Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Advances in the Application of Liposomal Nanosystems in Anticancer Therapy

Author(s): Dexuan Xiao and Ronghui Zhou*

Volume 16, Issue 1, 2021

Published on: 23 April, 2020

Page: [14 - 22] Pages: 9

DOI: 10.2174/1574888X15666200423093906

Price: $65

conference banner
Abstract

Cancer is the disease with the highest mortality rate, which poses a great threat to people’s lives. Cancer caused approximately 3.4 million death worldwide annually. Surgery, chemotherapy and radiotherapy are the main therapeutic methods in clinical practice. However, surgery is only suitable for patients with early-stage cancers, and chemotherapy as well as radiotherapy have various side effects, both of which limit the application of available therapeutic methods. In 1965, liposome was firstly developed to form new drug delivery systems given the unique properties of nanoparticles, such as enhanced permeability and retention effect. During the last 5 decades, liposome has been widely used for the purpose of anticancer drug delivery, and several advances have been made regarding liposomal technology, including long-circulating liposomes, active targeting liposomes and triggered release liposomes, while problems exist all along. This review introduced the advances as well as the problems during the development of liposomal nanosystems for cancer therapy in recent years.

Keywords: Liposome, cancer, chemotherapy, drug delivery, function improvements, combination therapy.

[1]
Hooper L, Anderson AS, Birch J, et al. Public awareness and healthcare professional advice for obesity as a risk factor for cancer in the UK: A cross-sectional survey. J Public Health (Oxf) 2018; 40(4): 797-805.
[http://dx.doi.org/10.1093/pubmed/fdx145] [PMID: 29155951]
[2]
Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol Med 2015; 21(4): 223-32.
[http://dx.doi.org/10.1016/j.molmed.2015.01.001] [PMID: 25656384]
[3]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(2): E12
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[4]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[5]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[6]
Bangham AD, Standish MM, Watkins JC, Weissmann G. The diffusion of ions from a phospholipid model membrane system. Protoplasma 1967; 63(1): 183-7.
[http://dx.doi.org/10.1007/BF01248030] [PMID: 6037197]
[7]
Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 1973; 298(4): 1015-9.
[http://dx.doi.org/10.1016/0005-2736(73)90408-2] [PMID: 4738145]
[8]
Gregoriadis G, Ryman BE. Liposomes as carriers of enzymes or drugs: A new approach to the treatment of storage diseases. Biochem J 1971; 124(5): 58P.
[http://dx.doi.org/10.1042/bj1240058P] [PMID: 5130994]
[9]
Gregoriadis G. Drug entrapment in liposomes. FEBS Lett 1973; 36(3): 292-6.
[http://dx.doi.org/10.1016/0014-5793(73)80394-1] [PMID: 4763309]
[10]
Juliano RL, Stamp D. Pharmacokinetics of liposome-encapsulated anti-tumor drugs. Studies with vinblastine, actinomycin D, cytosine arabinoside, and daunomycin. Biochem Pharmacol 1978; 27(1): 21-7.
[http://dx.doi.org/10.1016/0006-2952(78)90252-6] [PMID: 619903]
[11]
Poste G, Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: Influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci USA 1976; 73(5): 1603-7.
[http://dx.doi.org/10.1073/pnas.73.5.1603] [PMID: 818640]
[12]
Kimelberg HK, Tracy TF Jr, Biddlecome SM, Bourke RS. The effect of entrapment in liposomes on the in vivo distribution of [3H]methotrexate in a primate. Cancer Res 1976; 36(8): 2949-57.
[PMID: 819137]
[13]
Kobayashi T, Tsukagoshi S, Sakurai Y. Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gan 1975; 66(6): 719-20.
[PMID: 1225724]
[14]
Mayhew E, Papahadjopoulos D, Rustum YM, Dave C. Inhibition of tumor cell growth in vitro and in vivo by 1-beta-D-arabinofuranosylcytosine entrapped within phospholipid vesicles. Cancer Res 1976; 36(12): 4406-11.
[PMID: 187321]
[15]
Alving CR, Steck EA, Chapman WL Jr, et al. Therapy of leishmaniasis: Superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci USA 1978; 75(6): 2959-63.
[http://dx.doi.org/10.1073/pnas.75.6.2959] [PMID: 208079]
[16]
Kedar A, Mayhew E, Moore RH, Williams P, Murphy GP. Effect of actinomycin D-containing lipid vesicles on murine renal adenocarcinoma. J Surg Oncol 1980; 15(4): 363-5.
[http://dx.doi.org/10.1002/jso.2930150410] [PMID: 6161279]
[17]
Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z. Liposomes as in vivo carriers of adriamycin: Reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res 1982; 42(11): 4734-9.
[PMID: 7127308]
[18]
Mehta R, Lopez-Berestein G, Hopfer R, Mills K, Juliano RL. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim Biophys Acta 1984; 770(2): 230-4.
[http://dx.doi.org/10.1016/0005-2736(84)90135-4] [PMID: 6696909]
[19]
Park Y, Kitahara T, Takagi R, Kato R. Current status of therapy for breast cancer worldwide and in Japan. World J Clin Oncol 2011; 2(2): 125-34.
[http://dx.doi.org/10.5306/wjco.v2.i2.125] [PMID: 21603322]
[20]
Yokomichi N, Nagasawa T, Coler-Reilly A, et al. Pathogenesis of Hand-Foot Syndrome induced by PEG-modified liposomal Doxorubicin. Hum Cell 2013; 26(1): 8-18.
[http://dx.doi.org/10.1007/s13577-012-0057-0] [PMID: 23386177]
[21]
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs 2018; 23(4): 907
[22]
Munye MM, Ravi J, Tagalakis AD, McCarthy D, Ryadnov MG, Hart SL. Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci Rep 2015; 5: 9292.
[http://dx.doi.org/10.1038/srep09292] [PMID: 25786833]
[23]
Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today 2012; 17(3-4): 160-6.
[http://dx.doi.org/10.1016/j.drudis.2011.09.015] [PMID: 21983329]
[24]
Mu LM, Ju RJ, Liu R, et al. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev 2017; 115: 46-56.
[http://dx.doi.org/10.1016/j.addr.2017.04.006] [PMID: 28433739]
[25]
Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 2015; 5(3): 231-42.
[http://dx.doi.org/10.1007/s13346-015-0220-8] [PMID: 25787731]
[26]
Demel RA, De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta 1976; 457(2): 109-32.
[http://dx.doi.org/10.1016/0304-4157(76)90008-3] [PMID: 184844]
[27]
Liu W, Wei F, Ye A, Tian M, Han J. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin. Food Chem 2017; 230: 6-13.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.021] [PMID: 28407956]
[28]
Tarun G, Amit KG. Liposomes: Targeted and controlled delivery system. Drug Deliv Lett 2014; 4(1): 62-71.
[http://dx.doi.org/10.2174/22103031113036660015]
[29]
Cogan U, Shinitzky M, Weber G, Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry 1973; 12(3): 521-8.
[http://dx.doi.org/10.1021/bi00727a026] [PMID: 4683495]
[30]
Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol 2018; 113: 40-8.
[http://dx.doi.org/10.1016/j.fct.2018.01.017]
[31]
Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): E195
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[32]
Hoekstra D, Scherphof G. Effect of fetal calf serum and serum protein fractions on the uptake of liposomal phosphatidylcholine by rat hepatocytes in primary monolayer culture. Biochim Biophys Acta 1979; 551(1): 109-21.
[http://dx.doi.org/10.1016/0005-2736(79)90357-2] [PMID: 427147]
[33]
Gregoriadis G, Neerunjun DE. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem 1974; 47(1): 179-85.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03681.x] [PMID: 4434987]
[34]
Juliano RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 1975; 63(3): 651-8.
[http://dx.doi.org/10.1016/S0006-291X(75)80433-5] [PMID: 1131256]
[35]
Hsu MJ, Juliano RL. Interactions of liposomes with the reticuloendothelial system. II: Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim Biophys Acta 1982; 720(4): 411-9.
[http://dx.doi.org/10.1016/0167-4889(82)90120-3] [PMID: 6896828]
[36]
Allen TM, Murray L, MacKeigan S, Shah M. Chronic liposome administration in mice: Effects on reticuloendothelial function and tissue distribution. J Pharmacol Exp Ther 1984; 229(1): 267-75.
[PMID: 6707942]
[37]
Abra RM, Bosworth ME, Hunt CA. Liposome disposition in vivo: effects of pre-dosing with lipsomes. Res Commun Chem Pathol Pharmacol 1980; 29(2): 349-60.
[PMID: 7414053]
[38]
Kao YJ, Juliano RL. Interactions of liposomes with the reticuloendothelial system. Effects of reticuloendothelial blockade on the clearance of large unilamellar vesicles. Biochim Biophys Acta 1981; 677(3-4): 453-61.
[http://dx.doi.org/10.1016/0304-4165(81)90259-2] [PMID: 6895332]
[39]
Riviere K, Kieler-Ferguson HM, Jerger K, Szoka FC. Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J Control Release 2011; 153(3): 288-96.
[http://dx.doi.org/10.1016/j.jconrel.2011.05.005]
[40]
McDonagh CF, Huhalov A, Harms BD, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther 2012; 11(3): 582-93.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0820] [PMID: 22248472]
[41]
Suzuki R, Takizawa T, Kuwata Y, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 2008; 346(1-2): 143-50.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.010] [PMID: 17640835]
[42]
Seetharamu N, Kim E, Hochster H, Martin F, Muggia F. Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer. Anticancer Res 2010; 30(2): 541-5.
[PMID: 20332467]
[43]
Stathopoulos GP, Antoniou D, Dimitroulis J, Stathopoulos J, Marosis K, Michalopoulou P. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol 2011; 68(4): 945-50.
[http://dx.doi.org/10.1007/s00280-011-1572-5] [PMID: 21301848]
[44]
Staruch R, Chopra R, Hynynen K. Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 2011; 27(2): 156-71.
[http://dx.doi.org/10.3109/02656736.2010.518198]
[45]
Fasol U, Frost A, Büchert M, et al. Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Ann Oncol 2012; 23(4): 1030-6.
[http://dx.doi.org/10.1093/annonc/mdr300] [PMID: 21693769]
[46]
Hwang KJ, Padki MM, Chow DD, Essien HE, Lai JY, Beaumier PL. Uptake of small liposomes by non-reticuloendothelial tissues. Biochim Biophys Acta 1987; 901(1): 88-96.
[http://dx.doi.org/10.1016/0005-2736(87)90259-8] [PMID: 3593727]
[47]
Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 1987; 223(1): 42-6.
[http://dx.doi.org/10.1016/0014-5793(87)80506-9] [PMID: 3666140]
[48]
Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977; 252(11): 3582-6.
[PMID: 16907]
[49]
Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990; 268(1): 235-7.
[http://dx.doi.org/10.1016/0014-5793(90)81016-H] [PMID: 2384160]
[50]
Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1990; 1029(1): 91-7.
[http://dx.doi.org/10.1016/0005-2736(90)90440-Y] [PMID: 2223816]
[51]
Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991; 1066(1): 29-36.
[http://dx.doi.org/10.1016/0005-2736(91)90246-5] [PMID: 2065067]
[52]
Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1991; 1062(1): 77-82.
[http://dx.doi.org/10.1016/0005-2736(91)90337-8] [PMID: 1998713]
[53]
Nie Y, Ji L, Ding H, et al. Cholesterol derivatives based charged liposomes for doxorubicin delivery: Preparation, in vitro and in vivo characterization. Theranostics 2012; 2(11): 1092-103.
[http://dx.doi.org/10.7150/thno.4949] [PMID: 23227125]
[54]
Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004; 83(3): 97-111.
[http://dx.doi.org/10.1078/0171-9335-00363] [PMID: 15202568]
[55]
Dams ET, Laverman P, Oyen WJ, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 2000; 292(3): 1071-9.
[PMID: 10688625]
[56]
Forster JC, Harriss-Phillips WM, Douglass MJ, Bezak E. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia (Auckl) 2017; 5: 21-32.
[http://dx.doi.org/10.2147/HP.S133231] [PMID: 28443291]
[57]
Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999; 51(4): 691-743.
[PMID: 10581328]
[58]
Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem Rev 2015; 115(19): 10907-37.
[http://dx.doi.org/10.1021/cr500314d] [PMID: 26166537]
[59]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54(5): 631-51.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
[60]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[61]
Chen B, Dai W, Mei D, et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J Control Release 2016; 241: 68-80.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.014]
[62]
Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 2010; 141(2): 183-92.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.020]
[63]
Gao JQ, Lv Q, Li LM, et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials 2013; 34(22): 5628-39.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.097] [PMID: 23628475]
[64]
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(5) 10.1002/wnan.1450
[http://dx.doi.org/10.1002/wnan.1450] [PMID: 28198148]
[65]
Guo F, Yu M, Wang J, Tan F, Li N. Smart IR780 theranostic nanocarrier for tumor-specific therapy: Hyperthermia-mediated bubble-generating and folate-targeted liposomes. ACS Appl Mater Interfaces 2015; 7(37): 20556-67.
[http://dx.doi.org/10.1021/acsami.5b06552] [PMID: 26322900]
[66]
Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 2014; 57: 78-94.
[http://dx.doi.org/10.1016/j.peptides.2014.04.015] [PMID: 24795041]
[67]
Lopes de Menezes DE, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 1998; 58(15): 3320-30.
[PMID: 9699662]
[68]
Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 2002; 8(4): 1172-81.
[69]
Vingerhoeds MH, Steerenberg PA, Hendriks JJ, et al. Immunoliposome-mediated targeting of doxorubicin to human ovarian carcinoma in vitro and in vivo. Br J Cancer 1996; 74(7): 1023-9.
[http://dx.doi.org/10.1038/bjc.1996.484] [PMID: 8855969]
[70]
Goren D, Horowitz AT, Zalipsky S, Woodle MC, Yarden Y, Gabizon A. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer 1996; 74(11): 1749-56.
[http://dx.doi.org/10.1038/bjc.1996.625] [PMID: 8956788]
[71]
Kirpotin DB, Drummond DC, Shao Y, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006; 66(13): 6732-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[72]
Riviere K, Huang Z, Jerger K, Macaraeg N, Szoka FC Jr. Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration. J Drug Target 2011; 19(1): 14-24.
[http://dx.doi.org/10.3109/10611861003733953] [PMID: 20353291]
[73]
Allen TM, Cleland LG. Serum-induced leakage of liposome contents. Biochim Biophys Acta 1980; 597(2): 418-26.
[http://dx.doi.org/10.1016/0005-2736(80)90118-2] [PMID: 7370258]
[74]
Scherphof G, Roerdink F, Waite M, Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta 1978; 542(2): 296-307.
[http://dx.doi.org/10.1016/0304-4165(78)90025-9] [PMID: 210837]
[75]
Cullis PR. Lateral diffusion rates of phosphatidylcholine in vesicle membranes: Effects of cholesterol and hydrocarbon phase transitions. FEBS Lett 1976; 70(1): 223-8.
[http://dx.doi.org/10.1016/0014-5793(76)80762-4] [PMID: 992064]
[76]
McIntosh TJ. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta 1978; 513(1): 43-58.
[http://dx.doi.org/10.1016/0005-2736(78)90110-4] [PMID: 718889]
[77]
Storm G, Roerdink FH, Steerenberg PA, de Jong WH, Crommelin DJ. Influence of lipid composition on the antitumor activity exerted by doxorubicin-containing liposomes in a rat solid tumor model. Cancer Res 1987; 47(13): 3366-72.
[PMID: 3581073]
[78]
Diederich CJ. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperthermia 2005; 21(8): 745-53.
[http://dx.doi.org/10.1080/02656730500271692]
[79]
Chen KJ, Liang HF, Chen HL, et al. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 2013; 7(1): 438-46.
[http://dx.doi.org/10.1021/nn304474j] [PMID: 23240550]
[80]
Chen KJ, Chaung EY, Wey SP, et al. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS Nano 2014; 8(5): 5105-15.
[http://dx.doi.org/10.1021/nn501162x] [PMID: 24742221]
[81]
Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3(5): 380-7.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[82]
Randles EG, Bergethon PR. A photodependent switch of liposome stability and permeability. Langmuir 2013; 29(5): 1490-7.
[http://dx.doi.org/10.1021/la303526k] [PMID: 23286452]
[83]
Yamashita S, Yamashita J, Ogawa M. Overexpression of group II phospholipase A2 in human breast cancer tissues is closely associated with their malignant potency. Br J Cancer 1994; 69(6): 1166-70.
[http://dx.doi.org/10.1038/bjc.1994.229] [PMID: 8198986]
[84]
Ji T, Li S, Zhang Y, et al. An MMP-2 Responsive liposome integrating antifibrosis and chemotherapeutic drugs for enhanced drug perfusion and efficacy in pancreatic cancer. ACS Appl Mater Interfaces 2016; 8(5): 3438-45.
[http://dx.doi.org/10.1021/acsami.5b11619] [PMID: 26759926]
[85]
Persidis A. Cancer multidrug resistance. Nat Biotechnol 1999; 17(1): 94-5.
[http://dx.doi.org/10.1038/5289] [PMID: 9920278]
[86]
Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov Today 2012; 17(17-18): 1044-52.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[87]
Tahover E, Patil YP, Gabizon AA. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: Focus on liposomes. Anticancer Drugs 2015; 26(3): 241-58.
[http://dx.doi.org/10.1097/CAD.0000000000000182] [PMID: 25415656]
[88]
Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984; 226(4673): 466-8.
[http://dx.doi.org/10.1126/science.6093249] [PMID: 6093249]
[89]
Fong CW. Platinum anti-cancer drugs: Free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect. Free Radic Biol Med 2016; 95: 216-29.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.03.006] [PMID: 27012421]
[90]
Ruttala HB, Ramasamy T, Gupta B, Choi HG, Yong CS, Kim JO. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting. Carbohydr Polym 2017; 173: 57-66.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.062] [PMID: 28732901]
[91]
Xu X, Wang L, Xu HQ, Huang XE, Qian YD, Xiang J. Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 2013; 14(4): 2591-4.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2591] [PMID: 23725180]
[92]
Surapaneni MS, Das SK, Das NG. Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: Current status and challenges. ISRN Pharmacol 2012; 2012: 623139
[http://dx.doi.org/10.5402/2012/623139] [PMID: 22934190]
[93]
Liu Y, Fang J, Kim YJ, Wong MK, Wang P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm 2014; 11(5): 1651-61.
[http://dx.doi.org/10.1021/mp5000373] [PMID: 24673622]
[94]
Lavi O, Gottesman MM, Levy D. The dynamics of drug resistance: A mathematical perspective. Drug Resist Updat 2012; 15(1-2): 90-7.
[http://dx.doi.org/10.1016/j.drup.2012.01.003]
[95]
Rezzani R. Cyclosporine A and adverse effects on organs: Histochemical studies. Prog Histochem Cytochem 2004; 39(2): 85-128.
[http://dx.doi.org/10.1016/j.proghi.2004.04.001] [PMID: 15354618]
[96]
Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003; 10(2): 159-65.
[http://dx.doi.org/10.1177/107327480301000207]
[97]
Phillips MF, Quinlivan R. Calcium antagonists for Duchenne muscular dystrophy. Cochrane Database Syst Rev 2008; (4): CD004571
[PMID: 18843663]
[98]
Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 2005; 5: 30.
[http://dx.doi.org/10.1186/1475-2867-5-30] [PMID: 16202168]
[99]
Sexton E, Van Themsche C, LeBlanc K, Parent S, Lemoine P, Asselin E. Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells. Mol Cancer 2006; 5: 45.
[http://dx.doi.org/10.1186/1476-4598-5-45] [PMID: 17044934]
[100]
Meng J, Guo F, Xu H, Liang W, Wang C, Yang XD. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep 2016; 6: 22390.
[http://dx.doi.org/10.1038/srep22390] [PMID: 26947928]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy