Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

2’-Deoxyribose Mediated Glycation Leads to Alterations in BSA Structure Via Generation of Carbonyl Species

Author(s): Zeeshan Rafi, Sultan Alouffi, Mohd Sajid Khan* and Saheem Ahmad*

Volume 21, Issue 9, 2020

Page: [924 - 935] Pages: 12

DOI: 10.2174/1389203721666200213104446

Price: $65

Open Access Journals Promotions 2
Abstract

The non-enzymatic glycosylation is a very common phenomenon in the physiological conditions which is mediated by distinct chemical entities containing reactive carbonyl species (RCS) and participates in the modification of various macromolecules particularly proteins. To date, various carbonyl species, i.e., glucose, fructose, D-ribose and methylglyoxal have been used frequently to assess the in-vitro non-enzymatic glycosylation. Similarly, 2'-Deoxyribose is one of the most abundant reducing sugar of the living organisms which forms the part of deoxyribonucleic acid and may react with proteins leading to the production of glycation intermediates, advanced glycation end products (AGEs) and highly reactive RCS. Thymidine phosphorylase derived degradation of thymidine contributes to the formation of 2'-Deoxyribose, therefore, acting as a major source of cellular 2'- Deoxyribose. Since albumin is a major serum protein which plays various roles including binding and transporting endogenous and exogenous ligands, it is more prone to be modified through different physiological modifiers; therefore, it may serve as a model protein for in-vitro experiments to study the effect of 2’Deoxyribose mediated modifications in the protein. In this study, Bovine Serum Albumin (BSA) was glycated with 50 and 100 mM 2'-Deoxyribose followed by examining secondary and tertiary structural modifications in BSA as compared to its native (unmodified) form by using various physicochemical techniques. We evident a significant modification in 2'-Deoxyribose-glycated BSA which was confirmed through increased hyperchromicity, keto amine moieties, carbonyl and hydroxymethylfurfural content, fluorescent AGEs, altered secondary structure conformers (α helix and β sheets), band shift in the amide-I region and diminished free lysine and free arginine content. These modifications were reported to be higher in 100 mM 2'-Deoxyribose-glycated BSA than 50 mM 2'- Deoxyribose-glycated BSA. Our findings also demonstrated that the rate of glycation is positively affected by the increased concentration of 2'-Deoxyribose. The results of the performed study can be implied to uncover the phenomenon of serum protein damage caused by 2'-Deoxyribose leading towards diabetic complications and the number of AGE-related diseases.

Keywords: Diabetes, bovine serum albumin, glycation, nitroblue tetrazolium, schiff base, amadori products, advanced glycation end products (AGEs).

« Previous
Graphical Abstract
[1]
Finot, P.A. Historical perspective of the Maillard reaction in food science. Ann. N. Y. Acad. Sci., 2005, 1043, 1-8.
[http://dx.doi.org/10.1196/annals.1333.001] [PMID: 16037216]
[2]
Nabi, R.; Alvi, S.S.; Saeed, M.; Ahmad, S.; Khan, M.S. Glycation and HMG-CoA Reductase Inhibitors: Implication in Diabetes and Associated Complications. Curr. Diabetes Rev., 2019, 15(3), 213-223.
[http://dx.doi.org/10.2174/1573399814666180924113442] [PMID: 30246643]
[3]
Bakhti, M.; Habibi-Rezaei, M.; Moosavi-Movahedi, A.A.; Khazaei, M.R. Consequential alterations in haemoglobin structure upon glycation with fructose: prevention by acetylsalicylic acid. J. Biochem., 2007, 141(6), 827-833.
[http://dx.doi.org/10.1093/jb/mvm096] [PMID: 17428820]
[4]
Ahmad, S.; Khan, H.; Shahab, U.; Rehman, S.; Rafi, Z.; Khan, M.Y.; Ansari, A.; Siddiqui, Z.; Ashraf, J.M.; Abdullah, S.M.; Habib, S.; Uddin, M. Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine. Front. Biosci. (Schol. Ed.), 2017, 9, 71-87.
[http://dx.doi.org/10.2741/s474] [PMID: 27814576]
[5]
Bunn, H.F.; Higgins, P.J. Reaction of Monosaccharides with Proteins: Possible Evolutionary Significance. Science (80-. ) 1981, 213, 222-224.
[6]
Fayle, S.E.; Gerrard, J.A. The Maillard Reaction; Royal Society of Chemistry, 2002, Vol. 5, .
[7]
Vinson, J.A.; Howard, T.B. III Inhibition of Protein Glycation and Advanced Glycation End Products by Ascorbic Acid and Other Vitamins and Nutrients. J. Nutr. Biochem., 1996, 7, 659-663.
[http://dx.doi.org/10.1016/S0955-2863(96)00128-3]
[8]
Ardestani, A.; Yazdanparast, R. Inhibitory effects of ethyl acetate extract of Teucrium polium on in vitro protein glycoxidation. Food Chem. Toxicol., 2007, 45(12), 2402-2411.
[http://dx.doi.org/10.1016/j.fct.2007.06.020] [PMID: 17673348]
[9]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[10]
Ahmad, S. Moinuddin; Dixit, K.; Shahab, U.; Alam, K.; Ali, A. Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+. Biochem. Biophys. Res. Commun., 2011, 407(3), 568-574.
[http://dx.doi.org/10.1016/j.bbrc.2011.03.064] [PMID: 21420380]
[11]
Mustafa, I.; Ahmad, S.; Dixit, K. Moinuddin; Ahmad, J.; Ali, A. Glycated human DNA is a preferred antigen for anti-DNA antibodies in diabetic patients. Diabetes Res. Clin. Pract., 2012, 95(1), 98-104.
[http://dx.doi.org/10.1016/j.diabres.2011.09.018] [PMID: 22001283]
[12]
Shaklai, N.; Garlick, R.L.; Bunn, H.F. Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J. Biol. Chem., 1984, 259(6), 3812-3817.
[PMID: 6706980]
[13]
Ahmad, S.; Khan, M.Y.; Rafi, Z.; Khan, H.; Siddiqui, Z.; Rehman, S.; Shahab, U.; Khan, M.S.; Saeed, M.; Alouffi, S. Oxidation, Glycation and Glycoxidation—the Vicious Cycle and Lung Cancer.Seminars in cancer biology; Elsevier, 2018, Vol. 49, pp. 29-36.
[http://dx.doi.org/10.1016/j.semcancer.2017.10.005]
[14]
Ahmad, S.; Khan, M.S.; Akhter, F.; Khan, M.S.; Khan, A.; Ashraf, J.M.; Pandey, R.P.; Shahab, U. Glycoxidation of biological macromol-ecules: a critical approach to halt the menace of glycation. Glycobiology, 2014, 24(11), 979-990.
[http://dx.doi.org/10.1093/glycob/cwu057] [PMID: 24946787]
[15]
Sobenin, I.A.; Tertov, V.V.; Koschinsky, T.; Bünting, C.E.; Slavina, E.S.; Dedov, I.I.; Orekhov, A.N. Modified low density lipoprotein from diabetic patients causes cholesterol accumulation in human intimal aortic cells. Atherosclerosis, 1993, 100(1), 41-54.
[http://dx.doi.org/10.1016/0021-9150(93)90066-4] [PMID: 8318062]
[16]
Schleicher, E.; Deufel, T.; Wieland, O.H. Non-enzymatic glycosylation of human serum lipoproteins. Elevated epsilon-lysine glycosylated low density lipoprotein in diabetic patients. FEBS Lett., 1981, 129(1), 1-4.
[http://dx.doi.org/10.1016/0014-5793(81)80741-7] [PMID: 7274460]
[17]
Kennedy, L.; Baynes, J.W. Non-enzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia, 1984, 26(2), 93-98.
[http://dx.doi.org/10.1007/BF00281113] [PMID: 6370764]
[18]
Peters, T.J. Metabolism: Albumin in the Body. All About Albumin Biochem. Genet. Med. Appl., 1996.
[19]
Wautier, J-L.; Guillausseau, P. J. Diabetes, advanced glycation endproducts and vascular disease. Vasc. Med., 1998, 3(2), 131-137.
[http://dx.doi.org/10.1177/1358836X9800300207] [PMID: 9796076]
[20]
Iberg, N.; Flückiger, R. Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J. Biol. Chem., 1986, 261(29), 13542-13545.
[PMID: 3759977]
[21]
Arasteh, A.; Farahi, S.; Habibi-Rezaei, M.; Moosavi-Movahedi, A.A. Glycated albumin: an overview of the In vitro models of an In vivo po-tential disease marker. J. Diabetes Metab. Disord., 2014, 13, 49.
[http://dx.doi.org/10.1186/2251-6581-13-49] [PMID: 24708663]
[22]
Zhang, Q.J.; Liu, B.S.; Li, G.X.; Han, R. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin. Luminescence, 2016, 31(5), 1109-1114.
[http://dx.doi.org/10.1002/bio.3079] [PMID: 26663583]
[23]
Berthold, A.; Schubert, H.; Brandes, N.; Kroh, L.; Miller, R. Behaviour of BSA and of BSA-Derivatives at the Air/Water Interface. Colloids Surf. A Physicochem. Eng. Asp., 2007, 301, 16-22.
[http://dx.doi.org/10.1016/j.colsurfa.2006.11.054]
[24]
Faure, P.; Wiernsperger, N.; Polge, C.; Favier, A.; Halimi, S. Impairment of the antioxidant properties of serum albumin in patients with diabetes: protective effects of metformin. Clin. Sci. (Lond.), 2008, 114(3), 251-256.
[http://dx.doi.org/10.1042/CS20070276] [PMID: 17922677]
[25]
Bourdon, E.; Loreau, N.; Blache, D. Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J., 1999, 13(2), 233-244.
[http://dx.doi.org/10.1096/fasebj.13.2.233] [PMID: 9973311]
[26]
Neelofar, K.; Arif, Z.; Alam, K.; Ahmad, J. Hyperglycemia induced structural and functional changes in human serum albumin of diabetic patients: a physico-chemical study. Mol. Biosyst., 2016, 12(8), 2481-2489.
[http://dx.doi.org/10.1039/C6MB00324A] [PMID: 27226040]
[27]
Syrový, I. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J. Biochem. Biophys. Methods, 1994, 28(2), 115-121.
[http://dx.doi.org/10.1016/0165-022X(94)90025-6] [PMID: 8040561]
[28]
Khalifah, R.G.; Todd, P.; Booth, A.A.; Yang, S.X.; Mott, J.D.; Hudson, B.G. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies. Biochemistry, 1996, 35(15), 4645-4654.
[http://dx.doi.org/10.1021/bi9525942] [PMID: 8664253]
[29]
Ahmad, S.; Akhter, F.; Shahab, U.; Rafi, Z.; Khan, M.S.; Nabi, R.; Khan, M.S.; Ahmad, K.; Ashraf, J.M. Do All Roads Lead to the Rome? The Glycation Perspective!Seminars in cancer biology; Elsevier, 2018, Vol. 49, pp. 9-19.
[http://dx.doi.org/10.1016/j.semcancer.2017.10.012]
[30]
Brown, N.S.; Bicknell, R. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis. Biochem. J., 1998, 334(Pt 1), 1-8.
[http://dx.doi.org/10.1042/bj3340001] [PMID: 9693094]
[31]
Brown, N.S.; Jones, A.; Fujiyama, C.; Harris, A.L.; Bicknell, R. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res., 2000, 60(22), 6298-6302.
[PMID: 11103787]
[32]
de Bruin, M.; van Capel, T.; Van der Born, K.; Kruyt, F.A.; Fukushima, M.; Hoekman, K.; Pinedo, H.M.; Peters, G.J. Role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity. Br. J. Cancer, 2003, 88(6), 957-964.
[http://dx.doi.org/10.1038/sj.bjc.6600808] [PMID: 12644837]
[33]
Backos, D.S.; Fritz, K.S.; McArthur, D.G.; Kepa, J.K.; Donson, A.M.; Petersen, D.R.; Foreman, N.K.; Franklin, C.C.; Reigan, P. Glycation of glutamate cysteine ligase by 2-deoxy-d-ribose and its potential impact on chemoresistance in glioblastoma. Neurochem. Res., 2013, 38(9), 1838-1849.
[http://dx.doi.org/10.1007/s11064-013-1090-4] [PMID: 23743623]
[34]
Nabi, R.; Alvi, S.S.; Shah, A.; Chaturvedi, C.P.; Iqbal, D.; Ahmad, S.; Khan, M.S. Modulatory role of HMG-CoA reductase inhibitors and ezetimibe on LDL-AGEs-induced ROS generation and RAGE-associated signalling in HEK-293 Cells. Life Sci., 2019.235116823
[http://dx.doi.org/10.1016/j.lfs.2019.116823] [PMID: 31476307]
[35]
Ravindran, A.; Singh, A.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA). Colloids Surf. B Biointerfaces, 2010, 76(1), 32-37.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.005] [PMID: 19896812]
[36]
Ahmad, S. Moinuddin; Khan, R.H.; Ali, A. Physicochemical studies on glycation-induced structural changes in human IgG. IUBMB Life, 2012, 64(2), 151-156.
[http://dx.doi.org/10.1002/iub.582] [PMID: 22241644]
[37]
Ishtikhar, M.; Rabbani, G.; Khan, R.H. Interaction of 5-fluoro-5′-deoxyuridine with human serum albumin under physiological and non-physiological condition: a biophysical investigation. Colloids Surf. B Biointerfaces, 2014, 123, 469-477.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.044] [PMID: 25448717]
[38]
Louis-Jeune, C.; Andrade-Navarro, M.A.; Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoreti-cally derived spectra. Proteins, 2012, 80(2), 374-381.
[http://dx.doi.org/10.1002/prot.23188] [PMID: 22095872]
[39]
Ansari, N.A. Moinuddin; Alam, K.; Ali, A. Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: role of protein glycation in the disease process. Hum. Immunol., 2009, 70(6), 417-424.
[http://dx.doi.org/10.1016/j.humimm.2009.03.015] [PMID: 19332092]
[40]
Sharma, S.D.; Pandey, B.N.; Mishra, K.P.; Sivakami, S. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro. J. Biochem. Mol. Biol. Biophys., 2002, 6(4), 233-242.
[PMID: 12186738]
[41]
Smith, R.E.; MacQuarrie, R. A sensitive fluorometric method for the determination of arginine using 9,10-phenanthrenequinone. Anal. Biochem., 1978, 90(1), 246-255.
[http://dx.doi.org/10.1016/0003-2697(78)90029-5] [PMID: 727468]
[42]
Ishtikhar, M.; Chandel, T.I.; Ahmad, A.; Ali, M.S.; Al-Lohadan, H.A.; Atta, A.M.; Khan, R.H. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin. PLoS One, 2015, 10(9)e0139027
[http://dx.doi.org/10.1371/journal.pone.0139027] [PMID: 26418451]
[43]
Jairajpuri, D.S.; Fatima, S.; Jairajpuri, Z.S. Glycation Induced Physicochemical Changes in Low-Density Lipoprotein and Its Role in Promoting Cholesterol Accumulation in Macrophages along with Antiglycation Effect of Aminoguanidine. Adv. Biol. Chem., 2015, 5, 203.
[http://dx.doi.org/10.4236/abc.2015.55017]
[44]
Sattarahmady, N.; Khodagholi, F.; Moosavi-Movahedi, A.A.; Heli, H.; Hakimelahi, G.H. Alginate as an antiglycating agent for human serum albumin. Int. J. Biol. Macromol., 2007, 41(2), 180-184.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.01.015] [PMID: 17350677]
[45]
Jairajpuri, D.S.; Fatima, S.; Saleemuddin, M. Immunoglobulin glycation with fructose: a comparative study. Clin. Chim. Acta, 2007, 378(1-2), 86-92.
[http://dx.doi.org/10.1016/j.cca.2006.10.020] [PMID: 17173886]
[46]
Akhter, F.; Salman Khan, M.; Shahab, U. Moinuddin; Ahmad, S. Bio-physical characterization of ribose induced glycation: a mechanistic study on DNA perturbations. Int. J. Biol. Macromol., 2013, 58, 206-210.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.036] [PMID: 23524157]
[47]
Azevedo, M.; Falcão, J.; Raposo, J.; Manso, C. Superoxide radical generation by Amadori compounds. Free Radic. Res. Commun., 1988, 4(5), 331-335.
[http://dx.doi.org/10.3109/10715768809066899] [PMID: 2853111]
[48]
Sakurai, T.; Tsuchiya, S. Superoxide production from nonenzymatically glycated protein. FEBS Lett., 1988, 236(2), 406-410.
[http://dx.doi.org/10.1016/0014-5793(88)80066-8] [PMID: 2842191]
[49]
Jones, A.F.; Winkles, J.W.; Thornalley, P.J.; Lunec, J.; Jennings, P.E.; Barnett, A.H. Inhibitory effect of superoxide dismutase on fructosa-mine assay. Clin. Chem., 1987, 33(1), 147-149.
[http://dx.doi.org/10.1093/clinchem/33.1.147] [PMID: 3802464]
[50]
Hunt, J.V.; Bottoms, M.A.; Mitchinson, M.J. Oxidative alterations in the experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation. Some fundamental differences in proposed mechanisms of glucose oxidation and oxidant production. Biochem. J., 1993, 291(Pt 2), 529-535.
[http://dx.doi.org/10.1042/bj2910529] [PMID: 8484733]
[51]
Beal, M.F. Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med., 2002, 32(9), 797-803.
[http://dx.doi.org/10.1016/S0891-5849(02)00780-3] [PMID: 11978481]
[52]
Siddiqui, Z.; Ishtikhar, M. Moinuddin; Ahmad, S. d-Ribose induced glycoxidative insult to hemoglobin protein: An approach to spot its structural perturbations. Int. J. Biol. Macromol., 2018, 112, 134-147.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.161] [PMID: 29378270]
[53]
Kelly, S.M.; Jess, T.J.; Price, N.C. How to Study Proteins by Circular Dichroism. Biochim. Biophys. Acta (BBA)-. Proteins Proteomics, 2005, 1751, 119-139.
[http://dx.doi.org/10.1016/j.bbapap.2005.06.005]
[54]
Nabi, R.; Alvi, S.S.; Khan, R.H.; Ahmad, S.; Ahmad, S.; Khan, M.S. Antiglycation study of HMG-R inhibitors and tocotrienol against glycated BSA and LDL: A comparative study. Int. J. Biol. Macromol., 2018, 116, 983-992.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.115] [PMID: 29782986]
[55]
Khan, M.Y.; Alouffi, S.; Ahmad, S. Immunochemical studies on native and glycated LDL - An approach to uncover the structural pertur-bations. Int. J. Biol. Macromol., 2018, 115, 287-299.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.016] [PMID: 29634967]
[56]
Kessel, L.; Kalinin, S.; Nagaraj, R.H.; Larsen, M.; Johansson, L.B. Time-resolved and steady-state fluorescence spectroscopic studies of the human lens with comparison to argpyrimidine, pentosidine and 3-OH-kynurenine. Photochem. Photobiol., 2002, 76(5), 549-554.
[http://dx.doi.org/10.1562/0031-8655(2002)076<0549:TRASSF>2.0.CO;2] [PMID: 12462652]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy