Review Article

基于PROTAC技术的抗癌分子设计与开发的最新进展

卷 28, 期 7, 2021

发表于: 12 March, 2020

页: [1304 - 1327] 页: 24

弟呕挨: 10.2174/0929867327666200312112412

价格: $65

conference banner
摘要

现在建议将基于蛋白质敲除技术的PROTAC(靶向靶向嵌合体的蛋白酶)降解剂作为治疗各种疾病的新选择。 在过去的几年中,PROTAC技术的应用已广泛传播到各种疾病中,并且已经报道了许多高效的PROTAC分子。 这些分子主要用于抗癌治疗,对靶蛋白具有很高的选择性,具有显着诱导癌蛋白降解的能力,在体内和体外均具有良好的效果。 在这篇综述中,我们总结了PROTAC技术在抗癌治疗领域的最新发展,包括分子设计,靶向蛋白的类型,体外和体内结果。 此外,我们还将讨论基于PROTAC策略的候选者在临床试验中的应用前景和挑战。

关键词: PROTAC,小分子降解剂,靶向蛋白质降解,抗癌治疗,分子设计,疾病。

[1]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[2]
Ohba, H.; Zhelev, Z.; Bakalova, R.; Ewis, A.; Omori, T.; Ishikawa, M.; Shinohara, Y.; Baba, Y. Inhibition of bcr-abl and/or c-abl gene expression by small interfering, double-stranded RNAs: cross-talk with cell proliferation factors and other oncogenes. Cancer, 2004, 101(6), 1390-1403.
[http://dx.doi.org/10.1002/cncr.20468] [PMID: 15368327]
[3]
Burnett, J.C.; Rossi, J.J. RNA-based therapeutics: current progress and future prospects. Chem. Biol., 2012, 19(1), 60-71.
[http://dx.doi.org/10.1016/j.chembiol.2011.12.008] [PMID: 22284355]
[4]
Pei, H.; Peng, Y.; Zhao, Q.; Chen, Y. Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery. RSC Adv, 2019, 9(30), 16967-16976.
[http://dx.doi.org/10.1039/C9RA03423D]]
[5]
Raina, K.; Lu, J.; Qian, Y.; Altieri, M.; Gordon, D.; Rossi, A.M.; Wang, J.; Chen, X.; Dong, H.; Siu, K.; Winkler, J.D.; Crew, A.P.; Crews, C.M.; Coleman, K.G. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(26), 7124-7129.
[http://dx.doi.org/10.1073/pnas.1521738113]] [PMID: 27274052]
[6]
Neklesa, T.; Snyder, L.B.; Willard, R.R.; Vitale, N.; Raina, K.; Pizzano, J.; Gordon, D.; Bookbinder, M.; Macaluso, J.; Dong, H.; Liu, Z.; Ferraro, C.; Wang, G.; Wang, J.; Crews, C.M.; Houston, J.; Crews, P.C.; Taylor, I. Abstract 5236: ARV-110: an androgen receptor PROTAC degrader for prostate cancer. Cancer Res., 2018, 78(13), 5236.
[http://dx.doi.org/10.1158/1538-7445.AM2018-5236]]
[7]
Flanagan, J.J.; Qian, Y.; Gough, S.M.; Andreoli, M.; Bookbinder, M.; Cadelina, G.; Bradley, J.; Rousseau, E.; Willard, R.; Pizzano, J.; Crews, C.M. Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. Cancer Res 2019, 79(Suppl. 4), P5-04-18,
[http://dx.doi.org/10.1158/1538-7445.SABCS18-P5-04-18]
[8]
Kelleher, J.; Campbell, V.; Chen, J.; Gollob, J.; Ji, N.; Kamadurai, H.; Klaus, C.; Li, H.; Loh, C.; McDonald, A.; Rong, H.; Rusin, S.; Sharma, K.; Vigil, D.; Walker, D.; Weiss, M.; Yuan, K.; Zhang, Y.; Mainolfi, N. KYM-001, a first-in-class oral IRAK4 protein degrader, induces tumor regression in xenograft models of MYD88-mutant ABC DLBCL alone and in combination with BTK inhibition. Hematol. Oncol., 2019, 37(S2), 129-129.
[http://dx.doi.org/10.1002/hon.89_2629]]
[9]
Mofers, A.; Pellegrini, P.; Linder, S.; D’Arcy, P. Proteasome-associated deubiquitinases and cancer. Cancer Metastasis Rev., 2017, 36(4), 635-653.
[http://dx.doi.org/10.1007/s10555-017-9697-6] [PMID: 29134486]
[10]
Warang, P.; Homma, T.; Pandya, R.; Sawant, A.; Shinde, N.; Pandey, D.; Fujii, J.; Madkaikar, M.; Mukherjee, M.B. Potential involvement of ubiquitin-proteasome system dysfunction associated with oxidative stress in the pathogenesis of sickle cell disease. Br. J. Haematol., 2018, 182(4), 559-566.
[http://dx.doi.org/10.1111/bjh.15437] [PMID: 29974957]
[11]
Schwartz, A.L.; Ciechanover, A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol., 2009, 49, 73-96.
[http://dx.doi.org/10.1146/annurev.pharmtox.051208.165340] [PMID: 18834306]
[12]
Hershko, A.; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem., 1998, 67(1), 425-479.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.425] [PMID: 9759494]
[13]
Tramutola, A.; Di Domenico, F.; Barone, E.; Perluigi, M.; Butterfield, D.A. It is all about (U)biquitin: role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxid. Med. Cell. Longev., 2016, 20162756068
[http://dx.doi.org/10.1155/2016/2756068] [PMID: 26881020]
[14]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.141230798] [PMID: 11438690]
[15]
Sakamoto, K.M.; Kim, K.B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C.M.; Deshaies, R.J. Development of PROTACs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics, 2003, 2(12), 1350-1358.
[http://dx.doi.org/10.1074/mcp.T300009-MCP200] [PMID: 14525958]
[16]
Schapira, M.; Calabrese, M.F.; Bullock, A.N.; Crews, C.M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov., 2019, 18(12), 949-963.
[http://dx.doi.org/10.1038/s41573-019-0047-y] [PMID: 31666732]
[17]
Shi, Y.; Long, M.J.C.; Rosenberg, M.M.; Li, S.; Kobjack, A.; Lessans, P.; Coffey, R.T.; Hedstrom, L. Boc3Arg-linked ligands induce degradation by localizing target proteins to the 20S proteasome. ACS Chem. Biol., 2016, 11(12), 3328-3337.
[http://dx.doi.org/10.1021/acschembio.6b00656] [PMID: 27704767]
[18]
Gustafson, J.L.; Neklesa, T.K.; Cox, C.S.; Roth, A.G.; Buckley, D.L.; Tae, H.S.; Sundberg, T.B.; Stagg, D.B.; Hines, J.; McDonnell, D.P.; Norris, J.D.; Crews, C.M. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew. Chem. Int. Ed. Engl., 2015, 54(33), 9659-9662.
[http://dx.doi.org/10.1002/anie.201503720] [PMID: 26083457]
[19]
Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.027] [PMID: 28223226]
[20]
Bondeson, D.P.; Smith, B.E.; Burslem, G.M.; Buhimschi, A.D.; Hines, J.; Jaime-Figueroa, S.; Wang, J.; Hamman, B.D.; Ishchenko, A.; Crews, C.M. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol., 2018, 25(1), 78.e5-87.e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.09.010] [PMID: 29129718]
[21]
Riching, K.M.; Mahan, S.; Corona, C.R.; McDougall, M.; Vasta, J.D.; Robers, M.B.; Urh, M.; Daniels, D.L. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem. Biol., 2018, 13(9), 2758-2770.
[http://dx.doi.org/10.1021/acschembio.8b00692] [PMID: 30137962]
[22]
Lai, A.C.; Crews, C.M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov., 2017, 16(2), 101-114.
[http://dx.doi.org/10.1038/nrd.2016.211] [PMID: 27885283]
[23]
Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30.
[http://dx.doi.org/10.1002/cbf.3369] [PMID: 30604499]
[24]
Pettersson, M.; Crews, C.M. Proteolysis targeting chimeras (PROTACs) - past, present and future. Drug Discov. Today. Technol., 2019, 31, 15-27.
[http://dx.doi.org/10.1016/j.ddtec.2019.01.002] [PMID: 31200855]
[25]
Tan, L.; Gray, N.S. When kinases meet PROTACs. Chin. J. Chem., 2018, 36(10), 971-977.
[http://dx.doi.org/10.1002/cjoc.201800293]
[26]
Scheepstra, M.; Hekking, K.F.W.; van Hijfte, L.; Folmer, R.H.A. Bivalent ligands for protein degradation in drug discovery. Comput. Struct. Biotechnol. J., 2019, 17, 160-176.
[http://dx.doi.org/10.1016/j.csbj.2019.01.006] [PMID: 30788082]
[27]
Hines, J.; Gough, J.D.; Corson, T.W.; Crews, C.M. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc. Natl. Acad. Sci. USA, 2013, 110(22), 8942-8947.
[http://dx.doi.org/10.1073/pnas.1217206110] [PMID: 23674677]
[28]
Reynders, M.; Matsuura, B.; Berouti, M.; Simoneschi, D.; Marzio, A.; Pagano, M.; Trauner, D. PHOTACs enable optical control of protein degradation. Sci. Adv., 2020, 6(8)eaay5064
[http://dx.doi.org/10.1126/sciadv.aay5064]] [PMID: 32128406]
[29]
Xue, G.; Wang, K.; Zhou, D.; Zhong, H.; Pan, Z. Light-induced protein degradation with photocaged PROTACs. J. Am. Chem. Soc., 2019, 141(46), 18370-18374.
[http://dx.doi.org/10.1021/jacs.9b06422] [PMID: 31566962]
[30]
Steinebach, C.; Lindner, S.; Udeshi, N.D.; Mani, D.C.; Kehm, H.; Köpff, S.; Carr, S.A.; Gütschow, M.; Krönke, J. Homo-PROTACs for the chemical knockdown of cereblon. ACS Chem. Biol., 2018, 13(9), 2771-2782.
[http://dx.doi.org/10.1021/acschembio.8b00693] [PMID: 30118587]
[31]
Maniaci, C.; Hughes, S.J.; Testa, A.; Chen, W.; Lamont, D.J.; Rocha, S.; Alessi, D.R.; Romeo, R.; Ciulli, A. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun., 2017, 8(1), 830.
[http://dx.doi.org/10.1038/s41467-017-00954-1] [PMID: 29018234]
[32]
Girardini, M.; Maniaci, C.; Hughes, S.J.; Testa, A.; Ciulli, A. Cereblon versus VHL: hijacking E3 ligases against each other using PROTACs. Bioorg. Med. Chem., 2019, 27(12), 2466-2479.
[http://dx.doi.org/10.1016/j.bmc.2019.02.048] [PMID: 30826187]
[33]
Nabet, B.; Roberts, J.M.; Buckley, D.L.; Paulk, J.; Dastjerdi, S.; Yang, A.; Leggett, A.L.; Erb, M.A.; Lawlor, M.A.; Souza, A.; Scott, T.G.; Vittori, S.; Perry, J.A.; Qi, J.; Winter, G.E.; Wong, K.K.; Gray, N.S.; Bradner, J.E. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol., 2018, 14(5), 431-441.
[http://dx.doi.org/10.1038/s41589-018-0021-8] [PMID: 29581585]
[34]
Nalawansha, D.A.; Paiva, S.L.; Rafizadeh, D.N.; Pettersson, M.; Qin, L.; Crews, C.M. Targeted protein internalization and degradation by endosome targeting chimeras (ENDTACs). ACS Cent. Sci., 2019, 5(6), 1079-1084.
[http://dx.doi.org/10.1021/acscentsci.9b00224] [PMID: 31263767]
[35]
Banik, S.M.; Pedram, K.; Wisnovsky, S.; Ahn, G.; Riley, N.M.; Bertozzi, C.R. Lysosometargeting chimeras (LYTACs) for the degradation of secreted and membraneproteins. Nature, 2020, 584(7820), 291-297.
[http://dx.doi.org/10.1038/s41586-020-2545-9] [PMID: 32728216]
[36]
Lebraud, H.; Wright, D.J.; Johnson, C.N.; Heightman, T.D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent. Sci., 2016, 2(12), 927-934.
[http://dx.doi.org/10.1021/acscentsci.6b00280] [PMID: 28058282]
[37]
Rodriguez-Gonzalez, A.; Cyrus, K.; Salcius, M.; Kim, K.; Crews, C.M.; Deshaies, R.J.; Sakamoto, K.M. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27(57), 7201-7211.
[http://dx.doi.org/10.1038/onc.2008.320] [PMID: 18794799]
[38]
Cyrus, K.; Wehenkel, M.; Choi, E.Y.; Lee, H.; Swanson, H.; Kim, K.B. Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACs. ChemMedChem, 2010, 5(7), 979-985.
[http://dx.doi.org/10.1002/cmdc.201000146] [PMID: 20512796]
[39]
Jiang, Y.; Deng, Q.; Zhao, H.; Xie, M.; Chen, L.; Yin, F.; Qin, X.; Zheng, W.; Zhao, Y.; Li, Z. Development of stabilized peptide-based PROTACs against estrogen receptor alpha. ACS Chem. Biol., 2018, 13(3), 628-635.
[http://dx.doi.org/10.1021/acschembio.7b00985] [PMID: 29271628]
[40]
Itoh, Y.; Kitaguchi, R.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg. Med. Chem., 2011, 19(22), 6768-6778.
[http://dx.doi.org/10.1016/j.bmc.2011.09.041] [PMID: 22014751]
[41]
Narayanan, R.; Ponnusamy, S.; Miller, D.D. Destroying the androgen receptor (AR)-potential strategy to treat advanced prostate cancer. Oncoscience, 2017, 4(11-12), 175-177.
[http://dx.doi.org/10.18632/oncoscience.389] [PMID: 29344555]
[42]
Crowder, C.M.; Lassiter, C.S.; Gorelick, D.A. Nuclear androgen receptor regulates testes organization and oocyte maturation in zebrafish. Endocrinology, 2018, 159(2), 980-993.
[http://dx.doi.org/10.1210/en.2017-00617] [PMID: 29272351]
[43]
Flanagan, J.J.; Neklesa, T.K. Targeting nuclear receptors with PROTAC degraders. Mol. Cell. Endocrinol., 2019, 493110452
[http://dx.doi.org/10.1016/j.mce.2019.110452] [PMID: 31125586]
[44]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.114] [PMID: 18752944]
[45]
Shibata, N.; Nagai, K.; Morita, Y.; Ujikawa, O.; Ohoka, N.; Hattori, T.; Koyama, R.; Sano, O.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J. Med. Chem., 2018, 61(2), 543-575.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00168] [PMID: 28594553]
[46]
Salami, J.; Alabi, S.; Willard, R.R.; Vitale, N.J.; Wang, J.; Dong, H.; Jin, M.; McDonnell, D.P.; Crew, A.P.; Neklesa, T.K.; Crews, C.M. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol., 2018, 1(1), 100.
[http://dx.doi.org/10.1038/s42003-018-0105-8] [PMID: 30271980]
[47]
Han, X.; Wang, C.; Qin, C.; Xiang, W.; Fernandez-Salas, E.; Yang, C.Y.; Wang, M.; Zhao, L.; Xu, T.; Chinnaswamy, K.; Delproposto, J.; Stuckey, J.; Wang, S. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J. Med. Chem., 2019, 62(2), 941-964.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01631] [PMID: 30629437]
[48]
Han, X.; Zhao, L.; Xiang, W.; Qin, C.; Miao, B.; Xu, T.; Wang, M.; Yang, C.Y.; Chinnaswamy, K.; Stuckey, J.; Wang, S. Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands. J. Med. Chem., 2019, 62(24), 11218-11231.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01393] [PMID: 31804827]
[49]
Nadji, M.; Gomez-Fernandez, C.; Ganjei-Azar, P.; Morales, A.R. Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am. J. Clin. Pathol., 2005, 123(1), 21-27.
[http://dx.doi.org/10.1309/4WV79N2GHJ3X1841] [PMID: 15762276]
[50]
Demizu, Y.; Okuhira, K.; Motoi, H.; Ohno, A.; Shoda, T.; Fukuhara, K.; Okuda, H.; Naito, M.; Kurihara, M. Design and synthesis of estrogen receptor degradation inducer based on a protein knockdown strategy. Bioorg. Med. Chem. Lett., 2012, 22(4), 1793-1796.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.086] [PMID: 22277276]
[51]
Okuhira, K.; Demizu, Y.; Hattori, T.; Ohoka, N.; Shibata, N.; Nishimaki-Mogami, T.; Okuda, H.; Kurihara, M.; Naito, M. Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci., 2013, 104(11), 1492-1498.
[http://dx.doi.org/10.1111/cas.12272] [PMID: 23992566]
[52]
Ohoka, N.; Okuhira, K.; Ito, M.; Nagai, K.; Shibata, N.; Hattori, T.; Ujikawa, O.; Shimokawa, K.; Sano, O.; Koyama, R.; Fujita, H.; Teratani, M.; Matsumoto, H.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J. Biol. Chem., 2017, 292(11), 4556-4570.
[http://dx.doi.org/10.1074/jbc.M116.768853] [PMID: 28154167]
[53]
Ohoka, N.; Morita, Y.; Nagai, K.; Shimokawa, K.; Ujikawa, O.; Fujimori, I.; Ito, M.; Hayase, Y.; Okuhira, K.; Shibata, N.; Hattori, T.; Sameshima, T.; Sano, O.; Koyama, R.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. J. Biol. Chem., 2018, 293(18), 6776-6790.
[http://dx.doi.org/10.1074/jbc.RA117.001091] [PMID: 29545311]
[54]
Hu, J.; Hu, B.; Wang, M.; Xu, F.; Miao, B.; Yang, C.Y.; Wang, M.; Liu, Z.; Hayes, D.F.; Chinnaswamy, K.; Delproposto, J.; Stuckey, J.; Wang, S. Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J. Med. Chem., 2019, 62(3), 1420-1442.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01572] [PMID: 30990042]
[55]
Burris, T.P.; Busby, S.A.; Griffin, P.R. Targeting orphan nuclear receptors for treatment of metabolic diseases and autoimmunity. Chem. Biol., 2012, 19(1), 51-59.
[http://dx.doi.org/10.1016/j.chembiol.2011.12.011] [PMID: 22284354]
[56]
Bondeson, D.P.; Mares, A.; Smith, I.E.; Ko, E.; Campos, S.; Miah, A.H.; Mulholland, K.E.; Routly, N.; Buckley, D.L.; Gustafson, J.L.; Zinn, N.; Grandi, P.; Shimamura, S.; Bergamini, G.; Faelth-Savitski, M.; Bantscheff, M.; Cox, C.; Gordon, D.A.; Willard, R.R.; Flanagan, J.J.; Casillas, L.N.; Votta, B.J.; den Besten, W.; Famm, K.; Kruidenier, L.; Carter, P.S.; Harling, J.D.; Churcher, I.; Crews, C.M. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol., 2015, 11(8), 611-617.
[http://dx.doi.org/10.1038/nchembio.1858] [PMID: 26075522]
[57]
Peng, L.; Zhang, Z.; Lei, C.; Li, S.; Zhang, Z.; Ren, X.; Chang, Y.; Zhang, Y.; Xu, Y.; Ding, K. Identification of new small-molecule inducers of estrogen-related receptor α (ERRα) degradation. ACS Med. Chem. Lett., 2019, 10(5), 767-772.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00025] [PMID: 31097997]
[58]
Wang, L.; Guillen, V.S.; Sharma, N.; Flessa, K.; Min, J.; Carlson, K.E.; Toy, W.; Braqi, S.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Chandarlapaty, S.; Sharma, A.; Toy, W.; Braqi, S.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Chandarlapaty, S.; Sharma, A. New class of selective estrogen receptor degraders (SERDs): expanding the toolbox of PROTAC degrons. ACS Med. Chem. Lett., 2018, 9(8), 803-808.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00106] [PMID: 30128071]
[59]
Li, Y.; Zhang, S.; Zhang, J.; Hu, Z.; Xiao, Y.; Huang, J.; Dong, C.; Huang, S.; Zhou, H.B. Exploring the PROTAC degron candidates: OBHSA with different side chains as novel selective estrogen receptor degraders (SERDs). Eur. J. Med. Chem., 2019, 172, 48-61.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.058] [PMID: 30939353]
[60]
Palmer, R.H.; Vernersson, E.; Grabbe, C.; Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J., 2009, 420(3), 345-361.
[http://dx.doi.org/10.1042/BJ20090387] [PMID: 19459784]
[61]
Morris, S.W.; Kirstein, M.N.; Valentine, M.B.; Dittmer, K.G.; Shapiro, D.N.; Saltman, D.L.; Look, A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 1994, 263(5151), 1281-1284.
[http://dx.doi.org/10.1126/science.8122112] [PMID: 8122112]
[62]
Powell, C.E.; Gao, Y.; Tan, L.; Donovan, K.A.; Nowak, R.P.; Loehr, A.; Bahcall, M.; Fischer, E.S.; Jänne, P.A.; George, R.E.; Gray, N.S. Chemically induced degradation of anaplastic lymphoma kinase (ALK). J. Med. Chem., 2018, 61(9), 4249-4255.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01655] [PMID: 29660984]
[63]
Zhang, C.; Han, X.R.; Yang, X.; Jiang, B.; Liu, J.; Xiong, Y.; Jin, J. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur. J. Med. Chem., 2018, 151, 304-314.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.071] [PMID: 29627725]
[64]
Kang, C.H.; Lee, D.H.; Lee, C.O.; Du Ha, J.; Park, C.H.; Hwang, J.Y. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem. Biophys. Res. Commun., 2018, 505(2), 542-547.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.169] [PMID: 30274779]
[65]
Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer, 2005, 5(3), 172-183.
[http://dx.doi.org/10.1038/nrc1567] [PMID: 15719031]
[66]
Lai, A.C.; Toure, M.; Hellerschmied, D.; Salami, J.; Jaime-Figueroa, S.; Ko, E.; Hines, D.J.; Crews, C.M. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 807-810.
[http://dx.doi.org/10.1002/anie.201507634] [PMID: 26593377]
[67]
Zhao, Q.; Ren, C.; Liu, L.; Chen, J.; Shao, Y.; Sun, N.; Sun, R.; Kong, Y.; Ding, X.; Zhang, X.; Xu, Y.; Yang, B.; Yin, Q.; Yang, X.; Jiang, B. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von hippel-lindau (VHL) E3 ubiquitin ligase. J. Med. Chem., 2019, 62(20), 9281-9298.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01264] [PMID: 31539241]
[68]
Demizu, Y.; Shibata, N.; Hattori, T.; Ohoka, N.; Motoi, H.; Misawa, T.; Shoda, T.; Naito, M.; Kurihara, M. Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorg. Med. Chem. Lett., 2016, 26(20), 4865-4869.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.041] [PMID: 27666635]
[69]
Shimokawa, K.; Shibata, N.; Sameshima, T.; Miyamoto, N.; Ujikawa, O.; Nara, H.; Ohoka, N.; Hattori, T.; Cho, N.; Naito, M. Targeting the allosteric site of oncoprotein BCR-ABL as an alternative strategy for effective target protein degradation. ACS Med. Chem. Lett., 2017, 8(10), 1042-1047.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00247] [PMID: 29057048]
[70]
Shibata, N.; Shimokawa, K.; Nagai, K.; Ohoka, N.; Hattori, T.; Miyamoto, N.; Ujikawa, O.; Sameshima, T.; Nara, H.; Cho, N.; Naito, M. Pharmacological difference between degrader and inhibitor against oncogenic BCR-ABL kinase. Sci. Rep., 2018, 8(1), 13549.
[http://dx.doi.org/10.1038/s41598-018-31913-5] [PMID: 30202081]
[71]
Shibata, N.; Ohoka, N.; Hattori, T.; Naito, M. Development of a potent protein degrader against oncogenic BCR-ABL protein. Chem. Pharm. Bull. (Tokyo), 2019, 67(3), 165-172.
[http://dx.doi.org/10.1248/cpb.c18-00703] [PMID: 30827996]
[72]
Mohamed, A.J.; Yu, L.; Bäckesjö, C-M.; Vargas, L.; Faryal, R.; Aints, A.; Christensson, B.; Berglöf, A.; Vihinen, M.; Nore, B.F.; Smith, C.I. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev., 2009, 228(1), 58-73.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00741.x] [PMID: 19290921]
[73]
Crofford, L.J.; Nyhoff, L.E.; Sheehan, J.H.; Kendall, P.L. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy. Expert Rev. Clin. Immunol., 2016, 12(7), 763-773.
[http://dx.doi.org/10.1586/1744666X.2016.1152888] [PMID: 26864273]
[74]
Woyach, J.A.; Furman, R.R.; Liu, T.M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.; Steggerda, S.M.; Versele, M.; Dave, S.S.; Zhang, J.; Yilmaz, A.S.; Jaglowski, S.M.; Blum, K.A.; Lozanski, A.; Lozanski, G.; James, D.F.; Barrientos, J.C.; Lichter, P.; Stilgenbauer, S.; Buggy, J.J.; Chang, B.Y.; Johnson, A.J.; Byrd, J.C. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med., 2014, 370(24), 2286-2294.
[http://dx.doi.org/10.1056/NEJMoa1400029] [PMID: 24869598]
[75]
Sun, Y.; Zhao, X.; Ding, N.; Gao, H.; Wu, Y.; Yang, Y.; Zhao, M.; Hwang, J.; Song, Y.; Liu, W.; Rao, Y.; Song, Y. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res., 2018, 28(7), 779-781.
[http://dx.doi.org/10.1038/s41422-018-0055-1] [PMID: 29875397]
[76]
Buhimschi, A.D.; Armstrong, H.A.; Toure, M.; Jaime-Figueroa, S.; Chen, T.L.; Lehman, A.M.; Woyach, J.A.; Johnson, A.J.; Byrd, J.C.; Crews, C.M. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry, 2018, 57(26), 3564-3575.
[http://dx.doi.org/10.1021/acs.biochem.8b00391] [PMID: 29851337]
[77]
Huang, H.T.; Dobrovolsky, D.; Paulk, J.; Yang, G.; Weisberg, E.L.; Doctor, Z.M.; Buckley, D.L.; Cho, J.H.; Ko, E.; Jang, J.; Shi, K.; Choi, H.G.; Griffin, J.D.; Li, Y.; Treon, S.P.; Fischer, E.S.; Bradner, J.E.; Tan, L.; Gray, N.S. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol., 2018, 25(1), 88.e6-99.e6.
[http://dx.doi.org/10.1016/j.chembiol.2017.10.005] [PMID: 29129717]
[78]
Zorba, A.; Nguyen, C.; Xu, Y.; Starr, J.; Borzilleri, K.; Smith, J.; Zhu, H.; Farley, K.A.; Ding, W.; Schiemer, J.; Feng, X.; Chang, J.S.; Uccello, D.P.; Young, J.A.; Garcia-Irrizary, C.N.; Czabaniuk, L.; Schuff, B.; Oliver, R.; Montgomery, J.; Hayward, M.M.; Coe, J.; Chen, J.; Niosi, M.; Luthra, S.; Shah, J.C.; El-Kattan, A.; Qiu, X.; West, G.M.; Noe, M.C.; Shanmugasundaram, V.; Gilbert, A.M.; Brown, M.F.; Calabrese, M.F. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc. Natl. Acad. Sci. USA, 2018, 115(31), E7285-E7292.
[http://dx.doi.org/10.1073/pnas.1803662115] [PMID: 30012605]
[79]
Krajcovicova, S.; Jorda, R.; Hendrychova, D.; Krystof, V.; Soural, M. Solid-phase synthesis for thalidomide-based proteolysis-targeting chimeras (PROTAC). Chem. Commun. (Camb.), 2019, 55(7), 929-932.
[http://dx.doi.org/10.1039/C8CC08716D] [PMID: 30601480]
[80]
Sun, Y.; Ding, N.; Song, Y.; Yang, Z.; Liu, W.; Zhu, J.; Rao, Y. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia, 2019, 33(8), 2105-2110.
[http://dx.doi.org/10.1038/s41375-019-0440-x] [PMID: 30858551]
[81]
Wu, M.; Li, C.; Zhu, X. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol., 2018, 11(1), 133-145.
[http://dx.doi.org/10.1186/s13045-018-0675-4] [PMID: 30514344]
[82]
Smith, C.C.; Wang, Q.; Chin, C.S.; Salerno, S.; Damon, L.E.; Levis, M.J.; Perl, A.E.; Travers, K.J.; Wang, S.; Hunt, J.P.; Zarrinkar, P.P.; Schadt, E.E.; Kasarskis, A.; Kuriyan, J.; Shah, N.P. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature, 2012, 485(7397), 260-263.
[http://dx.doi.org/10.1038/nature11016] [PMID: 22504184]
[83]
Peng, J.; Marshall, N.F.; Price, D.H. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J. Biol. Chem., 1998, 273(22), 13855-13860.
[http://dx.doi.org/10.1074/jbc.273.22.13855] [PMID: 9593731]
[84]
Byrd, J.C.; Lin, T.S.; Dalton, J.T.; Wu, D.; Phelps, M.A.; Fischer, B.; Moran, M.; Blum, K.A.; Rovin, B.; Brooker-McEldowney, M.; Broering, S.; Schaaf, L.J.; Johnson, A.J.; Lucas, D.M.; Heerema, N.A.; Lozanski, G.; Young, D.C.; Suarez, J.R.; Colevas, A.D.; Grever, M.R. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood, 2007, 109(2), 399-404.
[http://dx.doi.org/10.1182/blood-2006-05-020735] [PMID: 17003373]
[85]
Robb, C.M.; Contreras, J.I.; Kour, S.; Taylor, M.A.; Abid, M.; Sonawane, Y.A.; Zahid, M.; Murry, D.J.; Natarajan, A.; Rana, S. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem. Commun. (Camb.), 2017, 53(54), 7577-7580.
[http://dx.doi.org/10.1039/C7CC03879H] [PMID: 28636052]
[86]
Olson, C.M.; Jiang, B.; Erb, M.A.; Liang, Y.; Doctor, Z.M.; Zhang, Z.; Zhang, T.; Kwiatkowski, N.; Boukhali, M.; Green, J.L.; Haas, W.; Nomanbhoy, T.; Fischer, E.S.; Young, R.A.; Bradner, J.E.; Winter, G.E.; Gray, N.S. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol., 2018, 14(2), 163-170.
[http://dx.doi.org/10.1038/nchembio.2538] [PMID: 29251720]
[87]
Bian, J.; Ren, J.; Li, Y.; Wang, J.; Xu, X.; Feng, Y.; Tang, H.; Wang, Y.; Li, Z. Discovery of wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg. Chem., 2018, 81, 373-381.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.028] [PMID: 30196207]
[88]
Humphries, F.; Yang, S.; Wang, B.; Moynagh, P.N. RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ., 2015, 22(2), 225-236.
[http://dx.doi.org/10.1038/cdd.2014.126] [PMID: 25146926]
[89]
Lee, B.Y.; Timpson, P.; Horvath, L.G.; Daly, R.J. FAK signaling in human cancer as a target for therapeutics. Pharmacol. Ther., 2015, 146, 132-149.
[http://dx.doi.org/10.1016/j.pharmthera.2014.10.001] [PMID: 25316657]
[90]
Sulzmaier, F.J.; Jean, C.; Schlaepfer, D.D. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer, 2014, 14(9), 598-610.
[http://dx.doi.org/10.1038/nrc3792] [PMID: 25098269]
[91]
Cromm, P.M.; Samarasinghe, K.T.G.; Hines, J.; Crews, C.M. Addressing kinase-independent functions of FAK via PROTAC-mediated degradation. J. Am. Chem. Soc., 2018, 140(49), 17019-17026.
[http://dx.doi.org/10.1021/jacs.8b08008] [PMID: 30444612]
[92]
Popow, J.; Arnhof, H.; Bader, G.; Berger, H.; Ciulli, A.; Covini, D.; Dank, C.; Gmaschitz, T.; Greb, P.; Karolyi-Özguer, J.; Koegl, M.; McConnell, D.B.; Pearson, M.; Rieger, M.; Rinnenthal, J.; Roessler, V.; Schrenk, A.; Spina, M.; Steurer, S.; Trainor, N.; Traxler, E.; Wieshofer, C.; Zoephel, A.; Ettmayer, P. Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J. Med. Chem., 2019, 62(5), 2508-2520.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01826] [PMID: 30739444]
[93]
Gao, H.; Wu, Y.; Sun, Y.; Yang, Y.; Zhou, G.; Rao, Y. Design, synthesis, and evaluation of highly potent FAK-targeting PROTACs. ACS Med. Chem. Lett., 2019, 11(10), 1855-1862.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00372]] [PMID: 33062164]
[94]
Yu, T.; Yang, Y.; Yin, D.Q.; Hong, S.; Son, Y.J.; Kim, J.H.; Cho, J.Y. TBK1 inhibitors: a review of patent literature (2011 - 2014). Expert Opin. Ther. Pat., 2015, 25(12), 1385-1396.
[http://dx.doi.org/10.1517/13543776.2015.1081168] [PMID: 26293650]
[95]
Clark, K.; Plater, L.; Peggie, M.; Cohen, P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J. Biol. Chem., 2009, 284(21), 14136-14146.
[http://dx.doi.org/10.1074/jbc.M109.000414] [PMID: 19307177]
[96]
Crew, A.P.; Raina, K.; Dong, H.; Qian, Y.; Wang, J.; Vigil, D.; Serebrenik, Y.V.; Hamman, B.D.; Morgan, A.; Ferraro, C.; Siu, K.; Neklesa, T.K.; Winkler, J.D.; Coleman, K.G.; Crews, C.M. Identification and characterization of von hippel lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J. Med. Chem., 2018, 61(2), 583-598.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00635] [PMID: 28692295]
[97]
Gallenkamp, D.; Gelato, K.A.; Haendler, B.; Weinmann, H. Bromodomains and their pharmacological inhibitors. ChemMedChem, 2014, 9(3), 438-464.
[http://dx.doi.org/10.1002/cmdc.201300434] [PMID: 24497428]
[98]
Belkina, A.C.; Denis, G.V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer, 2012, 12(7), 465-477.
[http://dx.doi.org/10.1038/nrc3256] [PMID: 22722403]
[99]
Baratta, M.G.; Schinzel, A.C.; Zwang, Y.; Bandopadhayay, P.; Bowman-Colin, C.; Kutt, J.; Curtis, J.; Piao, H.; Wong, L.C.; Kung, A.L.; Beroukhim, R.; Bradner, J.E.; Drapkin, R.; Hahn, W.C.; Liu, J.F.; Livingston, D.M. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proc. Natl. Acad. Sci. USA, 2015, 112(1), 232-237.
[http://dx.doi.org/10.1073/pnas.1422165112] [PMID: 25535366]
[100]
Zuber, J.; Shi, J.; Wang, E.; Rappaport, A.R.; Herrmann, H.; Sison, E.A.; Magoon, D.; Qi, J.; Blatt, K.; Wunderlich, M.; Taylor, M.J.; Johns, C.; Chicas, A.; Mulloy, J.C.; Kogan, S.C.; Brown, P.; Valent, P.; Bradner, J.E.; Lowe, S.W.; Vakoc, C.R. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature, 2011, 478(7370), 524-528.
[http://dx.doi.org/10.1038/nature10334] [PMID: 21814200]
[101]
Zengerle, M.; Chan, K.H.; Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777.
[http://dx.doi.org/10.1021/acschembio.5b00216] [PMID: 26035625]
[102]
Lu, J.; Qian, Y.; Altieri, M.; Dong, H.; Wang, J.; Raina, K.; Hines, J.; Winkler, J.D.; Crew, A.P.; Coleman, K.; Crews, C.M. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol., 2015, 22(6), 755-763.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.009] [PMID: 26051217]
[103]
Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241), 1376-1381.
[http://dx.doi.org/10.1126/science.aab1433] [PMID: 25999370]
[104]
Zhou, B.; Hu, J.; Xu, F.; Chen, Z.; Bai, L.; Fernandez-Salas, E.; Lin, M.; Liu, L.; Yang, C.Y.; Zhao, Y.; McEachern, D.; Przybranowski, S.; Wen, B.; Sun, D.; Wang, S. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J. Med. Chem., 2018, 61(2), 462-481.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01816] [PMID: 28339196]
[105]
Qin, C.; Hu, Y.; Zhou, B.; Fernandez-Salas, E.; Yang, C.Y.; Liu, L.; McEachern, D.; Przybranowski, S.; Wang, M.; Stuckey, J.; Meagher, J.; Bai, L.; Chen, Z.; Lin, M.; Yang, J.; Ziazadeh, D.N.; Xu, F.; Hu, J.; Xiang, W.; Huang, L.; Li, S.; Wen, B.; Sun, D.; Wang, S. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J. Med. Chem., 2018, 61(15), 6685-6704.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00506] [PMID: 30019901]
[106]
Wang, S.; Song, Y.; Wang, Y.; Gao, Y.; Yu, S.; Zhao, Q.; Jin, X.; Lu, H. Design and synthesis of novel bispecific molecules for inducing BRD4 protein degradation. Chem. Res. Chin. Univ., 2018, 34(1), 67-74.
[http://dx.doi.org/10.1007/s40242-018-7272-5]
[107]
Bai, L.; Zhou, B.; Yang, C-Y.; Ji, J.; McEachern, D.; Przybranowski, S.; Jiang, H.; Hu, J.; Xu, F.; Zhao, Y.; Liu, L.; Fernandez-Salas, E.; Xu, J.; Dou, Y.; Wen, B.; Sun, D.; Meagher, J.; Stuckey, J.; Hayes, D.F.; Li, S.; Ellis, M.J.; Wang, S. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res., 2017, 77(9), 2476-2487.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2622] [PMID: 28209615]
[108]
Gadd, M.S.; Testa, A.; Lucas, X.; Chan, K.H.; Chen, W.; Lamont, D.J.; Zengerle, M.; Ciulli, A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol., 2017, 13(5), 514-521.
[http://dx.doi.org/10.1038/nchembio.2329] [PMID: 28288108]
[109]
Nowak, R.P.; DeAngelo, S.L.; Buckley, D.; He, Z.; Donovan, K.A.; An, J.; Safaee, N.; Jedrychowski, M.P.; Ponthier, C.M.; Ishoey, M.; Zhang, T.; Mancias, J.D.; Gray, N.S.; Bradner, J.E.; Fischer, E.S. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol., 2018, 14(7), 706-714.
[http://dx.doi.org/10.1038/s41589-018-0055-y] [PMID: 29892083]
[110]
Zhang, F.; Wu, Z.; Chen, P.; Zhang, J.; Wang, T.; Zhou, J.; Zhang, H. Discovery of a new class of PROTAC BRD4 degraders based on a dihydroquinazolinone derivative and lenalidomide/pomalidomide. Bioorg. Med. Chem., 2020, 28(1)115228
[http://dx.doi.org/10.1016/j.bmc.2019.115228] [PMID: 31813613]
[111]
Donovan, M.; Olofsson, B.; Gustafson, A.L.; Dencker, L.; Eriksson, U. The cellular retinoic acid binding proteins. J. Steroid Biochem. Mol. Biol., 1995, 53(1-6), 459-465.
[http://dx.doi.org/10.1016/0960-0760(95)00092-E] [PMID: 7626495]
[112]
Uhrig, M.; Brechlin, P.; Jahn, O.; Knyazev, Y.; Weninger, A.; Busia, L.; Honarnejad, K.; Otto, M.; Hartmann, T. Upregulation of CRABP1 in human neuroblastoma cells overproducing the Alzheimer-typical Abeta42 reduces their differentiation potential. BMC Med., 2008, 6, 38-49.
[http://dx.doi.org/10.1186/1741-7015-6-38] [PMID: 19087254]
[113]
Vo, H.P.; Crowe, D.L. Transcriptional regulation of retinoic acid responsive genes by cellular retinoic acid binding protein-II modulates RA mediated tumor cell proliferation and invasion. Anticancer Res., 1998, 18(1A), 217-224.
[PMID: 9568080]
[114]
Itoh, Y.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc., 2010, 132(16), 5820-5826.
[http://dx.doi.org/10.1021/ja100691p] [PMID: 20369832]
[115]
Itoh, Y.; Ishikawa, M.; Kitaguchi, R.; Sato, S.; Naito, M.; Hashimoto, Y. Development of target protein-selective degradation inducer for protein knockdown. Bioorg. Med. Chem., 2011, 19(10), 3229-3241.
[http://dx.doi.org/10.1016/j.bmc.2011.03.057] [PMID: 21515062]
[116]
Itoh, Y.; Ishikawa, M.; Kitaguchi, R.; Okuhira, K.; Naito, M.; Hashimoto, Y. Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs antagonist. Bioorg. Med. Chem. Lett., 2012, 22(13), 4453-4457.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.134] [PMID: 22658364]
[117]
Le Douarin, B.; Nielsen, A.L.; Garnier, J.M.; Ichinose, H.; Jeanmougin, F.; Losson, R.; Chambon, P. A possible involvement of TIF1 α and TIF1 β in the epigenetic control of transcription by nuclear receptors. EMBO J., 1996, 15(23), 6701-6715.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb01060.x] [PMID: 8978696]
[118]
Khetchoumian, K.; Teletin, M.; Tisserand, J.; Mark, M.; Herquel, B.; Ignat, M.; Zucman-Rossi, J.; Cammas, F.; Lerouge, T.; Thibault, C.; Metzger, D.; Chambon, P.; Losson, R. Loss of Trim24 (Tif1alpha) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat. Genet., 2007, 39(12), 1500-1506.
[http://dx.doi.org/10.1038/ng.2007.15] [PMID: 18026104]
[119]
Gechijian, L.N.; Buckley, D.L.; Lawlor, M.A.; Reyes, J.M.; Paulk, J.; Ott, C.J.; Winter, G.E.; Erb, M.A.; Scott, T.G.; Xu, M.; Seo, H.S.; Dhe-Paganon, S.; Kwiatkowski, N.P.; Perry, J.A.; Qi, J.; Gray, N.S.; Bradner, J.E. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat. Chem. Biol., 2018, 14(4), 405-412.
[http://dx.doi.org/10.1038/s41589-018-0010-y] [PMID: 29507391]
[120]
Levy, D.E.; Darnell, J.E. Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 651-662.
[http://dx.doi.org/10.1038/nrm909] [PMID: 12209125]
[121]
Huang, Q.; Zhong, Y.; Dong, H.; Zheng, Q.; Shi, S.; Zhu, K.; Qu, X.; Hu, W.; Zhang, X.; Wang, Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: where are we and where should we go? Eur. J. Med. Chem., 2020, 187111922
[http://dx.doi.org/10.1016/j.ejmech.2019.111922] [PMID: 31810784]
[122]
Bai, L.; Zhou, H.; Xu, R.; Zhao, Y.; Chinnaswamy, K.; McEachern, D.; Chen, J.; Yang, C.Y.; Liu, Z.; Wang, M.; Liu, L.; Jiang, H.; Wen, B.; Kumar, P.; Meagher, J.L.; Sun, D.; Stuckey, J.A.; Wang, S. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell, 2019, 36(5), 498.e17-511.e17.
[http://dx.doi.org/10.1016/j.ccell.2019.10.002] [PMID: 31715132]
[123]
Burslem, G.M.; Crews, C.M. Small-molecule modulation of protein homeostasis. Chem. Rev., 2017, 117(17), 11269-11301.
[http://dx.doi.org/10.1021/acs.chemrev.7b00077] [PMID: 28777566]
[124]
Hwang, D.J.; He, Y.; Ponnusamy, S.; Mohler, M.L.; Thiyagarajan, T.; McEwan, I.J.; Narayanan, R.; Miller, D.D. New generation of selective androgen receptor degraders: our initial design, synthesis, and biological evaluation of new compounds with enzalutamide-resistant prostate cancer activity. J. Med. Chem., 2019, 62(2), 491-511.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00973] [PMID: 30525603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy