Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanostructured Lipid Carriers (NLCs) for Drug Delivery: Role of Liquid Lipid (Oil)

Author(s): Anisha D’Souza and Ranjita Shegokar*

Volume 18, Issue 3, 2021

Published on: 23 April, 2020

Page: [249 - 270] Pages: 22

DOI: 10.2174/1567201817666200423083807

Price: $65

Open Access Journals Promotions 2
Abstract

In recent years, SLNs and NLCs are among the popular drug delivery systems studied for the delivery of lipophilic drugs. Both systems have demonstrated several beneficial properties as an ideal drug-carrier, optimal drug-loading, and good long-term stability. NLCs are getting popular due to their stability advantages and the possibility to load various oil components either as an active or as a matrix. This review screens types of oils used till date in combination with solid lipids to form NLCs. These oils are broadly classified into two categories: Natural oils and Essential oils. NLCs offer range of advantages in drug delivery due to the formation of an imperfect matrix owing to the presence of oil. The type and percentage of oil used, determine optimal drug loading and stability. Literature shows that a variety of oils is/are used in NLCs mainly as the matrix, which is from natural origin, triglycerides class. On the other hand, essential oils not only serve as a matrix but also as an active moiety. In short, oil is the key ingredient in the formation of NLCs, hence it needs to be selected wisely as per the performance criteria expected. The aim of this article is to discuss shortly the role of liquid lipids and highlight the use of variety of oils in NLCs preparation.

Keywords: Lipid nanoparticles, Solid Lipid Nanoparticles (SLNs), Nanostructured Lipid Carriers (NLCs), liquid lipid, fixed oils, encapsulation of oils, essential oils, homogenization.

Graphical Abstract
[1]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1 ] [PMID: 12176234]
[2]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7 ] [PMID: 12460720]
[3]
Jores, K.; Mehnert, W.; Mäder, K. Physicochemical investigations on solid lipid nanoparticles and on oil-loaded solid lipid nanoparticles: a nuclear magnetic resonance and electron spin resonance study. Pharm. Res., 2003, 20(8), 1274-1283.
[http://dx.doi.org/10.1023/A:1025065418309 ] [PMID: 12948026]
[4]
Jores, K.; Mehnert, W.; Drechsler, M. Investigations on the structure of Solid Lipid Nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Contr. Release Soc., 2004, 95, 217-227.
[5]
Jores, K.; Haberland, A.; Wartewig, S.; Mäder, K.; Mehnert, W. Solid Lipid Nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and Raman spectroscopy. Pharm. Res., 2005, 22(11), 1887-1897.
[http://dx.doi.org/10.1007/s11095-005-7148-5 ] [PMID: 16132349]
[6]
Jenning, V.; Schäfer-Korting, M.; Gohla, S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J. Contr. Release Soc., 2000, 66, 3405-3411.
[7]
Selvamuthukumar, S.; Velmurugan, R. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lipids Health Dis., 2012, 11, 159.
[http://dx.doi.org/10.1186/1476-511X-11-159 ] [PMID: 23167765]
[8]
Müller, R.H.; Petersen, R.D.; Hommoss, A.; Pardeike, J. Nanostructured Lipid Carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev., 2007, 59(6), 522-530.
[http://dx.doi.org/10.1016/j.addr.2007.04.012 ] [PMID: 17602783]
[9]
Montenegro, L.; Pasquinucci, L.; Zappala, A. Rosemary essential oil-loaded lipid nanoparticles: in vivo topical activity from gel vehicles. Pharmaceutics, 2017, 9(4), 48.
[10]
Saporito, F.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Boselli, C.; Icaro Cornaglia, A.; Mannucci, B.; Grisoli, P.; Vigani, B.; Ferrari, F. Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomedicine, 2017, 13, 175-186.
[http://dx.doi.org/10.2147/IJN.S152529 ] [PMID: 29343956]
[11]
Tian, Z.; Yi, Y.; Yuan, H. Solidification of Nanostructured Lipid Carriers (NLCs) onto pellets by fluid-bed coating: preparation, in vitro characterization and bioavailability in dogs. Powder Technol., 2013, 247, 120-127.
[http://dx.doi.org/10.1016/j.powtec.2013.07.010]
[12]
Radtke, M.; Müller, R.H. Nanostructured lipid carriers: the new generation of lipid drug carriers. New Drugs, 2001, 2, 4.
[13]
Jenning, V.; Gysler, A.; Schafer-Korting, M.; Gohla, S.H. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm., 2000, 49, 211-218.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2]
[14]
Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems-an overview. Acta Pharm. Sin. B, 2013, 3, 361-372.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[15]
Jain, P.; Rahi, P.; Pandey, V. Nanostructure lipid carriers: a modish contrivance to overcome the ultraviolet effects. Egyptian J. Basic Applied Sci., 2017, 4, 89-100.
[http://dx.doi.org/10.1016/j.ejbas.2017.02.001]
[16]
Keck, C.M.; Baisaeng, N.; Durand, P.; Prost, M.; Meinke, M.C.; Müller, R.H. Oil-enriched, ultra-small Nanostructured Lipid Carriers (usNLC): a novel delivery system based on flip-flop structure. Int. J. Pharm., 2014, 477(1-2), 227-235.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.029 ] [PMID: 25455773]
[17]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3 ] [PMID: 11311991]
[18]
Sato, K.; Garti, N. Crystallization and polymorphism of fats and fatty acids. Surfactant Sci; Garti, N., Ed.; Taylor & Francis: New York, 1988, p. 464.
[19]
Wissing, S.; Müller, R. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int. J. Pharm., 2002, 242(1-2), 377-379.
[http://dx.doi.org/10.1016/S0378-5173(02)00220-X ] [PMID: 12176283]
[20]
Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery- a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4 ] [PMID: 10840199]
[21]
Rosenblatt, K.M.; Bunjes, H. Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the alpha-modification. Mol. Pharm., 2009, 6(1), 105-120.
[http://dx.doi.org/10.1021/mp8000759 ] [PMID: 19049318]
[22]
Bunjes, H.; Koch, M.H.J. Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. J. Control. Release, 2005, 107, 229-243.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.004]
[23]
Müller, R.H.; Mäder, K.; Lippacher, A.; Jenning, V. Solid-liquid (semi-solid) liquid particles and method of producing highly concentrated lipid particle dispersions. PharmaSol 2000. PCT/EP00/04565.
[24]
Müller, R.H.; Keck, C.M. Next generation after SLN® and NLC® – the “chaotic” smartLipids; Wissenschaftliche Posterausstellung, 2015, p. 9.
[25]
Puglia, C.; Lauro, M.R.; Offerta, A.; Crascì, L.; Micicchè, L.; Panico, A.M.; Bonina, F.; Puglisi, G. Nanostructured Lipid Carriers (NLC) as vehicles for topical administration of sesamol: in vitro percutaneous absorption study and evaluation of antioxidant activity. Planta Med., 2017, 83(5), 398-404.
[PMID: 27124246]
[26]
Yuan, H.; Wang, L.L.; Du, Y.Z.; You, J.; Hu, F.Q.; Zeng, S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf. B Biointerfaces, 2007, 60(2), 174-179.
[http://dx.doi.org/10.1016/j.colsurfb.2007.06.011 ] [PMID: 17656075]
[27]
Thatipamula, R.; Palem, C.; Gannu, R.; Mudragada, S.; Yamsani, M. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru, 2011, 19(1), 23-32.
[PMID: 22615636]
[28]
Lopez-García, R.; Ganem-Rondero, A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): occlusive effect and penetration enhancement ability; J. Cosmetics, Dermatolog. Sci. Appli, 2015, p. 5.
[29]
Dauqan, E.M.; Sani, H.A.; Abdullah, A.; Kasim, Z.M. Fatty acids composition of four different vegetable oils (red palm olein, palm olein, corn oil and coconut oil) by gas chromatography. 2nd Int. Conf. Chem. Chemical Engr., China2011, pp. 31-34.
[30]
Fasina, O.O.; Hallman, H.; Craig-Schmidt, M.; Clements, C. Predicting temperature-dependence viscosity of vegetable oils from fatty acid composition. J. Am. Oil Chem. Soc., 2006, 83, 899-903.
[http://dx.doi.org/10.1007/s11746-006-5044-8]
[31]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid Nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003 ] [PMID: 18992314]
[32]
Date, A.A.; Vador, N.; Jagtap, A.; Nagarsenker, M.S. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery. Nanotechnology, 2011, 22(27)275102
[http://dx.doi.org/10.1088/0957-4484/22/27/275102 ] [PMID: 21606564]
[33]
Shi, F.; Yang, G.; Ren, J.; Guo, T.; Du, Y.; Feng, N. Formulation design, preparation, and in vitro and in vivo characterizations of β-Elemene-loaded nanostructured lipid carriers. Int. J. Nanomed., 2013, 8, 2533-2541.
[http://dx.doi.org/10.2147/IJN.S46578 ] [PMID: 23901271]
[34]
Garcia-Orue, I.; Gainza, G.; Girbau, C.; Alonso, R.; Aguirre, J.J.; Pedraz, J.L.; Igartua, M.; Hernandez, R.M. LL37 loaded Nanostructured Lipid Carriers (NLC): a new strategy for the topical treatment of chronic wounds. Eur. J. Pharm. Biopharm., 2016, 108, 310-316.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.006 ] [PMID: 27080206]
[35]
Zhou, X.; Zhang, X.; Ye, Y.; Zhang, T.; Wang, H.; Ma, Z.; Wu, B. Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption. Int. J. Pharm., 2015, 479(2), 391-398.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.068 ] [PMID: 25556104]
[36]
Balguri, S.P.; Adelli, G.R.; Majumdar, S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm., 2016, 109, 224-235.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.015 ] [PMID: 27793755]
[37]
Aditya, N.P.; Macedo, A.S.; Doktorovova, S. Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of Solid Lipid Nanoparticles (SLN), Nanostructured Lipid Carriers (NLC), and Lipid Nanoemulsions (LNE). Lebensm. Wiss. Technol., 2014, 59, 115-121.
[http://dx.doi.org/10.1016/j.lwt.2014.04.058]
[38]
Beloqui, A.; Solinís, M.A.; Delgado, A.; Evora, C.; Isla, A.; Rodríguez-Gascón, A. Fate of Nanostructured Lipid Carriers (NLCs) following the oral route: design, pharmacokinetics and biodistribution. J. Microencapsul., 2014, 31(1), 1-8.
[http://dx.doi.org/10.3109/02652048.2013.788090 ] [PMID: 23631381]
[39]
Beloqui, A; Solinis, MA; Gascon, AR Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J. Controlled Release Soc., 2013, 166, 115-123.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.021]
[40]
Zhao, C.; Fan, T.; Yang, Y.; Wu, M.; Li, L.; Zhou, Z.; Jian, Y.; Zhang, Q.; Huang, Y. Preparation, macrophages targeting delivery and anti-inflammatory study of pentapeptide grafted nanostructured lipid carriers. Int. J. Pharm., 2013, 450(1-2), 11-20.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.030 ] [PMID: 23612355]
[41]
Monteiro, L.M.; Löbenberg, R.; Cotrim, P.C.; Barros de Araujo, G.L.; Bou-Chacra, N. Buparvaquone nanostructured lipid carrier: development of an affordable delivery system for the treatment of leishmaniases. BioMed Res. Int., 2017, 20179781603
[http://dx.doi.org/10.1155/2017/9781603 ] [PMID: 28255558]
[42]
Shah, N.V.; Seth, A.K.; Balaraman, R.; Aundhia, C.J.; Maheshwari, R.A.; Parmar, G.R. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J. Adv. Res., 2016, 7(3), 423-434.
[http://dx.doi.org/10.1016/j.jare.2016.03.002 ] [PMID: 27222747]
[43]
Al-Qushawi, A.; Rassouli, A.; Atyabi, F.; Peighambari, S.M.; Esfandyari-Manesh, M.; Shams, G.R.; Yazdani, A. Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: physicochemical properties and in-vitro antibacterial activities. Iran. J. Pharm. Res., 2016, 15(4), 663-676.
[PMID: 28261309]
[44]
Tu, X.; Chen, H.; Du, L. Preparation and physicochemical of microemulsion based on macadamia nut oil. AIP Conf. Proc; , 2018. 1944, e020038.
[http://dx.doi.org/10.1063/1.5029754]
[45]
Lacatusu, I.; Mitrea, E.; Badea, N. Lipid nanoparticles based on omega-3 fatty acids as effective carriers for lutein delivery. Preparation and in vitro characterization studies. J. Funct. Foods, 2013, 5, 1260-1269.
[http://dx.doi.org/10.1016/j.jff.2013.04.010]
[46]
Piran, P.; Kafil, H.S.; Ghanbarzadeh, S.; Safdari, R.; Hamishehkar, H. Formulation of menthol-loaded nanostructured lipid carriers to enhance its antimicrobial activity for food preservation. Adv. Pharm. Bull., 2017, 7(2), 261-268.
[http://dx.doi.org/10.15171/apb.2017.031 ] [PMID: 28761828]
[47]
Hejri, A.; Khosravi, A.; Gharanjig, K.; Hejazi, M. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem., 2013, 141(1), 117-123.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.080 ] [PMID: 23768336]
[48]
Wei, Q.; Yang, Q.; Wang, Q.; Sun, C.; Zhu, Y.; Niu, Y.; Yu, J.; Xu, X. Formulation, characterization, and pharmacokinetic studies of 6-gingerol-loaded nanostructured lipid carriers. AAPS PharmSciTech, 2018, 19(8), 3661-3669.
[http://dx.doi.org/10.1208/s12249-018-1165-2 ] [PMID: 30324361]
[49]
Joshi, M.; Pathak, S.; Sharma, S.; Patravale, V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: nanoject. Int. J. Pharm., 2008, 364(1), 119-126.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.032 ] [PMID: 18765274]
[50]
Godugu, C.; Doddapaneni, R.; Safe, S.H.; Singh, M. Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer. Eur. J. Pharm. Biopharm., 2016, 108, 168-179.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.006 ] [PMID: 27586082]
[51]
Qu, J.; Zhang, L.; Chen, Z.; Mao, G.; Gao, Z.; Lai, X.; Zhu, X.; Zhu, J. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy? Drug Deliv., 2016, 23(9), 3408-3416.
[http://dx.doi.org/10.1080/10717544.2016.1189465 ] [PMID: 27181462]
[52]
São Pedro, A.; Santo, I.E.; Silva, C.V. The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity Microbial pathogens and strategies for combating them: science, technology and education. Méndez-Vilas, A., Ed.; Formatex Research Center: Spain 2013, pp. 1364-1374.
[53]
Bråred Christensson, J.; Forsström, P.; Wennberg, A.M.; Karlberg, A.T.; Matura, M. Air oxidation increases skin irritation from fragrance terpenes. Contact Dermat., 2009, 60(1), 32-40.
[http://dx.doi.org/10.1111/j.1600-0536.2008.01471.x ] [PMID: 19125719]
[54]
Divkovic, M.; Pease, C.K.; Gerberick, G.F.; Basketter, D.A. Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitization. Contact Dermat., 2005, 53(4), 189-200.
[http://dx.doi.org/10.1111/j.0105-1873.2005.00683.x ] [PMID: 16191014]
[55]
Burt, S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022 ] [PMID: 15246235]
[56]
Adorjan, B.; Buchbauer, G. Biological properties of essential oils: an updated review. Flavour Fragrance J., 2010, 25, 407-426.
[http://dx.doi.org/10.1002/ffj.2024]
[57]
Bilia, AR; Guccione, C.; Isacchi, B. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. J. Evid. Based Complementary Altern. Med., 2014, 2014, 14.
[58]
Bronaugh, RL; Wester, RC; Bucks, D. In vivo percutaneous absorption of fragrance ingredients in rhesus monkeys and humans. Food Chem. Toxicol., 1990, 28, 369-373.
[http://dx.doi.org/10.1016/0278-6915(90)90111-Y]
[59]
Kohlert, C.; van Rensen, I.; März, R.; Schindler, G.; Graefe, E.U.; Veit, M. Bioavailability and pharmacokinetics of natural volatile terpenes in animals and humans. Planta Med., 2000, 66(6), 495-505.
[http://dx.doi.org/10.1055/s-2000-8616 ] [PMID: 10985073]
[60]
Guénette, S.A.; Ross, A.; Marier, J.F.; Beaudry, F.; Vachon, P. Pharmacokinetics of eugenol and its effects on thermal hypersensitivity in rats. Eur. J. Pharmacol., 2007, 562(1-2), 60-67.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.044 ] [PMID: 17321520]
[61]
Michiels, J.; Missotten, J.; Dierick, N. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J. Sci. Food Agric., 2008, 88, 2371-2381.
[http://dx.doi.org/10.1002/jsfa.3358]
[62]
Kohlert, C.; Schindler, G.; März, R.W.; Abel, G.; Brinkhaus, B.; Derendorf, H.; Gräfe, E.U.; Veit, M. Systemic availability and pharmacokinetics of thymol in humans. J. Clin. Pharmacol., 2002, 42(7), 731-737.
[http://dx.doi.org/10.1177/009127002401102678 ] [PMID: 12092740]
[63]
Cerreto, F.; Paolicelli, P.; Cesa, S.; Abu Amara, H.M.; D’Auria, F.D.; Simonetti, G.; Casadei, M.A. Solid lipid nanoparticles as effective reservoir systems for long-term preservation of multidose formulations. AAPS PharmSciTech, 2013, 14(2), 847-853.
[http://dx.doi.org/10.1208/s12249-013-9972-y ] [PMID: 23625652]
[64]
Paolicelli, P.; Corrente, F.; Serricchio, D. The system SLN-Dextran hydrogel: an application for the topical delivery of ketoconazole. J. Chem. Pharm. Res., 2011, 3, 410-421.
[65]
Tichota, D.M.; Silva, A.C.; Sousa Lobo, S. J.M.; Amaral, M.H. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration. Int. J. Nanomedicine, 2014, 9, 3855-3864.
[PMID: 25143733]
[66]
Hommoss, A. Preservative system development for argan oil-loaded nanostructured lipid carriers. Pharmazie, 2011, 66(3), 187-191.
[PMID: 21553648]
[67]
Niamprem, P.; Srinivas, S.P.; Tiyaboonchai, W. Penetration of Nile red-loaded Nanostructured Lipid Carriers (NLCs) across the porcine cornea. Colloids Surf. B Biointerfaces, 2019, 176, 371-378.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.018 ] [PMID: 30658285]
[68]
El-Salamouni, N.S.; Farid, R.M.; El-Kamel, A.H.; El-Gamal, S.S. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm., 2015, 496(2), 976-983.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.043 ] [PMID: 26498372]
[69]
Intahphuak, S.; Khonsung, P.; Panthong, A. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil. Pharm. Biol., 2010, 48(2), 151-157.
[http://dx.doi.org/10.3109/13880200903062614 ] [PMID: 20645831]
[70]
Kawadkar, J.; Pathak, A.; Kishore, R.; Chauhan, M.K. Formulation, characterization and in vitro-in vivo evaluation of flurbiprofen-loaded nanostructured lipid carriers for transdermal delivery. Drug Dev. Ind. Pharm., 2013, 39(4), 569-578.
[http://dx.doi.org/10.3109/03639045.2012.686509 ] [PMID: 22639934]
[71]
Noor, N.M.; Aziza, A.A.; Sarmidia, M.R.; Aziz, R. The effect of Virgin Coconut Oil loaded Solid Lipid Particles (VCO-SLPs) on skin hydration and skin elasticity. J. Teknologi, 2013, 62, 39-43.
[72]
Pamudji, J.S.; Mauludin, R.; Indriani, N. Development of nanostructured lipid carrier formulation containing of retinyl palmitate. Int. J. Pharm. Pharm. Sci., 2016, 8, 256-260.
[73]
Wang, J-L.; Dong, X-Y.; Wei, F.; Zhong, J.; Liu, B.; Yao, M.H.; Yang, M.; Zheng, C.; Quek, S.Y.; Chen, H. Preparation and characterization of novel lipid carriers containing microalgae oil for food applications. J. Food Sci., 2014, 79(2), E169-E177.
[http://dx.doi.org/10.1111/1750-3841.12334 ] [PMID: 24446860]
[74]
Kaushik, N.; Vir, S. Variations in fatty acid composition of neem seeds collected from the Rajasthan state of India. Biochem. Soc. Trans., 2000, 28(6), 880-882.
[http://dx.doi.org/10.1042/bst0280880 ] [PMID: 11171243]
[75]
Vijayan, V.; Aafreen, S.; Sakthivel, S.; Reddy, K.R. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J. Acute Dis., 2013, 2, 282-286.
[http://dx.doi.org/10.1016/S2221-6189(13)60144-4]
[76]
Satyanarayana, M.; Muraleedharan, C. Comparative studies of biodiesel production from rubber seed oil, coconut oil, and palm oil including thermogravimetric analysis. Energy Source Part A, 2011, 33, 925-937.
[http://dx.doi.org/10.1080/15567030903330637]
[77]
Jo, Y.J.; Choi, M.J.; Kwon, Y.J. Effect of palm or coconut Solid Lipid Nanoparticles (SLNs) on growth of lactobacillus plantarum in milk. Han-gug Chugsan Sigpum Hag-hoeji, 2015, 35(2), 197-204.
[http://dx.doi.org/10.5851/kosfa.2015.35.2.197 ] [PMID: 26761828]
[78]
Kumar, N.; Chaiyasut, C. Hair growth promoting activity of carthamus tinctorius florets extract-loaded nanostructured lipid carriers. Int. J. Pharm. Pharm. Sci., 2015, 7, 5.
[79]
Chinsriwongkul, A.; Chareanputtakhun, P.; Ngawhirunpat, T.; Rojanarata, T.; Sila-on, W.; Ruktanonchai, U.; Opanasopit, P. Nanostructured Lipid Carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech, 2012, 13(1), 150-158.
[http://dx.doi.org/10.1208/s12249-011-9733-8 ] [PMID: 22167418]
[80]
Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Comparative study between the viscoelastic behaviors of different lipid nanoparticle formulations. J. Cosmet. Sci., 2004, 55(5), 463-471.
[PMID: 15608996]
[81]
Souto, E.B.; Gohla, S.H.; Müller, R.H. Rheology of Nanostructured Lipid Carriers (NLC) suspended in a viscoelastic medium. Pharmazie, 2005, 60(9), 671-673.
[PMID: 16222866]
[82]
Holser, R. Encapsulation of polyunsaturated fatty acid esters with solid lipid particles. Lipid Insights, 2012, 5, 1-5.
[http://dx.doi.org/10.4137/LPI.S7901]
[83]
Averina, E.S.; Müller, R.H.; Popov, D.V.; Radnaeva, L.D. Physical and chemical stability of nanostructured Lipid Drug Carriers (NLC) based on natural lipids from Baikal region (Siberia, Russia). Pharmazie, 2011, 66(5), 348-356.
[PMID: 21699068]
[84]
Zhu, J.; Zhuang, P.; Luan, L. Preparation and characterization of novel nanocarriers containing krill oil for food application. J. Funct. Foods, 2015, 19, 902-912.
[http://dx.doi.org/10.1016/j.jff.2015.06.017]
[85]
Garg, N.K.; Sharma, G.; Singh, B.; Nirbhavane, P.; Tyagi, R.K.; Shukla, R.; Katare, O.P. Quality by Design (QbD)-enabled development of aceclofenac loaded-Nano structured Lipid Carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder(s). Int. J. Pharm., 2017, 517(1-2), 413-431.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.010 ] [PMID: 27956192]
[86]
Lai, F.; Wissing, S.A.; Müller, R.H.; Fadda, A.M. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech, 2006, 7(1), E10-E18.
[http://dx.doi.org/10.1208/pt070102 ] [PMID: 28290017]
[87]
Lai, F.; Sinico, C.; De Logu, A.; Zaru, M.; Müller, R.H.; Fadda, A.M. SLN as a topical delivery system for Artemisia arborescens essential oil: in vitro antiviral activity and skin permeation study. Int. J. Nanomedicine, 2007, 2(3), 419-425.
[PMID: 18019840]
[88]
Van Hoed, V.; De Clercq, N.; Echim, C. Berry seeds: a source of specialty oils with high content of bioactives and nutritional value. J. Food Lipids, 2009, 16, 33-49.
[http://dx.doi.org/10.1111/j.1745-4522.2009.01130.x]
[89]
Wright, S.; Burton, J.L. Oral evening-primrose-seed oil improves atopic eczema. Lancet, 1982, 2(8308), 1120-1122.
[http://dx.doi.org/10.1016/S0140-6736(82)92784-2 ] [PMID: 6128449]
[90]
Tanojo, H.; Boelsma, E.; Junginger, H.E.; Ponec, M.; Boddé, H.E. In vivo human skin barrier modulation by topical application of fatty acids. Skin Pharmacol. Appl. Skin Physiol., 1998, 11(2), 87-97.
[http://dx.doi.org/10.1159/000029813 ] [PMID: 9603659]
[91]
Metz, G. Ernährung und Prävention: eins oder uneins. Pharmazeutische Zeitung. Verlag: GOVI-Verlag, 1997.
[92]
Lawson, E.; Sikora, E.; Ogonowski, J. Formulation and characterization of nanostructured lipid carriers demonstrating the stabilizing effect against peroxidation of strawberry and blackcurrant seed oils. Agro Food Ind. Hi-Tech, 2015, 26, 44-48.
[93]
Ghosh, K. Anticancer effect of lemongrass oil and citral on cervical cancer cell lines. Pharmacogn. Commun., 2013, 3, 7.
[94]
Lee, H.J.; Jeong, H.S.; Kim, D.J.; Noh, Y.H.; Yuk, D.Y.; Hong, J.T. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-kappa B activation in RAW264.7 cells. Arch. Pharm. Res., 2008, 31(3), 342-349.
[http://dx.doi.org/10.1007/s12272-001-1162-0 ] [PMID: 18409048]
[95]
Weerawatanakorn, M.; Wu, J.C.; Pan, M.H.; Ho, C.T. Reactivity and stability of selected flavor compounds. Yao Wu Shi Pin Fen Xi, 2015, 23(2), 176-190.
[http://dx.doi.org/10.1016/j.jfda.2015.02.001 ] [PMID: 28911372]
[96]
Nordin, N.; Yeap, S.K.; Zamberi, N.R.; Abu, N.; Mohamad, N.E.; Rahman, H.S.; How, C.W.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. Characterization and toxicity of citral incorporated with nanostructured lipid carrier. PeerJ, 2018, 6e3916
[http://dx.doi.org/10.7717/peerj.3916 ] [PMID: 29312812]
[97]
Gholipourkanani, H.; Gholinasab-Omran, I.; Ebrahimi, P.; Jafaryan, H. Anesthetic effect of clove oil loaded on lecithin based nano emulsions in gold fish, Carassius auratus. Su Ürün. Derg., 2015, 10, 553-561.
[98]
Garg, A.; Singh, S. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf. B Biointerfaces, 2011, 87(2), 280-288.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.030 ] [PMID: 21689909]
[99]
Garg, A.; Singh, S. Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin. Nanomedicine (Lond.), 2014, 9(8), 1223-1238.
[http://dx.doi.org/10.2217/nnm.13.33 ] [PMID: 23987096]
[100]
Pokharkar, V.; Shekhawat, P.B.; Dhapte, V.; Mandpe, L. Development and optimization of eugenol loaded nanostructured lipid carriers for periodontal delivery. Int. J. Pharm. Pharm. Sci., 2011, 3, 138.
[101]
Wang, Y.; Deng, Y.; Mao, S.; Jin, S.; Wang, J.; Bi, D. Characterization and body distribution of beta-elemene Solid Lipid Nanoparticles (SLN). Drug Dev. Ind. Pharm., 2005, 31(8), 769-778.
[http://dx.doi.org/10.1080/03639040500216329 ] [PMID: 16221611]
[102]
Shi, F.; Zhao, J.H.; Liu, Y.; Wang, Z.; Zhang, Y.T.; Feng, N.P. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int. J. Nanomedicine, 2012, 7, 2033-2043.
[PMID: 22619540]
[103]
Adel, M.M.; Atwa, W.A.; Hassan, M.L. Biological activity and field persistence of pelargonium graveolens (Geraniales: Geraniaceae) loaded Solid Lipid Nanoparticles (SLNs) on Phthorimaea operculella (Zeller) (PTM) (Lepidoptera: Gelechiidae). Int. J. Sci. Res. , 2015, 4, 514-520.
[104]
Yang, F.L.; Li, X.G.; Zhu, F.; Lei, C.L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem., 2009, 57(21), 10156-10162.
[http://dx.doi.org/10.1021/jf9023118 ] [PMID: 19835357]
[105]
Wencui, Z.; Qi, Z.; Ying, W.; Di, W. Preparation of solid lipid nanoparticles loaded with garlic oil and evaluation of their in vitro and in vivo characteristics. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(19), 3742-3750.
[PMID: 26502865]
[106]
Shi, F.; Zhao, Y.; Firempong, C.K.; Xu, X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm. Biol., 2016, 54(10), 2320-2328.
[http://dx.doi.org/10.3109/13880209.2016.1155630 ] [PMID: 26986932]
[107]
Wissing, S.A.; Mader, K.; Muller, R.H. Prolonged efficacy of the insect repellent lemon oil by incorporation into Solid Lipid Nanoparticles (SLN). Third World Meeting Apgi/Apv, Berlin2000, pp. 439-440.
[108]
Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Preparation and characterization of PEG-Mentha oil nanoparticles for housefly control. Colloids Surf. B Biointerfaces, 2014, 116, 707-713.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.012 ] [PMID: 24287110]
[109]
Alhaj, N.A.; Shamsudin, M.N.; Alipiah, N.M. Characterization of Nigella sativa L. essential oil-loaded solid lipid nanoparticles. Am. J. Pharmacol. Toxicol., 2010, 5, 52-57.
[http://dx.doi.org/10.3844/ajptsp.2010.52.57]
[110]
Soleimanian, Y.; Goli, S.A.H.; Varshosaz, J.; Sahafi, S.M. Formulation and characterization of novel nanostructured lipid carriers made from beeswax, propolis wax and pomegranate seed oil. Food Chem., 2018, 244, 83-92.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.010 ] [PMID: 29120809]
[111]
Baldissera, M.D.; Da Silva, A.S.; Oliveira, C.B.; Santos, R.C.; Vaucher, R.A.; Raffin, R.P.; Gomes, P.; Dambros, M.G.; Miletti, L.C.; Boligon, A.A.; Athayde, M.L.; Monteiro, S.G. Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Exp. Parasitol., 2014, 141, 21-27.
[http://dx.doi.org/10.1016/j.exppara.2014.03.007 ] [PMID: 24657576]
[112]
Rawat, D.; Tripathi, C.B.; Parashar, P. Development and characterization of nanostructured lipid carriers of Vetiveria zizanoides oil for therapeutic potential in prickly heat treatment. J. Pharm. Sci. Pharmacol., 2015, 2, 162-171.
[http://dx.doi.org/10.1166/jpsp.2015.1054]
[113]
Moghimipour, E.; Ramezani, Z.; Handali, S. Solid lipid nanoparticles as a delivery system for Zataria multiflora essential oil: formulation and characterization. Curr. Drug Deliv., 2013, 10(2), 151-157.
[http://dx.doi.org/10.2174/1567201811310020001 ] [PMID: 23432388]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy