Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Comprehensive Review and Comparison of Anticancer Peptides Identification Models

Author(s): Xiao Song , Yuanying Zhuang *, Yihua Lan *, Yinglai Lin and Xiaoping Min

Volume 22, Issue 3, 2021

Published on: 17 January, 2020

Page: [201 - 210] Pages: 10

DOI: 10.2174/1389203721666200117162958

Price: $65

Open Access Journals Promotions 2
Abstract

Anticancer peptides (ACPs) eliminate pathogenic bacteria and kill tumor cells, showing no hemolysis and no damages to normal human cells. This unique ability explores the possibility of ACPs as therapeutic delivery and its potential applications in clinical therapy. Identifying ACPs is one of the most fundamental and central problems in new antitumor drug research. During the past decades, a number of machine learning-based prediction tools have been developed to solve this important task. However, the predictions produced by various tools are difficult to quantify and compare. Therefore, in this article, a comprehensive review of existing machine learning methods for ACPs prediction and fair comparison of the predictors is provided. To evaluate current prediction tools, a comparative study was conducted and analyzed the existing ACPs predictor from the 10 public works of literature. The comparative results obtained suggest that the Support Vector Machine-based model with features combination provided significant improvement in the overall performance when compared to the other machine learning method-based prediction models.

Keywords: Anticancer peptides, machine learning, feature representation, SVM, AAC, binary profiles, ACPs.

Graphical Abstract

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy