912497]
[178]
Lisiak N, Paszel-Jaworska A, Bednarczyk-Cwynar B, Zaprutko L, Kaczmarek M, Rybczyńska M. Methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL), a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MDA-MB-231 breast cancer cells. Chem Biol Interact 2014; 208: 47-57.
[http://dx.doi.org/10.1016/j.cbi.2013.11.009] [PMID: 24291674]
[179]
Shao F-Y, Wang S, Li H-Y, et al. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells. Oncotarget 2016; 7(6): 6790-808.
[http://dx.doi.org/10.18632/oncotarget.6828] [PMID: 26758418]
[180]
Zhang T, Li Y, Park KA, et al. Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy 2012; 8(4): 559-76.
[http://dx.doi.org/10.4161/auto.18867] [PMID: 22441021]
[181]
Wang Y, Wang JW, Xiao X, et al. Piperlongumine induces autophagy by targeting p38 signaling. Cell Death Dis 2013; 4(10): e824.
[http://dx.doi.org/10.1038/cddis.2013.358] [PMID: 24091667]
[182]
Chen T, Hao J, He J, et al. Cannabisin B induces autophagic cell death by inhibiting the AKT/mTOR pathway and S phase cell cycle arrest in HepG2 cells. Food Chem 2013; 138(2-3): 1034-41.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.102] [PMID: 23411211]
[183]
Racoma IO, Meisen WH, Wang Q-E, Kaur B, Wani AA. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One 2013; 8(9): e72882.
[http://dx.doi.org/10.1371/journal.pone.0072882] [PMID: 24039814]
[184]
Wang YF, Li T, Tang ZH, et al. Baicalein triggers autophagy and inhibits the protein kinase B/mammalian target of rapamycin pathway in hepatocellular carcinoma HepG2 cells. Phytother Res 2015; 29(5): 674-9.
[http://dx.doi.org/10.1002/ptr.5298] [PMID: 25641124]
[185]
Tong J, Yin S, Dong Y, et al. Pseudolaric acid B induces caspase-dependent apoptosis and autophagic cell death in prostate cancer cells. Phytother Res 2013; 27(6): 885-91.
[http://dx.doi.org/10.1002/ptr.4808] [PMID: 22903438]
[186]
Ghosh S, Bishayee K, Khuda-Bukhsh AR. Graveoline isolated from ethanolic extract of Ruta graveolens triggers apoptosis and autophagy in skin melanoma cells: a novel apoptosis-independent autophagic signaling pathway. Phytother Res 2014; 28(8): 1153-62.
[http://dx.doi.org/10.1002/ptr.5107] [PMID: 24343999]
[187]
Yun SM, Jung JH, Jeong SJ, Sohn EJ, Kim B, Kim SH. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res 2014; 28(3): 458-64.
[http://dx.doi.org/10.1002/ptr.5015] [PMID: 23813779]
[188]
Lee MS, Lee CM, Cha EY, et al. Activation of AMP-activated protein kinase on human gastric cancer cells by apoptosis induced by corosolic acid isolated from Weigela subsessilis. Phytother Res 2010; 24(12): 1857-61.
[http://dx.doi.org/10.1002/ptr.3210] [PMID: 20564492]
[189]
Thyagarajan A, Jedinak A, Nguyen H, et al. Triterpenes from Ganoderma Lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK). Nutr Cancer 2010; 62(5): 630-40.
[http://dx.doi.org/10.1080/01635580903532390] [PMID: 20574924]
[190]
Kumar D, Shankar S, Srivastava RK. Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett 2014; 343(2): 179-89.
[http://dx.doi.org/10.1016/j.canlet.2013.10.003] [PMID: 24125861]
[191]
Ouyang L, Chen Y, Wang XY, et al. Polygonatum odoratum lectin induces apoptosis and autophagy via targeting EGFR-mediated Ras-Raf-MEK-ERK pathway in human MCF-7 breast cancer cells. Phytomedicine 2014; 21(12): 1658-65.
[http://dx.doi.org/10.1016/j.phymed.2014.08.002] [PMID: 25442274]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy