Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Bioaccessibility of Bioactive Compounds and Prebiotic Properties of Fruit and Vegetable By-products - A Mini Review

Author(s): Roberta M. Silva de Andrade and Édira C.B. de Andrade Gonçalves*

Volume 17, Issue 2, 2021

Published on: 19 March, 2020

Page: [100 - 111] Pages: 12

DOI: 10.2174/1573407216666200319102220

Price: $65

Open Access Journals Promotions 2
Abstract

Background: A large proportion of the global production of fruits and vegetables is destined for processing by the food industry. This intense process generates tons of by-products, which may serve as sources of fiber and bioactive compounds, such as polyphenols and carotenoids. Accordingly, numerous studies have investigated the valorization of these by-products focusing on the extraction of bioactive compounds. However, the total amount of bioactive compounds ingested may not reflect the amount available for intestinal absorption, which refers to the bioaccessibility of these compounds. In addition, the interaction of bioactive compounds with dietary fiber and other nutrients may influence their bioaccessibility and may impair the understanding of the physiological effects of these by-products as prebiotic potential.

Methods: The purpose of this mini-review is to summarize the main results obtained in the last five years regarding the bioaccessibility of the two major bioactive compounds of fruit and vegetable by-products, i.e., polyphenols and carotenoids, to corroborate the biopotential of this food matrix. Additionally, this review attempts to elucidate the relationship reported between the composition of these by-products and the emerging prebiotic property.

Results: In general, the bioaccessibility of polyphenols and carotenoid compounds from fruit and vegetable by-products shows high variability, and it is suggested that the composition of the food matrix is one of the main factors influencing their bioaccessibility. Moreover, a promising prebiotic effect of these by-products is described.

Conclusion: The brief literature review with recent studies provide relevant information that may contribute to using the fruit and vegetable by-products as a natural source of bioactive compounds and/ or functional ingredient.

Keywords: Fruit and vegetable by-products, bioaccessibility, bioactive compounds, polyphenols, carotenoids, prebiotic properties.

Graphical Abstract
[1]
Food and Agriculture Organization. Definitional Framework of Food Loss-Global Initiative on Food Loss and Waste Reduction Working Paper. FAO, 2014. http://www.fao.org/ fileadmin/ user_upload/ savefood/PDF/FLW_Definition_and_Scope_2014.pdf [Accessed 29 September 2019].
[2]
Amaya-Cruz, D.M.; Rodríguez-González, S.; Pérez-Ramírez, I.F.; Loarca-Piña, G.; Amaya-Llano, S.; Gallegos-Corona, M.A.; Reynoso-Camacho, R. Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. J. Funct. Foods, 2015, 17, 93-102.
[http://dx.doi.org/10.1016/j.jff.2015.04.051]
[3]
Baiano, A. Recovery of biomolecules from food wastes-A review. Molecules, 2014, 19(9), 14821-14842.
[http://dx.doi.org/10.3390/molecules190914821] [PMID: 25232705]
[4]
European Comission. Preparatory study on food waste across EU27.Technical Report-2010-054 BIO Intelligence Service Paris; , 2010.
[5]
Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod., 2014, 65, 28-41.
[http://dx.doi.org/10.1016/j.jclepro.2013.10.051]
[6]
Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr., 2017, 57(1), 59-81.
[http://dx.doi.org/10.1080/10408398.2013.850652] [PMID: 25830345]
[7]
O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol., 2012, 16, 1-10.
[http://dx.doi.org/10.1016/j.ifset.2012.06.002]
[8]
Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf., 2018, 17(3), 512-531.
[http://dx.doi.org/10.1111/1541-4337.12330]
[9]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.), 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[10]
Hsu, J.D.; Wu, C.C.; Hung, C.N.; Wang, C.J.; Huang, H.P. Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice. Yao Wu Shi Pin Fen Xi, 2016, 24(4), 730-737.
[http://dx.doi.org/10.1016/j.jfda.2016.03.009] [PMID: 28911610]
[11]
Mollica, A.; Zengin, G.; Locatelli, M.; Stefanucci, A.; Macedonio, G.; Bellagamba, G.; Onaolapo, O.; Onaolapo, A.; Azeez, F.; Ayileka, A.; Novellino, E. An assessment of the nutraceutical potential of Juglans regia L. leaf powder in diabetic rats. Food Chem. Toxicol., 2017, 107(Pt B), 554-564.
[http://dx.doi.org/10.1016/j.fct.2017.03.056] [PMID: 28366844]
[12]
Mollica, A.; Stefanucci, A.; Zengin, G.; Locatelli, M.; Macedonio, G.; Orlando, G.; Ferrante, C.; Menghini, L.; Recinella, L.; Leone, S.; Chiavaroli, A.; Leporini, L.; Di Nisio, C.; Brunetti, L.; Tayrab, E.; Ali, I.; Musa, T.H.; Musa, H.H.; Ahmed, A.A. Polyphenolic composition, enzyme inhibitory effects ex-vivo and in-vivo studies on two Brassicaceae of north-central Italy. Biomed. Pharmacother., 2018, 107, 129-138.
[http://dx.doi.org/10.1016/j.biopha.2018.07.169] [PMID: 30086459]
[13]
Kalt, W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci., 2005, 70, R11-R19.
[http://dx.doi.org/10.1111/j.1365-2621.2005.tb09053.x]
[14]
Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int., 2015, 76(Pt 3), 735-750.
[http://dx.doi.org/10.1016/j.foodres.2015.07.047] [PMID: 28455059]
[15]
Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys., 2018, 652, 18-26.
[http://dx.doi.org/10.1016/j.abb.2018.06.001] [PMID: 29885291]
[16]
Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem., 2011, 128(1), 14-21.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.052] [PMID: 25214323]
[17]
Alminger, M.; Aura, A-M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; Santos, C.N. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf., 2014, 13(4), 413-436.
[http://dx.doi.org/10.1111/1541-4337.12081]
[18]
Quirós-Sauceda, A.E.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Bello-Perez, L.A.; Álvarez-Parrilla, E.; de la Rosa, L.A.; González-Córdova, A.F.; González-Aguilar, G.A. Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food Funct., 2014, 5(6), 1063-1072.
[http://dx.doi.org/10.1039/C4FO00073K] [PMID: 24740575]
[19]
Liu, S.; Jia, M.; Chen, J.; Wan, H.; Dong, R.; Nie, S.; Xie, M.; Yu, Q. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber. Food Hydrocoll., 2019, 93, 284-292.
[http://dx.doi.org/10.1016/j.foodhyd.2019.02.047]
[20]
Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem., 2013, 24(8), 1415-1422.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[21]
Jakobek, L.; Matić, P. Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol., 2019, 83, 235-247.
[http://dx.doi.org/10.1016/j.tifs.2018.11.024]
[22]
Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K.; Reid, G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(8), 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[23]
Diaz-Vela, J.; Totosaus, A.; Cruz-Guerrero, A.E.; De Lourdes Pérez-Chabela, M. In vitro evaluation of the fermentation of added-value agroindustrial by-products: Cactus pear (Opuntia ficus-Indica L.) peel and pineapple (Ananas comosus) peel as functional Ingredients. Int. J. Food Sci. Technol., 2013, 48(7), 1460-1467.
[http://dx.doi.org/10.1111/ijfs.12113]
[24]
Bialonska, D.; Ramnani, P.; Kasimsetty, S.G.; Muntha, K.R.; Gibson, G.R.; Ferreira, D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol., 2010, 140(2-3), 175-182.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.038] [PMID: 20452076]
[25]
Kwon, J-H.; Young Kim, M.; Seo, K-H.; Gyu Lee, H.; Kim, H. In-vitro prebiotic activity of grape seed flour highly rich in flavonoid and dietary fiber. J. Food Nutr. Res., 2018, 6(10), 621-625.
[http://dx.doi.org/10.12691/jfnr-6-10-2]
[26]
Cueva, C.; Sánchez-Patán, F.; Monagas, M.; Walton, G.E.; Gibson, G.R.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: Changes in microbial groups and phenolic metabolites. FEMS Microbiol. Ecol., 2013, 83(3), 792-805.
[http://dx.doi.org/10.1111/1574-6941.12037] [PMID: 23121387]
[27]
Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules, 2013, 18(2), 2328-2375.
[http://dx.doi.org/10.3390/molecules18022328] [PMID: 23429347]
[28]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[29]
Saini, A.; Panesar, P.S.; Bera, M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess., 2019. 6(26).
[http://dx.doi.org/10.1186/s40643-019-0261-9]
[30]
Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol., 2011, 31(3), 227-249.
[http://dx.doi.org/10.3109/07388551.2010.513677] [PMID: 21073258]
[31]
Castro-Vargas, H.I.; Rodríguez-Varela, L.I.; Ferreira, S.R.S.; Parada-Alfonso, F. Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids, 2010, 51(3), 319-324.
[http://dx.doi.org/10.1016/j.supflu.2009.10.012]
[32]
Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A Comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod., 2015, 75, 141-149.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.063]
[33]
Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Separ. Purif. Tech., 2018, 194, 40-47.
[http://dx.doi.org/10.1016/j.seppur.2017.11.032]
[34]
Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. Lebensm. Wiss. Technol., 2015, 64(2), 1114-1122.
[http://dx.doi.org/10.1016/j.lwt.2015.07.024]
[35]
Espinosa-Pardo, F.A.; Nakajima, V.M.; Macedo, G.A.; Macedo, J.A.; Martínez, J. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food Bioprod. Process., 2017, 101, 1-10.
[http://dx.doi.org/10.1016/j.fbp.2016.10.002]
[36]
Boussetta, N.; Vorobiev, E.; Le, L.H.; Cordin-Falcimaigne, A.; Lanoisellé, J.L. Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. Lebensm. Wiss. Technol., 2012, 46(1), 127-134.
[http://dx.doi.org/10.1016/j.lwt.2011.10.016]
[37]
Gómez-García, R.; Martínez-Ávila, G.C.G.; Aguilar, C.N. Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis vinifera L.). Residues 3 Biotech, 2012, 2(4), 297-300.
[38]
Luengo, E.; Condón-Abanto, S.; Condón, S.; Álvarez, I.; Raso, J. Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separ. Purif. Tech., 2014, 136, 130-136.
[http://dx.doi.org/10.1016/j.seppur.2014.09.008]
[39]
Mezzomo, N.; Ferreira, S.R.S. Carotenoids functionality, sources, and processing by supercritical technology: A review. J. Chem., 2016. (Hindawi. Online)
[http://dx.doi.org/10.1155/2016/3164312.]
[40]
de Andrade Lima, M.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical fluid extraction of carotenoids from vegetable waste matrices. Molecules, 2019, 24(3), 466.
[http://dx.doi.org/10.3390/molecules24030466] [PMID: 30696092]
[41]
Chemat-Djenni, Z.; Ferhat, M.A.; Tomao, V.; Chemat, F. Carotenoid extraction from tomato using a green solvent resulting from orange processing Waste. J. Essent. Oil-Bearing Plants, 2010, 13(2), 139-147.
[http://dx.doi.org/10.1080/0972060X.2010.10643803]
[42]
Boukroufa, M.; Boutekedjiret, C.; Chemat, F. Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resour. Technol., 2017, 3(3), 252-262.
[43]
Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int., 2011, 44(7), 1866-1874.
[http://dx.doi.org/10.1016/j.foodres.2011.02.021]
[44]
Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of processing on the bioaccessibility of bioactive compounds- A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. J. Food Compos. Anal., 2018, 68, 3-15.
[http://dx.doi.org/10.1016/j.jfca.2017.01.009]
[45]
Bohn, T.; McDougall, G.J.; Alegría, A.; Alminger, M.; Arrigoni, E.; Aura, A.M.; Brito, C.; Cilla, A.; El, S.N.; Karakaya, S.; Martínez-Cuesta, M.C.; Santos, C.N. Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites-a position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res., 2015, 59(7), 1307-1323.
[http://dx.doi.org/10.1002/mnfr.201400745] [PMID: 25988374]
[46]
Castenmiller, J.J.M.; West, C.E. Bioavailability and bioconversion of carotenoids. Annu. Rev. Nutr., 1998, 18(1), 19-38.
[http://dx.doi.org/10.1146/annurev.nutr.18.1.19] [PMID: 9706217]
[47]
Estévez-Santiago, R.; Olmedilla-Alonso, B.; Fernández-Jalao, I. Bioaccessibility of provitamin A carotenoids from fruits: Application of a standardised static in vitro digestion method. Food Funct., 2016, 7(3), 1354-1366.
[http://dx.doi.org/10.1039/C5FO01242B] [PMID: 26669648]
[48]
Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci., 2011, 76(1), R6-R15.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01957.x] [PMID: 21535705]
[49]
Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem., 2010, 120, 599-606.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.030]
[50]
Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; Dufour, C.; Egger, L.; Golding, M.; Karakaya, S.; Kirkhus, B.; Le Feunteun, S.; Lesmes, U.; Macierzanka, A.; Mackie, A.; Marze, S.; McClements, D.J.; Ménard, O.; Recio, I.; Santos, C.N.; Singh, R.P.; Vegarud, G.E.; Wickham, M.S.; Weitschies, W.; Brodkorb, A. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct., 2014, 5(6), 1113-1124.
[http://dx.doi.org/10.1039/C3FO60702J] [PMID: 24803111]
[51]
Spencer, J.P.E.; Abd El Mohsen, M.M.; Minihane, A.M.; Mathers, J.C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr., 2008, 99(1), 12-22.
[http://dx.doi.org/10.1017/S0007114507798938] [PMID: 17666146]
[52]
Bouayed, J.; Deuber, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem., 2012, 131(4), 1466-1472.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.030]
[53]
Gullon, B.; Pintado, M.E.; Barber, X.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Bioaccessibility, changes in the antioxidant potential and colonic fermentation of date pits and apple bagasse flours obtained from co-products during simulated in vitro gastrointestinal digestion. Food Res. Int., 2015, 78, 169-176.
[http://dx.doi.org/10.1016/j.foodres.2015.10.021] [PMID: 28433278]
[54]
Swetha, M.P.; Radha, C.; Muthukumar, S.P. Bioaccessibility and bioavailability of Moringa oleifera seed flour polyphenols. J. Food Meas. Charact., 2018, 12(3), 1917-1926.
[http://dx.doi.org/10.1007/s11694-018-9806-4]
[55]
Pellegrini, M.; Lucas-Gonzalez, R.; Fernández-López, J.; Ricci, A.; Pérez-Álvarez, J.A.; Lo Sterzo, C.; Viuda-Martos, M. Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion. J. Funct. Foods, 2017, 38, 77-88.
[http://dx.doi.org/10.1016/j.jff.2017.08.042]
[56]
Gullon, B.; Pintado, M.E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability. J. Funct. Foods, 2015, 19, 617-628.
[http://dx.doi.org/10.1016/j.jff.2015.09.056]
[57]
de Lima, A.C.; Soares, D.J.; da Silva, L.M.; de Figueiredo, R.W.; de Sousa, P.H.; de Abreu Menezes, E. In vitro bioaccessibility of copper, iron, zinc and antioxidant compounds of whole cashew apple juice and cashew apple fibre (Anacardium occidentale L.) following simulated gastro-intestinal digestion. Food Chem., 2014, 161(1), 142-147.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.123] [PMID: 24837932]
[58]
Lucas-González, R.; Viuda-Martos, M.; Pérez Álvarez, J.A.; Fernández-López, J. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chem., 2018, 256, 252-258.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.128] [PMID: 29606446]
[59]
Ortega, N.; Macià, A.; Romero, M-P.; Reguant, J.; Motilva, M-J. Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chem., 2011, 124, 65-71.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.105]
[60]
Schulz, M.; Biluca, F.C.; Gonzaga, L.V.; Borges, G.D.; Vitali, L.; Micke, G.A.; de Gois, J.S.; de Almeida, T.S.; Borges, D.L.G.; Miller, P.R.M.; Costa, A.C.O.; Fett, R. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis martius) subjected to in vitro gastrointestinal digestion. Food Chem., 2017, 228, 447-454.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.038] [PMID: 28317748]
[61]
Parada, J.; Aguilera, J.M. Food microstructure affects the bioavailability of several nutrients. J. Food Sci., 2007, 72(2), R21-R32.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00274.x] [PMID: 17995848]
[62]
Mosele, J.I.; Macià, A.; Romero, M.P.; Motilva, M.J. Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chem., 2016, 201, 120-130.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.076] [PMID: 26868556]
[63]
Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Changes in vitamin C, phenolic, and carotenoid profiles throughout in vitro gastrointestinal digestion of a blended fruit juice. J. Agric. Food Chem., 2013, 61(8), 1859-1867.
[http://dx.doi.org/10.1021/jf3044204] [PMID: 23374081]
[64]
Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bio accessibility of total polyphenols in a whole diet. Food Chem., 2007, 101(2), 492-501.
[http://dx.doi.org/10.1016/j.foodchem.2006.02.006]
[65]
Yang, I.; Jayaprakasha, G.K.; Patil, B. In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols. Food Funct., 2018, 9(2), 1235-1244.
[http://dx.doi.org/10.1039/C7FO01749A] [PMID: 29384542]
[66]
Pérez-Jiménez, J.; Díaz-Rubio, M.E.; Saura-Calixto, F. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutr. Res. Rev., 2013, 26(2), 118-129.
[http://dx.doi.org/10.1017/S0954422413000097] [PMID: 23930641]
[67]
Rodriguez-Amaya, D.B. Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int., 2019, 124, 200-205.
[http://dx.doi.org/10.1016/j.foodres.2018.05.028] [PMID: 31466641]
[68]
Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med., 2005, 26(6), 459-516.
[http://dx.doi.org/10.1016/j.mam.2005.10.001] [PMID: 16309738]
[69]
Abdul Aziz, N.A.; Wong, L.M.; Bhat, R.; Cheng, L.H. Evaluation of processed green and ripe mango peel and pulp flours (Mangifera indica var. Chokanan) in terms of chemical composition, antioxidant compounds and functional properties. J. Sci. Food Agric., 2012, 92(3), 557-563.
[http://dx.doi.org/10.1002/jsfa.4606] [PMID: 25363645]
[70]
Ribeiro da Silva, L.M.; Teixeira de Figueiredo, E.A.; Silva Ricardo, N.M.; Pinto Vieira, I.G.; Wilane de Figueiredo, R.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem., 2014, 143, 398-404.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.001] [PMID: 24054258]
[71]
Wang, W.; Bostic, T.R.; Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem., 2010, 122(4), 1193-1198.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.114]
[72]
Rodriguez-Amaya, D.B. Status of carotenoid analytical methods and in vitro assays for the assessment of food quality and health effects Curr. Opin. Food Sci., 2015, 1, 56-63.
[http://dx.doi.org/10.1016/j.cofs.2014.11.005]
[73]
Lemmens, L.; Colle, I.; Van Buggenhout, S.; Palmero, P.; Van Loey, A.; Hendrickx, M. Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro)structural characteristics and the presence of lipids: A review. Trends Food Sci. Technol., 2014, 38(2), 125-135.
[http://dx.doi.org/10.1016/j.tifs.2014.05.005]
[74]
Barba, F.J.; Mariutti, L.R.B.; Bragagnolo, N.; Mercadante, A.Z.; Barbosa-Cánovas, G.V.; Orlien, V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci. Technol., 2017, 7, 195-206.
[http://dx.doi.org/10.1016/j.tifs.2017.07.006]
[75]
Kopec, R.E.; Failla, M.L. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. J. Food Compos. Anal., 2018, 68, 16-30.
[http://dx.doi.org/10.1016/j.jfca.2017.06.008]
[76]
Xavier, A.A.O.; Mercadante, A.Z. The bioaccessibility of carotenoids impacts the design of functional foods. Curr. Opin. Food Sci., 2019, 26, 1-8.
[http://dx.doi.org/10.1016/j.cofs.2019.02.015]
[77]
Kaulmann, A.; André, C.M.; Schneider, Y.J.; Hoffmann, L.; Bohn, T. Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties. Food Chem., 2016, 197(Pt A), 325-332.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.049] [PMID: 26616956]
[78]
Mercado-Mercado, G.; Montalvo-González, E.; González-Aguilar, G.A.; Alvarez-Parrilla, E.; Sáyago-Ayerdi, S.G. Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L. ‘ataulfo’) by-products on in vitro bioaccessibility. Food Biosci., 2018, 21, 125-131.
[http://dx.doi.org/10.1016/j.fbio.2017.12.012]
[79]
Schweiggert, R.M.; Mezger, D.; Schimpf, F.; Steingass, C.B.; Carle, R. Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chem., 2012, 135(4), 2736-2742.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.035] [PMID: 22980866]
[80]
Tomas, M.; Sagdic, O.; Catalkaya, G.; Kahveci, D.; Capanoglu, E. Effect of dietary fibre addition in tomato sauce on the in vitro bioaccessibility of carotenoids. Qual. Assur. Saf. Crops Foods, 2018, 10(3), 277-283.
[http://dx.doi.org/10.3920/QAS2018.1264]
[81]
Sriwichai, W.; Berger, J.; Picq, C.; Avallone, S. Determining factors of lipophilic micronutrient bioaccessibility in several leafy vegetables. J. Agric. Food Chem., 2016, 64(8), 1695-1701.
[http://dx.doi.org/10.1021/acs.jafc.5b05364] [PMID: 26844382]
[82]
Eriksen, J.N.; Luu, A.Y.; Dragsted, L.O.; Arrigoni, E. Adaption of an in vitro digestion method to screen carotenoid liberation and in vitro accessibility from differently processed spinach preparations. Food Chem., 2017, 224, 407-413.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.146] [PMID: 28159287]
[83]
Trancoso-Reyes, N.; Ochoa-Martínez, L.A.; Bello-Pérez, L.A.; Morales-Castro, J.; Estévez-Santiago, R.; Olmedilla-Alonso, B. Effect of pre-treatment on physicochemical and structural properties, and the bioaccessibility of β-carotene in sweet potato flour. Food Chem., 2016, 200, 199-205.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.047] [PMID: 26830579]
[84]
Petry, F.C.; Mercadante, A.Z. Impact of in vitro digestion phases on the stability and bioaccessibility of carotenoids and their esters in mandarin pulps. Food Funct., 2017, 8(11), 3951-3963.
[http://dx.doi.org/10.1039/C7FO01075C] [PMID: 28972218]
[85]
Hedrén, E.; Diaz, V.; Svanberg, U. Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. Eur. J. Clin. Nutr., 2002, 56(5), 425-430.
[http://dx.doi.org/10.1038/sj.ejcn.1601329] [PMID: 12001013]
[86]
Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; Guarner, F.; Respondek, F.; Whelan, K.; Coxam, V.; Davicco, M.J.; Léotoing, L.; Wittrant, Y.; Delzenne, N.M.; Cani, P.D.; Neyrinck, A.M.; Meheust, A. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr., 2010, 104(S2), (Suppl. 2) S1-S63.
[http://dx.doi.org/10.1017/S0007114510003363] [PMID: 20920376]
[87]
Watson, D.; O’Connell Motherway, M.; Schoterman, M.H.C.; van Neerven, R.J.J.; Nauta, A.; van Sinderen, D. Selective carbohydrate utilization by lactobacilli and bifidobacteria. J. Appl. Microbiol., 2013, 114(4), 1132-1146.
[http://dx.doi.org/10.1111/jam.12105] [PMID: 23240984]
[88]
Falony, G.; Verschaeren, A.; De Bruycker, F.; De Preter, V.; Verbeke, K.; Leroy, F.; De Vuyst, L. In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate-producing colon bacteria: Implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Appl. Environ. Microbiol., 2009, 75(18), 5884-5892.
[http://dx.doi.org/10.1128/AEM.00876-09] [PMID: 19633122]
[89]
Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis., 2015, 26, 26164.
[http://dx.doi.org/10.3402/mehd.v26.26164] [PMID: 25656825]
[90]
Louis, P.; Scott, K.P.; Duncan, S.H.; Flint, H.J. Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol., 2007, 102(5), 1197-1208.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03322.x] [PMID: 17448155]
[91]
Bik, E.M.; Ugalde, J.A.; Cousins, J.; Goddard, A.D.; Richman, J.; Apte, Z.S. Microbial biotransformations in the human distal gut. Br. J. Pharmacol., 2018, 175(24), 4404-4414.
[http://dx.doi.org/10.1111/bph.14085] [PMID: 29116650]
[92]
Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J.R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise Thomas, E.; Bell, J.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 2014, 5, 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[93]
Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12(10), 661-672.
[http://dx.doi.org/10.1038/nrmicro3344] [PMID: 25198138]
[94]
de la Rosa, O.; Flores-Gallegos, A.C.; Muñíz-Marquez, D.; Nobre, C.; Contreras-Esquivel, J.C.; Aguilar, C.N. Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends Food Sci. Technol., 2019, 91, 139-146.
[http://dx.doi.org/10.1016/j.tifs.2019.06.013]
[95]
Yoo, H.D.; Kim, D.; Paek, S.H.; Oh, S.E. Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomol. Ther. (Seoul), 2012, 20(4), 371-379.
[http://dx.doi.org/10.4062/biomolther.2012.20.4.371] [PMID: 24009823]
[96]
Gullón, P.; Gullón, B.; Moure, A.; Alonso, J.L.; Domínguez, H.; Parajó, J.C. Manufacture of Prebiotics from Biomass Sources. Prebiotics and Probiotics Science and Technology. Springer New York; , 2009, pp. 535-589.
[http://dx.doi.org/10.1007/978-0-387-79058-9_14]
[97]
Vazquez-Olivo, G.; Gutiérrez-Grijalva, E.P.; Heredia, J.B. Prebiotic compounds from agro-industrial by-products. J. Food Biochem., 2019, 43(6), e12711.
[http://dx.doi.org/10.1111/jfbc.12711] [PMID: 31353613]
[98]
Reichardt, N.; Vollmer, M.; Holtrop, G.; Farquharson, F.M.; Wefers, D.; Bunzel, M.; Duncan, S.H.; Drew, J.E.; Williams, L.M.; Milligan, G.; Preston, T.; Morrison, D.; Flint, H.J.; Louis, P. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J., 2018, 12(2), 610-622.
[http://dx.doi.org/10.1038/ismej.2017.196] [PMID: 29192904]
[99]
Gómez, B.; Peláez, C.; Martínez-Cuesta, M.C.; Parajó, J.C.; Alonso, J.L.; Requena, T. Emerging prebiotics obtained from lemon and sugar beet byproducts: Evaluation of their in vitro fermentability by probiotic bacteria. Lebensm. Wiss. Technol., 2019, 109, 17-25.
[http://dx.doi.org/10.1016/j.lwt.2019.04.008]
[100]
Kaur, R.; Uppal, S.K.; Sharma, P. Production of xylooligosaccharides from sugarcane bagasse and evaluation of their prebiotic potency in vitro. Waste Biomass Valoriz., 2018, 10, 1-9.
[http://dx.doi.org/10.1007/s12649-018-0266-1]
[101]
Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agric. Food Chem., 2011, 59(1), 43-49.
[http://dx.doi.org/10.1021/jf1036596] [PMID: 21142013]
[102]
Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care, 2016, 19(6), 471-476.
[http://dx.doi.org/10.1097/MCO.0000000000000314] [PMID: 27490306]
[103]
Bordiga, M.; Montella, R.; Travaglia, F.; Arlorio, M.; Coïsson, J.D. Characterization of polyphenolic and oligosaccharidic fractions extracted from grape seeds followed by the evaluation of prebiotic activity related to oligosaccharides. Int. J. Food Sci. Technol., 2019, 54(4), 1283-1291.
[http://dx.doi.org/10.1111/ijfs.14109]
[104]
Sáyago-Ayerdi, S.G.; Zamora-Gasga, V.M.; Venema, K. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res. Int., 2019, 118, 89-95.
[http://dx.doi.org/10.1016/j.foodres.2017.12.024] [PMID: 30898357]
[105]
Gil-Sánchez, I.; Ayuda-Durán, B.; González-Manzano, S.; Santos-Buelga, C.; Cueva, C.; Martín-Cabrejas, M.A.; Sanz-Buenhombre, M.; Guadarrama, A.; Moreno-Arribas, M.V.; Bartolomé, B. Chemical characterization and in vitro colonic fermentation of grape pomace extracts. J. Sci. Food Agric., 2017, 97(10), 3433-3444.
[http://dx.doi.org/10.1002/jsfa.8197] [PMID: 28026017]
[106]
Gil-Sánchez, I.; Cueva, C.; Sanz-Buenhombre, M.; Guadarrama, A.; Moreno-Arribas, M.V.; Bartolomé, B. Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. J. Food Compos. Anal., 2018, 68, 41-52.
[http://dx.doi.org/10.1016/j.jfca.2017.05.005]
[107]
Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products - Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr., 2020, 60(8), 1388-1419.
[http://dx.doi.org/10.1080/10408398.2019.1572588] [PMID: 30740995]
[108]
Castro-Muñoz, R.; Barragán-Huerta, B.E.; Fíla, V.; Denis, P.C.; Ruby-Figueroa, R. Current role of membrane technology: From the treatment of agro-industrial by-products up to the valorization of valuable compounds. Waste Biomass Valoriz., 2018, 9, 513-529.
[http://dx.doi.org/10.1007/s12649-017-0003-1]
[109]
Bhol, S.; Lanka, D.; Bosco, S.J.D. Quality characteristics and antioxidant properties of breads incorporated with pomegranate whole fruit bagasse. J. Food Sci. Technol., 2016, 53(3), 1717-1721.
[http://dx.doi.org/10.1007/s13197-015-2085-8] [PMID: 27570297]
[110]
Toledo, N.M.V.; Mondoni, J.; Harada-Padermo, S.S.; Vela-Paredes, R.S.; Berni, P.R.A.; Selani, M.M.; Canniatti-Brazaca, S.G. Characterization of apple, pineapple, and melon by-products and their application in cookie formulations as an alternative to enhance the antioxidant capacity. J. Food Process. Preserv., 2019, 43(9)
[http://dx.doi.org/10.1111/jfpp.14100]
[111]
Mildner-Szkudlarz, S.; Bajerska, J. Protective effect of grape by-product-fortified breads against cholesterol/cholic acid diet-induced hypercholesterolaemia in rats. J. Sci. Food Agric., 2013, 93(13), 3271-3278.
[http://dx.doi.org/10.1002/jsfa.6171] [PMID: 23584744]
[112]
Batista, K.S.; Alves, A.F.; Lima, M.D.S.; da Silva, L.A.; Lins, P.P.; de Sousa Gomes, J.A.; Silva, A.S.; Toscano, L.T.; de Albuquerque Meireles, B.R.L.; de Magalhães Cordeiro, A.M.T.; da Conceição, M.L.; de Souza, E.L.; Aquino, J.S. Beneficial effects of consumption of acerola, cashew or guava processing by-products on intestinal health and lipid metabolism in dyslipidaemic female Wistar rats. Br. J. Nutr., 2018, 119(1), 30-41.
[http://dx.doi.org/10.1017/S0007114517003282] [PMID: 29355095]
[113]
Abou Chehade, L.; Al Chami, Z.; De Pascali, S.A.; Cavoski, I.; Fanizzi, F.P. Biostimulants from food processing by-products: Agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J. Sci. Food Agric., 2018, 98(4), 1426-1436.
[http://dx.doi.org/10.1002/jsfa.8610] [PMID: 28771745]
[114]
Sánchez-Gómez, R.; Zalacain, A.; Pardo, F.; Alonso, G.L.; Salinas, M.R. Moscatel vine-shoot extracts as a grapevine biostimulant to enhance wine quality. Food Res. Int., 2017, 98, 40-49.
[http://dx.doi.org/10.1016/j.foodres.2017.01.004] [PMID: 28610731]
[115]
Duarte, F.N.D.; Rodrigues, J.B.; da Costa Lima, M.; Lima, M.D.S.; Pacheco, M.T.B.; Pintado, M.M.E.; de Souza Aquino, J.; de Souza, E.L. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species. J. Sci. Food Agric., 2017, 97(11), 3712-3719.
[http://dx.doi.org/10.1002/jsfa.8232] [PMID: 28111773]
[116]
Parra-Matadamas, A.; Mayorga-Reyes, L.; Pérez-Chabela, M.L. In vitro fermentation of agroindustrial by-products: Grapefruit albedo and peel, cactus pear peel and pineapple peel by lactic acid bacteria. Int. Food Res. J., 2015, 22(2), 859-865.
[117]
Vieira, A.D.S.; Bedani, R.; Albuquerque, M.A.C.; Biscola, V.; Saad, S.M.I. The impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter microorganisms. Food Res. Int., 2017, 97, 356-363.
[http://dx.doi.org/10.1016/j.foodres.2017.04.026] [PMID: 28578060]
[118]
De Souza, C.B.; Jonathan, M.; Saad, S.M.I.; Schols, H.A.; Venema, K. Degradation of fibres from fruit by-products allows selective modulation of the gut bacteria in an in vitro model of the proximal colon. J. Funct. Foods, 2019, 57, 275-285.
[http://dx.doi.org/10.1016/j.jff.2019.04.026]
[119]
Costa, J.R.; Amorim, M.; Vilas-Boas, A.; Tonon, R.V.; Cabral, L.M.C.; Pastrana, L.; Pintado, M. Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract. Food Funct., 2019, 10(4), 1856-1869.
[http://dx.doi.org/10.1039/C8FO02534G] [PMID: 30950465]
[120]
da Silva, J.K.; Cazarin, C.B.B.; Bogusz, S., Junior; Augusto, F.; Maróstica, M.R., Junior Passion passion fruit (Passiflora edulis) peel increases colonic production of short-chain fatty acids in wistar rats. LWT - Food Sci. Technol., 2014, 59(2P2), 1252-1257.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy