Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Application of Nanomaterials in Neurodegenerative Diseases

Author(s): Weitong Cui, Wei Fu *, Yunfeng Lin and Tianxu Zhang

Volume 16, Issue 1, 2021

Published on: 26 March, 2020

Page: [83 - 94] Pages: 12

DOI: 10.2174/1574888X15666200326093410

Price: $65

Open Access Journals Promotions 2
Abstract

Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease are very harmful brain lesions. Due to the difficulty in obtaining therapeutic drugs, the best treatment for neurodegenerative diseases is often not available. In addition, the bloodbrain barrier can effectively prevent the transfer of cells, particles and macromolecules (such as drugs) in the brain, resulting in the failure of the traditional drug delivery system to provide adequate cellular structure repair and connection modes, which are crucial for the functional recovery of neurodegenerative diseases. Nanomaterials are designed to carry drugs across the blood-brain barrier for targets. Nanotechnology uses engineering materials or equipment to interact with biological systems at the molecular level to induce physiological responses through stimulation, response and target site interactions, while minimizing the side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Some magnetic nanomaterials play a role as imaging agents or nanoprobes for Magnetic Resonance Imaging to assist in the diagnosis of neurodegenerative diseases. Although the current research on nanomaterials is not as useful as expected in clinical applications, it achieves a major breakthrough and guides the future development direction of nanotechnology in the application of neurodegenerative diseases. This review briefly discusses the application and advantages of nanomaterials in neurodegenerative diseases. Data for this review were identified by searches of PubMed, and references from relevant articles published in English between 2015 and 2019 using the search terms “nanomaterials”, “neurodegenerative diseases” and “blood-brain barrier”.

Keywords: Neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, Huntington's disease, blood-brain barrier, nanomaterials.

« Previous
[1]
Kritsilis MV, Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci 2018; 19(10)E2937
[http://dx.doi.org/10.3390/ijms19102937] [PMID: 30261683]
[2]
Zhao Y, Cai J, Liu Z, et al. Nanocomposites inhibit the formation, mitigate the neurotoxicity, and facilitate the removal of β-amyloid aggregates in Alzheimer’s disease mice. Nano Lett 2019; 19(2): 674-83.
[http://dx.doi.org/10.1021/acs.nanolett.8b03644] [PMID: 30444372]
[3]
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1)a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[4]
Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Advanced materials: (Deerfield Beach, Fla) 2018; 30(46): e1801362..
[5]
Huo S, Li H, Boersma AJ, Herrmann A. .DNA nanotechnology enters cell membranes. advanced science. Weinheim, Baden-Wurttemberg, Germany 2019; 6: p. (10): 1900043. http://dx.doi.org/10.1002/advs.201900043.
[6]
Atluri R, Jensen KA. Engineered Nanomaterials: Their Physicochemical Characteristics and How to Measure Them. Adv Exp Med Biol 2017; 947: 3-23.
[http://dx.doi.org/10.1007/978-3-319-47754-1_1] [PMID: 28168663]
[7]
Rasmussen K, Rauscher H, Mech A, et al. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme. Regul Toxicol Pharmacol 2018; 92: 8-28.
[http://dx.doi.org/10.1016/j.yrtph.2017.10.019] [PMID: 29074277]
[8]
Singh MR. Application of metallic nanomaterials in nanomedicine. Adv Exp Med Biol 2018; 1052: 83-102.
[http://dx.doi.org/10.1007/978-981-10-7572-8_8] [PMID: 29785483]
[9]
Stover PJ, Durga J, Field MS. Folate nutrition and blood-brain barrier dysfunction. Curr Opin Biotechnol 2017; 44: 146-52.
[http://dx.doi.org/10.1016/j.copbio.2017.01.006] [PMID: 28189938]
[10]
Obermeier B, Verma A, Ransohoff RM. The blood-brain barrier. Handb Clin Neurol 2016; 133: 39-59.
[http://dx.doi.org/10.1016/B978-0-444-63432-0.00003-7] [PMID: 27112670]
[11]
Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol 2015; 38: 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002] [PMID: 25681530]
[12]
Rahman NA, Rasil ANHM, Meyding-Lamade U, et al. Immortalized endothelial cell lines for in vitro blood-brain barrier models: A systematic review. Brain Res 2016; 1642: 532-45.
[http://dx.doi.org/10.1016/j.brainres.2016.04.024] [PMID: 27086967]
[13]
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7(1): 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[14]
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[15]
Chakraborty A, de Wit NM, van der Flier WM, de Vries HE. The blood brain barrier in Alzheimer’s disease. Vascul Pharmacol 2017; 89: 12-8.
[http://dx.doi.org/10.1016/j.vph.2016.11.008] [PMID: 27894893]
[16]
Patching SG. Glucose transporters at the blood-brain barrier: Function, regulation and gateways for drug delivery. Mol Neurobiol 2017; 54(2): 1046-77.
[http://dx.doi.org/10.1007/s12035-015-9672-6] [PMID: 26801191]
[17]
Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 2017; 28(4): 397-415.
[http://dx.doi.org/10.1515/revneuro-2016-0071] [PMID: 28195555]
[18]
Jakki SL, Senthil V, Yasam VR, Chandrasekar MJN, Vijayaraghavan C. The blood brain barrier and its role in Alzheimer’s Therapy: An Overview. Curr Drug Targets 2018; 19(2): 155-69.
[http://dx.doi.org/10.2174/1389450118666170612100750] [PMID: 28606049]
[19]
Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q. Role of blood-brain barrier in Alzheimer’s Disease. J Alzheimers Dis 2018; 63(4): 1223-34.
[http://dx.doi.org/10.3233/JAD-180098] [PMID: 29782323]
[20]
Haley MJ, Lawrence CB. The blood-brain barrier after stroke: Structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab 2017; 37(2): 456-70.
[http://dx.doi.org/10.1177/0271678X16629976] [PMID: 26823471]
[21]
Tsou YH, Zhang XQ, Zhu H, Syed S, Xu X. Drug delivery to the brain across the blood-brain barrier using nanomaterials Small. Weinheim an der Bergstrasse, Germany 2017; 13(43). http://dx.doi.org/10.1002/smll.201701921.
[22]
Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv 2016; 13(7): 963-75.
[http://dx.doi.org/10.1517/17425247.2016.1171315] [PMID: 27020469]
[23]
Grabrucker AM, Ruozi B, Belletti D, et al. Nanoparticle transport across the blood brain barrier. Tissue Barriers 2016; 4(1)e1153568
[http://dx.doi.org/10.1080/21688370.2016.1153568] [PMID: 27141426]
[24]
Nair KGS, Ramaiyan V, Sukumaran SK. Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology 2018; 26(3): 675-84.
[http://dx.doi.org/10.1007/s10787-018-0468-y] [PMID: 29582240]
[25]
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 2008; 1200: 159-68.
[http://dx.doi.org/10.1016/j.brainres.2008.01.039] [PMID: 18291351]
[26]
Ramanathan S, Archunan G, Sivakumar M, et al. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13: 5561-76.
[http://dx.doi.org/10.2147/IJN.S149022] [PMID: 30271147]
[27]
Vucic S, Kiernan MC. Transcranial magnetic stimulation for the assessment of neurodegenerative disease. Neurotherapeutics 2017; 14(1): 91-106.
[http://dx.doi.org/10.1007/s13311-016-0487-6] [PMID: 27830492]
[28]
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 2017; 10(5): 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[29]
Seeley WW. Mapping neurodegenerative disease onset and progression. Cold Spring Harb Perspect Biol 2017; 9(8)a023622
[http://dx.doi.org/10.1101/cshperspect.a023622] [PMID: 28289062]
[30]
Veldsman M, Egorova N. Advances in Neuroimaging for Neurodegenerative Disease. Adv Neurobiol 2017; 15: 451-78.
[http://dx.doi.org/10.1007/978-3-319-57193-5_18] [PMID: 28674993]
[31]
Poovaiah N, Davoudi Z, Peng H, et al. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. Nanoscale 2018; 10(36): 16962-83.
[http://dx.doi.org/10.1039/C8NR04073G] [PMID: 30182106]
[32]
Kim SH, Noh MY, Kim HJ, et al. K-ARPI. A therapeutic strategy for alzheimer’s disease focused on immune-inflammatory modulation. Dement Neurocognitive Disord 2019; 18(2): 33-46.
[http://dx.doi.org/10.12779/dnd.2019.18.2.33] [PMID: 31297134]
[33]
Kamat PK, Kalani A, Rai S, et al. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 2016; 53(1): 648-61.
[http://dx.doi.org/10.1007/s12035-014-9053-6] [PMID: 25511446]
[34]
Gutiérrez IL, González-Prieto M, Caso JR, García-Bueno B, Leza JC, Madrigal JLM. Reboxetine treatment reduces neuroinflammation and neurodegeneration in the 5xFAD mouse model of alzheimer’s disease: Role of CCL2. Mol Neurobiol 2019; 56(12): 8628-42.
[http://dx.doi.org/10.1007/s12035-019-01695-6] [PMID: 31297718]
[35]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[36]
Vilasi S, Carrotta R, Ricci C, et al. Inhibition of Abeta1-42 fibrillation by chaperonins: human Hsp60 is a stronger inhibitor than its bacterial homologue GroEL. ACS Chem Neurosci 2019; 10(8): 3565-74.
[http://dx.doi.org/10.1021/acschemneuro.9b00183]
[37]
Heupel-Reuter M, Kloppel S, Bauer JM, Voigt-Radloff S. Pharmacological interventions for apathy in Alzheimer’s disease. Zeitschrift fur Gerontologie und Geriatrie 2019; 52(5): 457-9.
[38]
Ibrahim WW, Abdelkader NF, Ismail HM, Khattab MM. Escitalopram Ameliorates Cognitive Impairment in D-Galactose-Injected Ovariectomized Rats: Modulation of JNK, GSK-3β, and ERK Signalling Pathways. Sci Rep 2019; 9(1): 10056.
[http://dx.doi.org/10.1038/s41598-019-46558-1] [PMID: 31296935]
[39]
Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry 2019; 90(12): 1347-52.
[http://dx.doi.org/10.1136/jnnp-2018-320199] [PMID: 31296588]
[40]
Kang MJ, Kim SM, Han SE, et al. Effect of paper-based cognitive training in early stage of alzheimer’s dementia. Dement Neurocognitive Disord 2019; 18(2): 62-8.
[http://dx.doi.org/10.12779/dnd.2019.18.2.62] [PMID: 31297136]
[41]
Bernard K, Gouttefangeas S, Bretin S, Galtier S, Robert P. .A 24-week double-blind placebo-controlled study of the efficacy and safety of the AMPA modulator S47445 in patients with mild to moderate Alzheimer's disease and depressive symptoms. Alzheimer's & dementia (New York, N Y) 2019; 5: 231-40..
[42]
Tse KH, Herrup K. Re-imagining Alzheimer’s disease - the diminishing importance of amyloid and a glimpse of what lies ahead. J Neurochem 2017; 143(4): 432-44.
[http://dx.doi.org/10.1111/jnc.14079] [PMID: 28547865]
[43]
Qiang W, Yau WM, Lu JX, Collinge J, Tycko R. Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature 2017; 541(7636): 217-21.
[http://dx.doi.org/10.1038/nature20814] [PMID: 28052060]
[44]
Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease Chemical communications (Cambridge,England) 2015; 51(70): 13434-50. http://dx.doi.org/10.1039/C5CC05264E.
[45]
Wang Y, Guan X, Chen X, et al. Choline supplementation ameliorates behavioral deficits and alzheimer’s disease-like pathology in transgenic APP/PS1 Mice. Mol Nutr Food Res 2019; 63(18)e1801407
[http://dx.doi.org/10.1002/mnfr.201801407] [PMID: 31298459]
[46]
Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and alzheimer’s disease. J Alzheimers Dis 2017; 57(4): 1105-21.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[47]
Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G. Advances in alzheimer’s diagnosis and therapy: The implications of nanotechnology. Trends Biotechnol 2017; 35(10): 937-53.
[http://dx.doi.org/10.1016/j.tibtech.2017.06.002] [PMID: 28666544]
[48]
Li Y, Li Y, Ji W, et al. Positively charged polyprodrug amphiphiles with enhanced drug loading and reactive oxygen species-responsive release ability for traceable synergistic therapy. J Am Chem Soc 2018; 140(11): 4164-71.
[http://dx.doi.org/10.1021/jacs.8b01641] [PMID: 29486118]
[49]
Luo Q, Lin YX, Yang PP, et al. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat Commun 2018; 9(1): 1802.
[http://dx.doi.org/10.1038/s41467-018-04255-z] [PMID: 29728565]
[50]
Li Q, Zhao D, Shao X, et al. Aptamer-modified tetrahedral DNA Nanostructure for Tumor-Targeted Drug Delivery. ACS Appl Mater Interfaces 2017; 9(42): 36695-701.
[http://dx.doi.org/10.1021/acsami.7b13328] [PMID: 28991436]
[51]
Shi S, Lin S, Shao X, Li Q, Tao Z, Lin Y. Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif 2017; 50(5)
[http://dx.doi.org/10.1111/cpr.12368] [PMID: 28792637]
[52]
Tian T, Zhang T, Zhou T, Lin S, Shi S, Lin Y. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale 2017; 9(46): 18402-12.
[http://dx.doi.org/10.1039/C7NR07130B] [PMID: 29147695]
[53]
Lin S, Zhang Q, Zhang T, et al. Tetrahedral DNA nanomaterial regulates the biological behaviors of adipose-derived stem cells via DNA Methylation on Dlg3. ACS Appl Mater Interfaces 2018; 10(38): 32017-25.
[http://dx.doi.org/10.1021/acsami.8b12408] [PMID: 30168311]
[54]
Ma W, Shao X, Zhao D, et al. Self-assembled tetrahedral dna nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater Interfaces 2018; 10(9): 7892-900.
[http://dx.doi.org/10.1021/acsami.8b00833] [PMID: 29424522]
[55]
Ma W, Xie X, Shao X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif 2018; 51(6)e12503
[http://dx.doi.org/10.1111/cpr.12503] [PMID: 30091500]
[56]
Liu M, Ma W, Li Q, et al. Aptamer-targeted DNA nanostructures with doxorubicin to treat protein tyrosine kinase 7-positive tumours. Cell Prolif 2019; 52(1)e12511
[http://dx.doi.org/10.1111/cpr.12511] [PMID: 30311693]
[57]
Shao X, Ma W, Xie X, et al. Neuroprotective effect of tetrahedral dna nanostructures in a cell model of Alzheimer’s Disease. ACS Appl Mater Interfaces 2018; 10(28): 23682-92.
[http://dx.doi.org/10.1021/acsami.8b07827] [PMID: 29927573]
[58]
Shi S, Lin S, Li Y, Zhang T, Shao X. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes Chemical communications (Cambridge, England) 2018; 54(11): 1327-30..
[59]
Zhang Q, Lin S, Shi S, et al. Anti-inflammatory and antioxidative effects of tetrahedral DNA Nanostructures via the modulation of macrophage responses. ACS Appl Mater Interfaces 2018; 10(4): 3421-30.
[http://dx.doi.org/10.1021/acsami.7b17928] [PMID: 29300456]
[60]
Zhang Y, Ma W, Zhu Y, et al. Inhibiting Methicillin-Resistant Staphylococcus aureus by Tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett 2018; 18(9): 5652-9.
[http://dx.doi.org/10.1021/acs.nanolett.8b02166] [PMID: 30088771]
[61]
Zhao D, Liu M, Li Q, et al. Tetrahedral DNA nanostructure promotes endothelial cell proliferation, migration, and angiogenesis via notch signaling pathway. ACS Appl Mater Interfaces 2018; 10(44): 37911-8.
[http://dx.doi.org/10.1021/acsami.8b16518] [PMID: 30335942]
[62]
Zhou M, Liu NX, Shi SR, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine (Lond) 2018; 14(4): 1227-36.
[http://dx.doi.org/10.1016/j.nano.2018.02.004] [PMID: 29458214]
[63]
Mao C, Pan W, Shao X, et al. The clearance effect of tetrahedral dna nanostructures on senescent human dermal fibroblasts. ACS Appl Mater Interfaces 2019; 11(2): 1942-50.
[http://dx.doi.org/10.1021/acsami.8b20530] [PMID: 30562007]
[64]
Xie X, Shao X, Ma W, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 2018; 10(12): 5457-65.
[http://dx.doi.org/10.1039/C7NR09692E] [PMID: 29484330]
[65]
Ge Y, Tian T, Shao XR, Lin SY, et al. PEGylated protamine-based adsorbing improves the biological properties and stability of tetrahedral framework nucleic acids. ACS Appl Mater Interfaces 2019; 11(31): 27588-97.
[http://dx.doi.org/10.1021/acsami.9b09243]
[66]
Liu N, Zhang X, Li N, Zhou M, Zhang T. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo Small (Weinheim an der Bergstrasse, Germany) 2019; e1901907..
[67]
Meng L, Ma W, Lin S, Shi S, Li Y, Lin Y. Tetrahedral DNA nanostructure-delivered DNAzyme for gene silencing to suppress cell growth. ACS Appl Mater Interfaces 2019; 11(7): 6850-7.
[http://dx.doi.org/10.1021/acsami.8b22444] [PMID: 30698411]
[68]
Zhou M, Liu N, Zhang Q, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif 2019; 52(3)e12566
[http://dx.doi.org/10.1111/cpr.12566] [PMID: 30883969]
[69]
Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 2014; 35(1): 456-65.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.063] [PMID: 24099709]
[70]
Xuan M, Guan X, Huang P, et al. Different patterns of gray matter density in early- and middle-late-onset Parkinson’s disease: A voxel-based morphometry study. Brain Imaging Behav 2019; 13(1): 172-9.
[http://dx.doi.org/10.1007/s11682-017-9745-4] [PMID: 28667375]
[71]
Filippini A, Gennarelli M, Russo I. α-Synuclein and glia in Parkinson’s disease: A beneficial or a detrimental duet for the endo-lysosomal system? Cell Mol Neurobiol 2019; 39(2): 161-8.
[http://dx.doi.org/10.1007/s10571-019-00649-9] [PMID: 30637614]
[72]
Chondrogiorgi M, Astrakas LG, Zikou AK, et al. Multifocal alterations of white matter accompany the transition from normal cognition to dementia in Parkinson’s disease patients. Brain Imaging Behav 2019; 13(1): 232-40.
[http://dx.doi.org/10.1007/s11682-018-9863-7] [PMID: 29629498]
[73]
Zhu YL, Sun MF, Jia XB, et al. Neuroprotective effects of Astilbin on MPTP-induced Parkinson’s disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int Immunopharmacol 2019; 66: 19-27.
[http://dx.doi.org/10.1016/j.intimp.2018.11.004] [PMID: 30419450]
[74]
Haghshomar M, Rahmani F, Hadi Aarabi M, Shahjouei S, Sobhani S, Rahmani M. White matter changes correlates of peripheral neuroinflammation in patients with Parkinson’s Disease. Neuroscience 2019; 403: 70-8.
[http://dx.doi.org/10.1016/j.neuroscience.2017.10.050] [PMID: 29126955]
[75]
Chahine LM, Dos Santos C, Fullard M, et al. Modifiable vascular risk factors, white matter disease and cognition in early Parkinson’s disease. Eur J Neurol 2019; 26(2): 246-e18.
[http://dx.doi.org/10.1111/ene.13797] [PMID: 30169897]
[76]
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson’s diseases. Environ Res 2019; 176108574
[http://dx.doi.org/10.1016/j.envres.2019.108574] [PMID: 31299618]
[77]
Dogan B, Akyol A, Memis CO, Sair A, Akyildiz U, Sevincok L. The relationship between temperament and depression in Parkinson’s disease patients under dopaminergic treatment. Psychogeriatrics 2019; 19(1): 73-9.
[http://dx.doi.org/10.1111/psyg.12366]
[78]
Tang S, Wang A, Yan X, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv 2019; 26(1): 700-7.
[http://dx.doi.org/10.1080/10717544.2019.1636420] [PMID: 31290705]
[79]
Gan L, Li Z, Lv Q, Huang W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinson’s disease model. Int J Pharm 2019; •••567118449
[http://dx.doi.org/10.1016/j.ijpharm.2019.118449] [PMID: 31226473]
[80]
Girigoswami A, Ramalakshmi M, Akhtar N, Metkar SK, Girigoswami K. ZnO Nanoflower petals mediated amyloid degradation - An in vitro electrokinetic potential approach. Mater Sci Eng C 2019; 101: 169-78.
[http://dx.doi.org/10.1016/j.msec.2019.03.086] [PMID: 31029310]
[81]
Xiao G, Song Y, Zhang Y, et al. Microelectrode arrays modified with nanocomposites for monitoring dopamine and spike firings under deep brain stimulation in rat models of Parkinson’s Disease. ACS Sens 2019; 4(8): 1992-2000.
[82]
Yu SJ, Wang YC, Chang CY, et al. NanoCsA improves the survival of human iPSC transplant in hemiparkinsonian rats. Brain Res 2019; 1719: 124-32.
[http://dx.doi.org/10.1016/j.brainres.2019.05.040] [PMID: 31153914]
[83]
Ahlawat J, Deemer EM, Narayan M. Chitosan Nanoparticles Rescue Rotenone-Mediated Cell Death.Materials. Basel, Switzerland 2019; 12: (7)..
[http://dx.doi.org/10.3390/ma12071176]
[84]
Huntington G. On chorea. George Huntington, M.D. J Neuropsychiatry Clin Neurosci 2003; 15(1): 109-12.
[http://dx.doi.org/10.1176/jnp.15.1.109] [PMID: 12556582]
[85]
Walker FO. Huntington’s disease. Lancet 2007; 369(9557): 218-28.
[http://dx.doi.org/10.1016/S0140-6736(07)60111-1] [PMID: 17240289]
[86]
Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 2012; 27(9): 1083-91.
[http://dx.doi.org/10.1002/mds.25075] [PMID: 22692795]
[87]
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72(6): 971-83.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[88]
Tellone E, Galtieri A, Ficarra S. Reviewing the biochemical implications of normal and mutated huntingtin in Huntington’s disease. Curr Med Chem 2020; 27(31): 5137-58.
[http://dx.doi.org/10.2174/0929867326666190621101909] [PMID: 31223078]
[89]
Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 2010; 28(2): 329-43.
[PMID: 20014009]
[90]
Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial. Neurology 2006; 66(3): 366-72.
[http://dx.doi.org/10.1212/01.wnl.0000198586.85250.13] [PMID: 16476934]
[91]
Frank S. Huntington Study Group/TETRA-HD Investigators. Tetrabenazine as anti-chorea therapy in Huntington disease: An open-label continuation study. BMC Neurol 2009; 9: 62.
[http://dx.doi.org/10.1186/1471-2377-9-62] [PMID: 20021666]
[92]
Shen V, Clarence-Smith K, Hunter C, Jankovic J. Safety and efficacy of tetrabenazine and use of concomitant medications during long-term, open-label treatment of chorea associated with huntington’s and other diseases. Tremor Other Hyperkinet Mov (N Y) 2013; 3: 3.
[PMID: 24255799 ]
[93]
Godinho BM, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington’s disease. Mol Pharm 2013; 10(2): 640-9.
[http://dx.doi.org/10.1021/mp3003946] [PMID: 23116281]
[94]
Debnath K, Pradhan N, Singh BK, Jana NR, Jana NR. Poly(trehalose) nanoparticles prevent amyloid aggregation and suppress polyglutamine aggregation in a huntington’s disease model mouse. ACS Appl Mater Interfaces 2017; 9(28): 24126-39.
[http://dx.doi.org/10.1021/acsami.7b06510] [PMID: 28632387]
[95]
Joshi AS, Singh V, Gahane A, Thakur AK. Biodegradable nanoparticles containing mechanism based peptide inhibitors reduce polyglutamine aggregation in cell models and alleviate motor symptoms in a drosophila model of Huntington’s Disease. ACS Chem Neurosci 2019; 10(3): 1603-14.
[http://dx.doi.org/10.1021/acschemneuro.8b00545] [PMID: 30452227]
[96]
Zhang L, Wei PF, Song YH, et al. MnFe2O4 nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. Biomaterials 2019; 216119248
[http://dx.doi.org/10.1016/j.biomaterials.2019.119248] [PMID: 31226569]
[97]
Ceccon A, Tugarinov V, Clore GM. TiO2 nanoparticles catalyze oxidation of huntingtin Exon 1-derived peptides impeding aggregation: A quantitative NMR study of binding and kinetics. J Am Chem Soc 2019; 141(1): 94-7.
[http://dx.doi.org/10.1021/jacs.8b11441] [PMID: 30540190]
[98]
Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med 2014; 16(1): 106-18.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[99]
Ramachandran S, Thangarajan S. A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitroproponic acid induced Huntington’s disease-like symptoms in wistar rats. Chem Biol Interact 2016; 256: 25-36.
[http://dx.doi.org/10.1016/j.cbi.2016.05.020] [PMID: 27206696]
[100]
Ramachandran S, Thangarajan S. Thymoquinone loaded solid lipid nanoparticles counteracts 3-Nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease. Metab Brain Dis 2018; 33(5): 1459-70.
[http://dx.doi.org/10.1007/s11011-018-0252-0] [PMID: 29855977]
[101]
Bhatt R, Singh D, Prakash A, Mishra N. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv 2015; 22(7): 931-9.
[http://dx.doi.org/10.3109/10717544.2014.880860] [PMID: 24512295]
[102]
Valenza M, Chen JY, Di Paolo E, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington’s disease mice. EMBO Mol Med 2015; 7(12): 1547-64.
[http://dx.doi.org/10.15252/emmm.201505413] [PMID: 26589247]
[103]
Valenza M, Marullo M, Di Paolo E, et al. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington’s disease. Cell Death Differ 2015; 22(4): 690-702.
[http://dx.doi.org/10.1038/cdd.2014.162] [PMID: 25301063]
[104]
Belletti D, Grabrucker AM, Pederzoli F, et al. Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain. Int J Pharm 2018; 543(1-2): 300-10.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.061] [PMID: 29608954]
[105]
Liu XG, Lu S, Liu DQ, et al. ScFv-conjugated superparamagnetic iron oxide nanoparticles for MRI-based diagnosis in transgenic mouse models of Parkinson’s and Huntington’s diseases. Brain Res 2019; 1707: 141-53.
[http://dx.doi.org/10.1016/j.brainres.2018.11.034] [PMID: 30481502]
[106]
Moraes L, Vasconcelos-dos-Santos A, Santana FC, et al. Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Res (Amst) 2012; 9(2): 143-55.
[http://dx.doi.org/10.1016/j.scr.2012.05.005] [PMID: 22742973]
[107]
Kaviarasi S, Yuba E, Harada A, Krishnan UM. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release 2019; 300: 22-45.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.031]
[108]
Huang L, Wang J, Huang S, Siaw-Debrah F, Nyanzu M, Zhuge Q. Polyacrylic acid-coated nanoparticles loaded with recombinant tissue plasminogen activator for the treatment of mice with ischemic stroke. Biochem Biophys Res Commun 2019; 516(2): 565-70.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.079] [PMID: 31235258]
[109]
Mei T, Kim A, Vong LB, et al. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment - Synergistic effect of thrombolysis and antioxidant. Biomaterials 2019; 215119209
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.020] [PMID: 31181394]
[110]
So PW, Ekonomou A, Galley K, et al. Intraperitoneal delivery of acetate-encapsulated liposomal nanoparticles for neuroprotection of the penumbra in a rat model of ischemic stroke. Int J Nanomedicine 2019; 14: 1979-91.
[http://dx.doi.org/10.2147/IJN.S193965] [PMID: 30936698]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy