Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

A Review on Experimental Methods for Diabetes Induction and Therapeutic Efficacy of Anti-diabetic Drug Loaded Nanoformulation

Author(s): Mohamad Taleuzzaman*, Chandra Kala, Iqra Rahat, Sadaf Jamal Gilani, Vinay Kumar* and Syed Sarim Imam

Volume 15, Issue 5, 2020

Page: [436 - 447] Pages: 12

DOI: 10.2174/1574885515999200415114330

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Different experimental methods have been used to induce diabetes in animals. There are a number of anti-diabetic drug loaded nano-formulations with high therapeutic value that are used to target diabetes with high therapeutic efficacy.

Methods: From this review, various anti-hyperglycemic agents have been screened for their activity. The use of nano-formulation in diabetes treatment is considered due to the possibility of the incorporation of both hydrophilic and hydrophobic substances.

Results: The clinical symptoms of diabetes are similar to those of hyperglycemia, glucosuria, polydipsia, polyphagia, and polyuria and these symptoms were produced in experimental animal models through various diabetogens. The treatment by using nano-formulation enhance the therapeutic efficacy due to an increase in high carrier capacity.

Conclusion: The characteristic features of the disease and pathological changes during disease in small animals (rats or mice) are similar to that of human beings. The use of synthetic as well as herbal drugs have shown greater therapeutic efficacy by encapsulating into nano drug delivery system.

Keywords: Diabetes, alloxan, streptozotocin, nanoformulation, efficacy, anti-diabetic.

Graphical Abstract
[1]
WHO Bulletin No 312, April 2016.
[2]
Diagnosis and classification of diabetes mellitus. Diabetes Care 2009; 32(Suppl. 1): S62-7.
[http://dx.doi.org/10.2337/dc09-S062 PMID: 19118289]
[3]
Rajeev KS, Bhawana S, Meenakshi J, et al. Evaluation of hypolipidemic effect of stem part of Berberisaristata in type-2 diabetes mellitus patients as add on therapy. Natl J Physiol Pharm Pharmacol 2017; 7(11): 1159-69.
[http://dx.doi.org/10.5455/njppp.2017.7.0517510062017]
[4]
Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 2008; 88(11): 1322-35.
[http://dx.doi.org/10.2522/ptj.20080008 PMID: 18801863]
[5]
Gale EAM. Drug induced diabetes other types of diabetes mellitus Diapedia, The Living Textbook of Diabetes.
[6]
Samadder A, Rahman A, Bukhsh K. Nanotechnological approaches in diabetes treatment: A new horizon. World J Transl Med 2014; 3(2): 84-95.
[http://dx.doi.org/10.5528/wjtm.v3.i2.84]
[7]
Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019; 42(Suppl. 1): S13-28.
[http://dx.doi.org/10.2337/dc19-S002 PMID: 30559228]
[8]
Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 2005; 172(12): 1487-90.
[http://dx.doi.org/10.1164/rccm.200504-613PP PMID: 16151040]
[9]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012 PMID: 29379334]
[10]
Murphy MM, Knaus WJ, Ng SC. Total pancreatectomy: a national study. HPB 2009; 11(6): 476-82.
[http://dx.doi.org/10.1111/j.1477-2574.2009.00076.x]
[11]
Kumar S, Singh R, Vasudeva N, Sharma S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc Diabetol 2012; 11: 9.
[http://dx.doi.org/10.1186/1475-2840-11-9 PMID: 22257465]
[12]
Ankur R, Shahjad A. Alloxan Induced Diabetes: mechanisms and Effects. Intern J of Resea In Pharma and Biomed Sci 2012; 3(2): 819-23.
[13]
Are C, Dhir M, Ravipati L. History of pancreatic coduodenectomy: early misconceptions, initial milestones and the pioneers. HPB 2011; 13(6): 377-84.
[http://dx.doi.org/10.1111/j.1477-2574.2011.00305.x PMID: 21609369]
[14]
Srinivasan K, Ramarao P. Animal models in type-2 diabetes research: an overview. Indian J Med Res 125(3): 451-72.
[15]
King AJ. The use of animal models in diabetes research. Br J Pharmacol 2012; 166(3): 877-94.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01911.x PMID: 22352879]
[16]
Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol 2013; 4: 37.
[http://dx.doi.org/10.3389/fendo.2013.00037 PMID: 23542897]
[17]
Torsha G, Tina C, Mainak G. Model test for oral hypoglycemic activity of parthenium weed in albino mice. Intern J Phar Engin 2014; 2(3): 333-42.
[18]
Meraiyebu A, Ogunwole E, Izuchukwu NS. Effects of aqueous extract of moringaoleifera seeds on alloxan induced hyperglycemia. Basic Sci Medi 2014; 3(3): 37-42.
[19]
Amraie E, Farsani MK, Sadeghi L, Khan TN, Babadi VY, Adavi Z. The effects of aqueous extract of alfalfa on blood glucose and lipids in alloxan-induced diabetic rats. Interv Med Appl Sci 2015; 7(3): 124-8.
[http://dx.doi.org/10.1556/1646.7.2015.3.7 PMID: 26525173]
[20]
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50(6): 537-46.
[PMID: 11829314]
[21]
Kebe EO, Ubom KS, Charles CM. Some histological changes in the intestines of alloxan induced diabetic mellitus albino rats. J Biol Agr Healthcare 2014; 4(8): 81-5.
[22]
Veeranjaneyulu C, Subramanian G. Rediscovered the induction of diabetogenic agents in the experimental animal model. [review] Int J Appl Biol Pharm Tech 2016; 7: 95-104.
[23]
Heart E, Palo M, Womack T, Smith PJS, Gray JP. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion. Toxicol Appl Pharmacol 2012; 258(2): 216-25.
[http://dx.doi.org/10.1016/j.taap.2011.11.002 PMID: 22115979]
[24]
Ighodaro OM, Adeosun AM, Akinloye OA. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 2017; 53(6): 365-74.
[http://dx.doi.org/10.1016/j.medici.2018.02.001 PMID: 29548636]
[25]
Bolzán AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res 2002; 512(2-3): 121-34.
[http://dx.doi.org/10.1016/S1383-5742(02)00044-3 PMID: 12464347]
[26]
King PD, Perry MC. Hepatotoxicity of chemotherapy. Oncologist 2001; 6(2): 162-76.
[http://dx.doi.org/10.1634/theoncologist.6-2-162 PMID: 11306728]
[27]
Walbert T, Gilbert MR, Groves MD, et al. Combination of 6-thioguanine, capecitabine, and celecoxib with temozolomide or lomustine for recurrent high-grade glioma. J Neurooncol 2011; 102(2): 273-80.
[28]
Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomed Pharmacother 2017; 95: 605-13.
[http://dx.doi.org/10.1016/j.biopha.2017.08.098 PMID: 28881291]
[29]
Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 2000; 49(11): 1390-4.
[http://dx.doi.org/10.1053/meta.2000.17721 PMID: 11092499]
[30]
Guo XX, Wang Y, Wang K, Ji BP, Zhou F. Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. J Zhejiang Univ Sci B 2018; 19(7): 559-69.
[http://dx.doi.org/10.1631/jzus.B1700254 PMID: 29971994]
[31]
Guo Y, Xiao Z, Wang Y, et al. Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression. Front Endocrinol 2018; 9: 630.
[http://dx.doi.org/10.3389/fendo.2018.00630 PMID: 30410469]
[32]
Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes 2015; 8: 181-8.
[PMID: 25897251]
[33]
Ahmadi S, Karimian SM, Sotoudeh M, Bahadori M, Dehghani GA. Pancreatic islet beta cell protective effect of oral vanadyl sulphate in streptozotocin-induced diabetic rats, an ultrastructure study. Pak J Biol Sci 2010; 13(23): 1135-40.
[http://dx.doi.org/10.3923/pjbs.2010.1135.1140 PMID: 21313890]
[34]
Flyvbjerg A, Bennett WF, Rasch R, Kopchick JJ, Scarlett JA. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Diabetes 1999; 48(2): 377-82.
[http://dx.doi.org/10.2337/diabetes.48.2.377 PMID: 10334317]
[35]
Grover N, Bafna PA, Rana AC. Diabetes and methods to induce experimental diabetes. JPBS 2011; 1(4): 414-9.
[36]
Pitt HA, Saudek CD, Zacur HA. Long-term intraperitoneal insulin delivery. Ann Surg 1992; 216(4): 483-91.
[http://dx.doi.org/10.1097/00000658-199210000-00011 PMID: 1417197]
[37]
Filippi CM, von Herrath MG. Viral trigger for type 1 diabetes: pros and cons. Diabetes 2008; 57(11): 2863-71.
[http://dx.doi.org/10.2337/db07-1023 PMID: 18971433]
[38]
Mostafavinia A, Amini A, Ghorishi SK, Pouriran R, Bayat M. The effects of dosage and the routes of administrations of streptozotocin and alloxan on induction rate of type1 diabetes mellitus and mortality rate in rats. Lab Anim Res 2016; 32(3): 160-5.
[http://dx.doi.org/10.5625/lar.2016.32.3.160 PMID: 27729932]
[39]
Ghazarian L, Diana J, Beaudoin L, et al. Protection against type 1 diabetes upon Coxsackievirus B4 infection and iNKT-cell stimulation: role of suppressive macrophages. Diabetes 2013; 62(11): 3785-96.
[http://dx.doi.org/10.2337/db12-0958 PMID: 23894189]
[40]
Rekittke NE, Ang M, Rawat D, Khatri R, Linn T. Regenerative therapy of type 1 diabetes mellitus: from pancreatic islet transplantation to mesenchymal stem cells. Stem Cells Int 2016; 20163764681
[http://dx.doi.org/10.1155/2016/3764681] [PMID: 27047547]
[41]
Epand RM, Stafford AR, Tyers M, Nieboer E. Mechanism of action of diabetogenic zinc-chelating agents. Model system studies. Mol Pharmacol 1985; 27(3): 366-74.
[PMID: 3883128]
[42]
Karasawa H, Takaishi K, Kumagae Y. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying β-cell dysfunction. Obesity (Silver Spring) 2011; 19(3): 514-21.
[http://dx.doi.org/10.1038/oby.2010.171 PMID: 20706204]
[43]
Toka HR, Yang J, Zera CA, Duffield JS, Pollak MR, Mount DB. Pregnancy-associated polyuria in familial renal glycosuria. Am J Kidney Dis 2013; 62(6): 1160-4.
[http://dx.doi.org/10.1053/j.ajkd.2013.05.018 PMID: 23871407]
[44]
Tsuchitani M, Saegusa T, Narama I, Nishikawa T, Gonda T. A new diabetic strain of rat (WBN/Kob). Lab Anim 1985; 19(3): 200-7.
[http://dx.doi.org/10.1258/002367785780893575 PMID: 4033061]
[45]
Ling ZC, Efendic S, Wibom R, et al. Glucose metabolism in Goto-Kakizaki rat islets. Endocrinology 1998; 139(6): 2670-5.
[http://dx.doi.org/10.1210/endo.139.6.6053 PMID: 9607771]
[46]
Bray GA. The Zucker-fatty rat: a review. Fed Proc 1977; 36(2): 148-53.
[PMID: 320051]
[47]
Yokoi N, Hoshino M, Hidaka S, et al. A novel rat model of type 2 diabetes: the Zucker Fatty Diabetes Mellitus ZFDM rat. J Diabetes Res 2013; 2013103731
[http://dx.doi.org/10.1155/2013/103731] [PMID: 23671847]
[48]
Samsoondar JP, Burke AC, Sutherland BG, et al. Prevention of diet-induced metabolic dysregulation, inflammation, and atherosclerosis in ldlr-/- mice by treatment with the atp-citrate lyase inhibitor bempedoic acid. Arterioscler Thromb Vasc Biol 2017; 37(4): 647-56.
[http://dx.doi.org/10.1161/ATVBAHA.116.308963 PMID: 28153881]
[49]
Chinnaiyan SK, Karthikeyan D, Gadela VR. Development and characterization of metformin loaded pectin nanoparticles for T2 diabetes mellitus. Pharm Nanotechnol 2018; 6(4): 253-63.
[http://dx.doi.org/10.2174/2211738507666181221142406 PMID: 30574859]
[50]
El-Ridy MS, Yehia SA, Elsayed I, Younis MMF, Abdel-Rahman R, El-Gamil MA. Metformin hydrochloride and wound healing from nanoformulation to pharmacological evaluation. J Liposome Res 2019; 29(4): 343-56.
[PMID: 30526146]
[51]
Chinnaiyan SK, Deivasigamani K, Gadela VR. Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nanoparticle for NIDDM. Int J Biol Macromol 2019; 125(125): 278-89.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.009 PMID: 30521906]
[52]
Wang S, Du LB, Jin L, et al. Nano-oleanolic acid alleviates metabolic dysfunctions in rats with high fat and fructose diet. Biomed Pharmacother 2018; 108: 1181-7.
[http://dx.doi.org/10.1016/j.biopha.2018.09.150 PMID: 30372819]
[53]
Singh J, Mittal P, Vasant Bonde G, Ajmal G, Mishra B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol 2018; 46(Suppl. 3): S546-55.
[http://dx.doi.org/10.1080/21691401.2018.1501379 PMID: 30322273]
[54]
Kaur P, Sharma AK, Nag D, et al. Novel nano-insulin formulation modulates cytokine secretion and remodeling to accelerate diabetic wound healing. Nanomedicine 2019; 15(1): 47-57.
[http://dx.doi.org/10.1016/j.nano.2018.08.013 PMID: 30213518]
[55]
Bairagi U, Mittal P, Singh J, Mishra B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev Ind Pharm 2018; 44(11): 1783-96.
[http://dx.doi.org/10.1080/03639045.2018.1496448 PMID: 29973105]
[56]
Ahad A, Raish M, Ahmad A, Al-Jenoobi FI, Al-Mohizea AM. Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharm Sci 2018; 111(111): 409-17.
[http://dx.doi.org/10.1016/j.ejps.2017.10.012 PMID: 29030177]
[57]
Chen W, Wang G, Yung BC, Liu G, Qian Z, Chen X. Long-acting release formulation of exendin-4 based on biomimetic mineralization for type- 2 diabetes therapy. ACS Nano 2017 23; 11(5): 5062-9.
[58]
Kozuka C, Shimizu-Okabe C, Takayama C, et al. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv 2017; 24(1): 558-68.
[http://dx.doi.org/10.1080/10717544.2017.1279237 PMID: 28181829]
[59]
ali hsm, hanafy af. glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J Pharm Sci 2017; 106(1): 402-10.
[http://dx.doi.org/10.1016/j.xphs.2016.10.010 PMID: 27866687]
[60]
El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, Eissa LA, El-Sherbiny IM. Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: potential use of curcumin nanoformulation. Nanomedicine 2017; 12(14): 1689-711.
[http://dx.doi.org/10.2217/nnm-2017-0106 PMID: 28635562]
[61]
El-Far AH, Al Jaouni SK, Li W, Mousa SA. Protective roles of thymoquinonenanoformulations: potential nanonutraceuticals in human diseases. Nutrients 2018; 10(10): 1369.
[62]
Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact 2018; 295(295): 119-32.
[http://dx.doi.org/10.1016/j.cbi.2018.02.006 PMID: 29421519]
[63]
Odei-Addo F, Shegokar R, Müller RH, Levendal RA, Frost C. Nanoformulation of Leonotis leonurus to improve its bioavailability as a potential antidiabetic drug. 3 Biotech 2017; 7(5): 344.
[http://dx.doi.org/10.1007/s13205-017-0986-0] [PMID: 28955641]
[64]
Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res 2012; 2(2): 112-23.
[http://dx.doi.org/10.1007/s13346-012-0063-5 PMID: 25786720]
[65]
El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, El-Sherbiny IM, Eissa LA. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine 2016; 11(19): 2581-602.
[http://dx.doi.org/10.2217/nnm-2016-0204 PMID: 27623396]
[66]
Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine 2012; 7(9): 1311-37.
[http://dx.doi.org/10.2217/nnm.12.31 PMID: 22583576]
[67]
Garg V, Kaur P, Singh SK, et al. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. Eur J Pharm Sci 2017; 109: 297-315.
[http://dx.doi.org/10.1016/j.ejps.2017.08.022 PMID: 28842349]
[68]
Bari A, Chella N, Sanka K, Shastri NR, Diwan PV. Improved anti-diabetic activity of glibenclamide using oral self nano emulsifying powder. J Microencapsul 2015; 32(1): 54-60.
[http://dx.doi.org/10.3109/02652048.2014.944950 PMID: 25090596]
[69]
Jahangir MA, Khan R, Imam SS. Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced anti-diabetic performance. Artif Cells Nanomed Biotechnol 2018; 46(Supp. 1): 66-78.
[http://dx.doi.org/10.1080/21691401.2017.1411933 PMID: 29226729]
[70]
Harsha SN, Aldhubiab BE, Nair AB, et al. Nanoparticle formulation by Büchi B-90 Nano Spray Dryer for oral mucoadhesion. Drug Des Devel Ther 2015; 9: 273-82.
[http://dx.doi.org/10.2147/DDDT.S66654 PMID: 25670882]
[71]
Czuba E, Diop M, Mura C, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: influence of surface charge in nanoparticle system. Int J Pharm 2018; 542(1-2): 47-55.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.045 PMID: 29501738]
[72]
Sheng J, He H, Han L, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release 2016; 233: 181-90.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.015 PMID: 27178809]
[73]
Shi F, Wei Z, Zhao Y, Xu X. Nanostructured lipid carriers loaded with baicalin: an efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag 2016; 12(47): 198-202.
[http://dx.doi.org/10.4103/0973-1296.186347 PMID: 27601850]
[74]
Lupascu FG, Dash M, Samal SK, et al. Development, optimization and biological evaluation of chitosan scaffold formulations of new xanthine derivatives for treatment of type-2 diabetes mellitus. Eur J Pharm Sci 2015; 77: 122-34.
[http://dx.doi.org/10.1016/j.ejps.2015.06.008 PMID: 26079402]
[75]
Abdelkader DH, Tambuwala MM, Mitchell CA, et al. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hydrogels. Drug Deliv Transl Res 2018; 8(5): 1053-65.
[http://dx.doi.org/10.1007/s13346-018-0554-0 PMID: 29971752]
[76]
Wang H, Li Q, Deng W, et al. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Dev Res 2015; 76(2): 82-93.
[http://dx.doi.org/10.1002/ddr.21244 PMID: 25847843]
[77]
Alam S, Aslam M, Khan A, et al. Nanostructured lipid carriers of pioglitazone for transdermal application: from experimental design to bioactivity detail. Drug Deliv 2016; 23(2): 601-9.
[http://dx.doi.org/10.3109/10717544.2014.923958 PMID: 24937378]
[78]
Prasad PS, Imam SS, Aqil M, Sultana Y, Ali A. QbD-based carbopoltransgel formulation: characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes. Drug Deliv 2016; 23(3): 1047-56.
[http://dx.doi.org/10.3109/10717544.2014.936536 PMID: 25005582]
[79]
Ansari MJ, Anwer MK, Jamil S, et al. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv 2016; 23(6): 1972-9.
[PMID: 26017100]
[80]
Gonçalves LM, Maestrelli F, Di Cesare Mannelli L, Ghelardini C, Almeida AJ, Mura P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm 2016; 102: 41-50.
[http://dx.doi.org/10.1016/j.ejpb.2016.02.012 PMID: 26925503]
[81]
Pandey S, Patel P, Gupta A. Novel solid lipid nanocarrier of glibenclamide: a factorial design approach with response surface methodology. Curr Pharm Des 2018; 24(16): 1811-20.
[http://dx.doi.org/10.2174/1381612824666180522092743 PMID: 29788881]
[82]
Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52(4): 673-751.
[PMID: 11121513]
[83]
Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 1983; 32(7): 1141-8.
[http://dx.doi.org/10.1016/0006-2952(83)90262-9 PMID: 6342623]
[84]
Ashok K, Tiwari J, Rao M. Diabetes mellitus and multiple therapeutic approaches of phytochemicals. Present status and future prospects. Curr Sci 2002; 83(1): 30-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy