Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

AIE Luminogens as Versatile Bioprobes

Author(s): Moustafa T. Gabr and F. Christopher Pigge*

Volume 17, Issue 3, 2021

Published on: 10 January, 2020

Page: [302 - 316] Pages: 15

DOI: 10.2174/1573411016666200110153737

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Luminogens that feature aggregation induced emission (AIE) are typically non-emissive in solution but become highly luminescent upon aggregation in poor solvents or solid state.

Discussion: Unlike conventional fluorophores that exhibit aggregation-caused quenching (ACQ), utilization of AIE luminogens as bioprobes has featured superior photostability, low background signal, large Stokes’ shifts, high sensitivity and turn-on luminescent response.

Conclusion: The versatility of AIE-based luminogens as bioprobes has been demonstrated through various applications in cell organelle imaging, ion sensing and sensitive detection of biomacromolecules. Examples of AIE-based luminogens and their applications as luminescent sensors for biosensing and optical imaging are discussed herein.

Keywords: Aggregation, bioprobes, fluorescence, luminescence, organelle imaging, sensors.

Graphical Abstract
[1]
De Acha, N.; Elosua, C.; Matias, I.; Arregui, F.J. Luminescence-based optical sensors fabricated by means of the layer-by-layer nano-assembly technique. Sensors (Basel), 2017, 17(12), 2826.
[http://dx.doi.org/10.3390/s17122826] [PMID: 29211050]
[2]
Zou, X.; Pan, T.; Chen, L.; Tian, Y.; Zhang, W. Luminescence materials for pH and oxygen sensing in microbial cells - structures, optical properties, and biological applications. Crit. Rev. Biotechnol., 2017, 37(6), 723-738.
[http://dx.doi.org/10.1080/07388551.2016.1223011 PMID: 27627832]
[3]
Kukkar, D.; Vellingiri, K.; Kim, K-H.; Deep, A. Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sens. Actuators B Chem., 2018, 273, 1346-1370.
[http://dx.doi.org/10.1016/j.snb.2018.06.128]
[4]
Itoh, T. Fluorescence and phosphorescence from higher excited states of organic molecules. Chem. Rev., 2012, 112(8), 4541-4568.
[http://dx.doi.org/10.1021/cr200166m] [PMID: 22591067]
[5]
Photophysics of Aromatic Molecules; Wiley: London, 1970.
[6]
Föster, T.; Kasper, K. Z. Phys. Chem. NF., 1954, 1, 275-277.
[http://dx.doi.org/10.1524/zpch.1954.1.5_6.275]
[7]
Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B.Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun., 2001, 2001, 1740-1741.
[8]
Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev., 2015, 115(21), 11718-11940.
[http://dx.doi.org/10.1021/acs.chemrev.5b00263] [PMID: 26492387]
[9]
Mei, J.; Hong, Y.; Lam, J.W.Y.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater., 2014, 26(31), 5429-5479.
[http://dx.doi.org/10.1002/adma.201401356] [PMID: 24975272]
[10]
Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. (Camb.), 2009, (29), 4332-4353.
[http://dx.doi.org/10.1039/b904665h] [PMID: 19597589]
[11]
Shi, J.; Li, Y.; Li, Q.; Li, Z. Enzyme-responsive bioprobes based on the mechanism of aggregation-induced emission. ACS Appl. Mater. Interfaces, 2018, 10(15), 12278-12294.
[http://dx.doi.org/10.1021/acsami.7b14943] [PMID: 29231713]
[12]
Gao, H.; Zhang, X.; Chen, C.; Li, K.; Ding, D. Unity makes strength: How aggregation-induced emission luminogens advance the biomedical field. Adv. Biosys., 2018, 201821800074
[http://dx.doi.org/10.1002/adbi.201800074]
[13]
Ding, D.; Li, K.; Liu, B.; Tang, B.Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res., 2013, 46(11), 2441-2453.
[http://dx.doi.org/10.1021/ar3003464] [PMID: 23742638]
[14]
Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev., 2011, 40(11), 5361-5388.
[http://dx.doi.org/10.1039/c1cs15113d] [PMID: 21799992]
[15]
Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B.Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem., 2010, 20, 1858-1867.
[http://dx.doi.org/10.1039/b921610c]
[16]
Zhang, M.; Saha, M.L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.; Li, X.; Huang, F.; Yin, S.; Stang, P.J. Multicomponent platinum(II) cages with tunable emission and amino acid sensing. J. Am. Chem. Soc., 2017, 139(14), 5067-5074.
[http://dx.doi.org/10.1021/jacs.6b12536] [PMID: 28332834]
[17]
Wang, Z.; Gu, Y.; Liu, J.; Cheng, X.; Sun, J.Z.; Qin, A.; Tang, B.Z. A novel pyridinium modified tetraphenylethene: AIE-activity, mechanochromism, DNA detection and mitochondrial imaging. J. Mater. Chem. B Mater. Biol. Med., 2018, 6, 1279-1285.
[http://dx.doi.org/10.1039/C7TB03012F]
[18]
Shi, L.; Liu, Y.; Wang, Q.; Wang, T.; Ding, Y.; Cao, Y.; Li, Z.; Wei, H. A pH responsive AIE probe for enzyme assays. Analyst (Lond.), 2018, 143(3), 741-746.
[http://dx.doi.org/10.1039/C7AN01710C] [PMID: 29323362]
[19]
Shi, H.; Liu, J.; Geng, J.; Tang, B.Z.; Liu, B. Specific detection of integrin αvβ3 by light-up bioprobe with aggregation-induced emission characteristics. J. Am. Chem. Soc., 2012, 134(23), 9569-9572.
[http://dx.doi.org/10.1021/ja302369e] [PMID: 22642547]
[20]
Zelmer, A.; Ward, T.H. Noninvasive fluorescence imaging of small animals. J. Microsc., 2013, 252(1), 8-15.
[http://dx.doi.org/10.1111/jmi.12063] [PMID: 23841905]
[21]
Shi, H.; Kwok, R.T.K.; Liu, J.; Xing, B.; Tang, B.Z.; Liu, B. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J. Am. Chem. Soc., 2012, 134(43), 17972-17981.
[http://dx.doi.org/10.1021/ja3064588] [PMID: 23043485]
[22]
Pradhan, N.; Jana, D.; Ghorai, B.K.; Jana, N.R. Detection and monitoring of amyloid fibrillation using a fluorescence “switch-on” probe. ACS Appl. Mater. Interfaces, 2015, 7(46), 25813-25820.
[http://dx.doi.org/10.1021/acsami.5b07751] [PMID: 26540091]
[23]
Jin, C.; Liu, J.; Chen, Y.; Guan, R.; Ouyang, C.; Zhu, Y.; Ji, L.; Chao, H. Cyclometalated iridium(III) complexes as AIE phosphorescent probes for real-time monitoring of mitophagy in living cells. Sci. Rep., 2016, 6, 22039.
[http://dx.doi.org/10.1038/srep22039] [PMID: 26907559]
[24]
Hu, F.; Liu, B. Organelle-specific bioprobes based on fluorogens with aggregation-induced emission (AIE) characteristics. Org. Biomol. Chem., 2016, 14(42), 9931-9944.
[http://dx.doi.org/10.1039/C6OB01414C] [PMID: 27779629]
[25]
Shi, X.; Yu, C.Y.Y.; Su, H.; Kwok, R.T.K.; Jiang, M.; He, Z.; Lam, J.W.Y.; Tang, B.Z. A red-emissive antibody-AIEgen conjugate for turn-on and wash-free imaging of specific cancer cells. Chem. Sci. (Camb.), 2017, 8(10), 7014-7024.
[http://dx.doi.org/10.1039/C7SC01054K] [PMID: 30155197]
[26]
Li, Y.; Yu, H.; Qian, Y.; Hu, J.; Liu, S. Amphiphilic star copolymer-based bimodal fluorogenic/magnetic resonance probes for concomitant bacteria detection and inhibition. Adv. Mater., 2014, 26(39), 6734-6741.
[http://dx.doi.org/10.1002/adma.201402797] [PMID: 25147084]
[27]
Gao, Y.; Feng, G.; Jiang, T.; Goh, C.; Ng, L.; Liu, B.; Li, B.; Yang, L.; Hua, J.; Tian, H. Biocompatible nanoparticles based on diketo-pyrrolo-pyrrole (DPP) with aggregation-induced red/NIR emission for in vivo two-photon fluorescence imaging. Adv. Funct. Mater., 2015, 25, 2857-2866.
[http://dx.doi.org/10.1002/adfm.201500010]
[28]
Seo, Y.H.; Singh, A.; Cho, H-J.; Kim, Y.; Heo, J.; Lim, C-K.; Park, S.Y.; Jang, W-D.; Kim, S. Rational design for enhancing inflammation-responsive in vivo chemiluminescence via nanophotonic energy relay to near-infrared AIE-active conjugated polymer. Biomaterials, 2016, 84, 111-118.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.038 PMID: 26826300]
[29]
Yuan, Y.; Feng, G.; Qin, W.; Tang, B.Z.; Liu, B. Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Chem. Commun. (Camb.), 2014, 50(63), 8757-8760.
[http://dx.doi.org/10.1039/C4CC02767A] [PMID: 24967727]
[30]
Wang, D.; Lee, M.M.S.; Xu, W.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Theranostics based on AIEgens. Theranostics, 2018, 8(18), 4925-4956.
[http://dx.doi.org/10.7150/thno.27787] [PMID: 30429878]
[31]
Sheng, Z.; Guo, B.; Hu, D.; Xu, S.; Wu, W.; Liew, W.H.; Yao, K.; Jiang, J.; Liu, C.; Zheng, H.; Liu, B. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv. Mater., 2018, 30e1800766
[http://dx.doi.org/10.1002/adma.201800766] [PMID: 29806179]
[32]
Yi, X.; Li, J.; Zhu, Z.; Liu, Q.; Xue, Q.; Ding, D. In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug Discov. Today, 2017, 22(9), 1412-1420.
[http://dx.doi.org/10.1016/j.drudis.2017.04.004] [PMID: 28435059]
[33]
Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature, 2014, 505(7483), 335-343.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[34]
Newport, J.W.; Forbes, D.J. The nucleus: Structure, function, and dynamics. Annu. Rev. Biochem., 1987, 56, 535-565.
[http://dx.doi.org/10.1146/annurev.bi.56.070187.002535] [PMID: 3304144]
[35]
Guo, Y.; Cordes, K.R.; Farese, R.V., Jr; Walther, T.C. Lipid droplets at a glance. J. Cell Sci., 2009, 122(Pt 6), 749-752.
[http://dx.doi.org/10.1242/jcs.037630] [PMID: 19261844]
[36]
Xu, H.; Ren, D. Lysosomal physiology. Annu. Rev. Physiol., 2015, 77, 57-80.
[http://dx.doi.org/10.1146/annurev-physiol-021014-071649] [PMID: 25668017]
[37]
Mueller, P.; Rudin, D.O.; Tien, H.T.; Wescott, W.C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, 1962, 194, 979-980.
[http://dx.doi.org/10.1038/194979a0] [PMID: 14476933]
[38]
Ross, M.F.; Kelso, G.F.; Blaikie, F.H.; James, A.M.; Cochemé, H.M.; Filipovska, A.; Da Ros, T.; Hurd, T.R.; Smith, R.A.; Murphy, M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc.), 2005, 70(2), 222-230.
[http://dx.doi.org/10.1007/s10541-005-0104-5] [PMID: 15807662]
[39]
Leung, C.W.T.; Hong, Y.; Chen, S.; Zhao, E.; Lam, J.W.Y.; Tang, B.Z. A photostable AIE luminogen for specific mitochondrial imaging and tracking. J. Am. Chem. Soc., 2013, 135(1), 62-65.
[http://dx.doi.org/10.1021/ja310324q] [PMID: 23244346]
[40]
Zhao, N.; Li, M.; Yan, Y.; Lam, J.W.Y.; Zhang, Y.L.; Zhao, Y.S.; Wong, K.S.; Tang, B.Z. A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 4640-4646.
[http://dx.doi.org/10.1039/c3tc30759j]
[41]
Zhang, W.; Kwok, R.T.K.; Chen, Y.; Chen, S.; Zhao, E.; Yu, C.Y.Y.; Lam, J.W.Y.; Zheng, Q.; Tang, B.Z. Real-time monitoring of the mitophagy process by a photostable fluorescent mitochondrion-specific bioprobe with AIE characteristics. Chem. Commun. (Camb.), 2015, 51(43), 9022-9025.
[http://dx.doi.org/10.1039/C5CC02486B] [PMID: 25939788]
[42]
Reedy, J.L.; Hedlund, D.K.; Gabr, M.T.; Henning, G.M.; Pigge, F.C.; Schultz, M.K. Synthesis and evaluation of tetraarylethylene-based mono-, bis-, and tris(pyridinium) derivatives for image-guided mitochondria-specific targeting and cytotoxicity of metastatic melanoma cells. Bioconjug. Chem., 2016, 27(10), 2424-2430.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00394] [PMID: 27643916]
[43]
Collas, P.; Aleström, P. Rapid targeting of plasmid DNA to zebrafish embryo nuclei by the nuclear localization signal of SV40 T antigen. Mol. Mar. Biol. Biotechnol., 1997, 6(1), 48-58.
[PMID: 9116870]
[44]
Boutorine, A.S.; Novopashina, D.S.; Krasheninina, O.A.; Nozeret, K.; Venyaminova, A.G. Fluorescent probes for nucleic acid visualization in fixed and live cells. Molecules, 2013, 18(12), 15357-15397.
[http://dx.doi.org/10.3390/molecules181215357] [PMID: 24335616]
[45]
Liang, J.; Feng, G.; Kwok, R.T.K.; Ding, D.; Tang, B.Z.; Liu, B. AIEgen based light-up probes for live cell imaging. Sci. China Chem., 2016, 59, 53-61.
[http://dx.doi.org/10.1007/s11426-015-5470-2]
[46]
Wang, E.; Zhao, E.; Hong, Y.; Lam, J.W.Y.; Tang, B.Z. A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 2013-2019.
[http://dx.doi.org/10.1039/C3TB21675F]
[47]
Kang, M.; Gu, X.; Kwok, R.T.K.; Leung, C.W.T.; Lam, J.W.Y.; Li, F.; Tang, B.Z. A near-infrared AIEgen for specific imaging of lipid droplets. Chem. Commun. (Camb.),,
[48]
Gao, M.; Hu, Q.; Feng, G.; Tang, B.Z.; Liu, B. A fluorescent light-up probe with “AIE + ESIPT” characteristics for specific detection of lysosomal esterase. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 3438-3442.
[http://dx.doi.org/10.1039/C4TB00345D]
[49]
Leung, C.W.; Wang, Z.; Zhao, E.; Hong, Y.; Chen, S.; Kwok, R.T.; Leung, A.C.; Wen, R.; Li, B.; Lam, J.W.; Tang, B.Z. A lysosome-targeting AIEgen for autophagy visualization. Adv. Healthc. Mater., 2016, 5(4), 427-431.
[http://dx.doi.org/10.1002/adhm.201500674] [PMID: 26688031]
[50]
Qian, X.; Xu, Z. Fluorescence imaging of metal ions implicated in diseases. Chem. Soc. Rev., 2015, 44(14), 4487-4493.
[http://dx.doi.org/10.1039/C4CS00292J] [PMID: 25556818]
[51]
Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev., 2014, 114(8), 4564-4601.
[http://dx.doi.org/10.1021/cr400546e] [PMID: 24588137]
[52]
Shyamal, M.; Mazumdar, P.; Maity, S.; Samanta, S.; Sahoo, G.P.; Misra, A. Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn(II) based on aggregation induced emission enhancement feature. ACS Sens., 2016, 1, 739-747.
[http://dx.doi.org/10.1021/acssensors.6b00289]
[53]
Samanta, S.; Manna, U.; Ray, T.; Das, G. An aggregation-induced emission (AIE) active probe for multiple targets: a fluorescent sensor for Zn(2+) and Al(3+) & a colorimetric sensor for Cu(2+) and F. Dalton Trans., 2015, 44(43), 18902-18910.
[http://dx.doi.org/10.1039/C5DT03186A] [PMID: 26467383]
[54]
Sun, F.; Zhang, G.; Zhang, D.; Xue, L.; Jiang, H. Aqueous fluorescence turn-on sensor for Zn2+ with a tetraphenylethylene compound. Org. Lett., 2011, 13(24), 6378-6381.
[http://dx.doi.org/10.1021/ol2026735] [PMID: 22106964]
[55]
Mehdi, H.; Gong, W.; Guo, H.; Watkinson, M.; Ma, H.; Wajahat, A.; Ning, G. Aggregation-induced emission (AIE) fluorophore exhibits a highly ratiometric fluorescent response to Zn2+in vitro and in human liver cancer cells. Chemistry, 2017, 23(53), 13067-13075.
[http://dx.doi.org/10.1002/chem.201701948] [PMID: 28612518]
[56]
Gabr, M.T.; Pigge, F.C. A selective fluorescent sensor for Zn(2+) based on aggregation-induced emission (AIE) activity and metal chelating ability of bis(2-pyridyl)diphenylethylene. Dalton Trans., 2016, 45(36), 14039-14043.
[http://dx.doi.org/10.1039/C6DT02657E] [PMID: 27549610]
[57]
Chen, Y.; Zhang, W.; Cai, Y.; Kwok, R.T.K.; Hu, Y.; Lam, J.W.Y.; Gu, X.; He, Z.; Zhao, Z.; Zheng, X.; Chen, B.; Gui, C.; Tang, B.Z. AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg2+ sensing. Chem. Sci. (Camb.), 2017, 8(3), 2047-2055.
[http://dx.doi.org/10.1039/C6SC04206F] [PMID: 28451323]
[58]
Zhang, R.X.; Li, P.F.; Zhang, W.J.; Li, N.; Zhao, N. A highly sensitive fluorescent sensor with aggregation-induced emission characteristics for the detection of iodide and mercury ions in aqueous solution. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4, 10479-10485.
[http://dx.doi.org/10.1039/C6TC03696A]
[59]
Chatterjee, A.; Banerjee, M.; Khandare, D.G.; Gawas, R.U.; Mascarenhas, S.C.; Ganguly, A.; Gupta, R.; Joshi, H. Aggregation-induced emission-based chemodosimeter approach for selective sensing and imaging of Hg(II) and methylmercury species. Anal. Chem., 2017, 89(23), 12698-12704.
[http://dx.doi.org/10.1021/acs.analchem.7b02663] [PMID: 29115126]
[60]
Ruan, Z.; Li, C.; Li, J-R.; Qin, J.; Li, Z. A relay strategy for the mercury (II) chemodosimeter with ultra-sensitivity as test strips. Sci. Rep., 2015, 5, 15987.
[http://dx.doi.org/10.1038/srep15987] [PMID: 26541941]
[61]
Gabr, M.T.; Pigge, F.C. A turn-on AIE active fluorescent sensor for Hg2+ by combination of 1,1-bis(2-pyridyl)ethylene and thiophene/bithiophene fragments. Mater. Chem. Front., 2017, 1, 1654-1661.
[http://dx.doi.org/10.1039/C7QM00085E]
[62]
Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev., 2011, 40(7), 3483-3495.
[http://dx.doi.org/10.1039/c0cs00224k] [PMID: 21445455]
[63]
Diwan, U.; Kumar, V.; Mishra, R.K.; Rana, N.K.; Koch, B.; Singh, M.K.; Upadhyay, K.K. A pyrene-benzthiazolium conjugate portraying aggregation induced emission, a ratiometric detection and live cell visualization of HSO3. Anal. Chim. Acta, 2016, 929, 39-48.
[http://dx.doi.org/10.1016/j.aca.2016.04.057] [PMID: 27251947]
[64]
Simpson, D.P. Regulation of renal citrate metabolism by bicarbonate ion and pH: observations in tissue slices and mitochondria. J. Clin. Invest., 1967, 46(2), 225-238.
[http://dx.doi.org/10.1172/JCI105525] [PMID: 6018760]
[65]
Hang, Y.; Wang, J.; Jiang, T.; Lu, N.; Hua, J. Diketopyrrolopyrrole-based ratiometric/turn-on fluorescent chemosensors for citrate detection in the near-infrared region by an aggregation-induced emission mechanism. Anal. Chem., 2016, 88(3), 1696-1703.
[http://dx.doi.org/10.1021/acs.analchem.5b03715] [PMID: 26745355]
[66]
Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature, 2015, 517(7534), 311-320.
[http://dx.doi.org/10.1038/nature14191] [PMID: 25592536]
[67]
Song, Z.; Mao, D.; Sung, S.H.P.; Kwok, R.T.K.; Lam, J.W.Y.; Kong, D.; Ding, D.; Tang, B.Z. Activatable fluorescent nanoprobe with aggregation-induced emission characteristics for selective in vivo imaging of elevated peroxynitrite generation. Adv. Mater., 2016, 28(33), 7249-7256.
[http://dx.doi.org/10.1002/adma.201601214] [PMID: 27302869]
[68]
Gabr, M.T.; Pigge, F.C. A fluorescent turn-on probe for cyanide anion detection based on an AIE active cobalt(ii) complex. Dalton Trans., 2018, 47(6), 2079-2085.
[http://dx.doi.org/10.1039/C7DT04242F] [PMID: 29355267]
[69]
Hong, Y.; Feng, C.; Yu, Y.; Liu, J.; Lam, J.W.Y.; Luo, K.Q.; Tang, B.Z. Quantitation, visualization, and monitoring of conformational transitions of human serum albumin by a tetraphenylethene derivative with aggregation-induced emission characteristics. Anal. Chem., 2010, 82(16), 7035-7043.
[http://dx.doi.org/10.1021/ac1018028] [PMID: 20704392]
[70]
Li, W.; Chen, D.; Wang, H.; Luo, S.; Dong, L.; Zhang, Y.; Shi, J.; Tong, B.; Dong, Y. Quantitation of albumin in serum using “turn-on” fluorescent probe with aggregation-enhanced emission characteristics. ACS Appl. Mater. Interfaces, 2015, 7(47), 26094-26100.
[http://dx.doi.org/10.1021/acsami.5b07422] [PMID: 26553289]
[71]
Gabr, M.T.; Pigge, F.C. Rhenium tricarbonyl complexes of AIE active tetraarylethylene ligands: Tuning luminescence properties and HSA-specific binding. Dalton Trans., 2017, 46(43), 15040-15047.
[http://dx.doi.org/10.1039/C7DT03380J] [PMID: 29063077]
[72]
Lo, K.K-W.; Zhang, K.Y.; Li, S.P-Y. Recent exploitation of luminescent rhenium(I) tricarbonyl polypyridine complexes as biomolecular and cellular probes. Eur. J. Inorg. Chem., 2011, 3551-3568.
[http://dx.doi.org/10.1002/ejic.201100469]
[73]
Palmioli, A.; Aliprandi, A.; Septiadi, D.; Mauro, M.; Bernardi, A.; De Cola, L.; Panigati, M. Glyco-functionalized dinuclear rhenium(i) complexes for cell imaging. Org. Biomol. Chem., 2017, 15(7), 1686-1699.
[http://dx.doi.org/10.1039/C6OB02559E] [PMID: 28134389]
[74]
Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 384-396.
[http://dx.doi.org/10.1038/nrm3810] [PMID: 24854788]
[75]
Ow, S-Y.; Dunstan, D.E. A brief overview of amyloids and Alzheimer’s disease. Protein Sci., 2014, 23(10), 1315-1331.
[http://dx.doi.org/10.1002/pro.2524] [PMID: 25042050]
[76]
LeVine, H. III Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci., 1993, 2(3), 404-410.
[http://dx.doi.org/10.1002/pro.5560020312] [PMID: 8453378]
[77]
Nesterov, E.E.; Skoch, J.; Hyman, B.T.; Klunk, W.E.; Bacskai, B.J.; Swager, T.M. In vivo optical imaging of amyloid aggregates in brain: Design of fluorescent markers. Angew. Chem. Int. Ed. Engl., 2005, 44(34), 5452-5456.
[http://dx.doi.org/10.1002/anie.200500845] [PMID: 16059955]
[78]
Gabr, M.T.; Pigge, F.C. Rhenium complexes of bis(benzothiazole)-based tetraarylethylenes as selective luminescent probes for amyloid fibrils. Chem. Eur. J, 2018, 24(45), 11729-11737.
[http://dx.doi.org/10.1002/chem.201801801] [PMID: 29906302]
[79]
328. Zeglis, B. M.; Pierre, V. C.; Barton, J. K. Metallo-intercalators and metallo-insertors. Chem. Commun. (Camb.), 2007, 44, 4565-4579.
[80]
Granzhan, A.; Kotera, N.; Teulade-Fichou, M.P. Finding needles in a basestack: Recognition of mismatched base pairs in DNA by small molecules. Chem. Soc. Rev., 2014, 43(10), 3630-3665.
[http://dx.doi.org/10.1039/c3cs60455a] [PMID: 24634921]
[81]
Gabr, M.T.; Pigge, F.C. Platinum(II) complexes with sterically expansive tetraarylethylene ligands as probes for mismatched DNA. Inorg. Chem., 2018, 57(20), 12641-12649.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01782] [PMID: 30260643]
[82]
Fung, S.K.; Zou, T.; Cao, B.; Chen, T.; To, W-P.; Yang, C.; Lok, C-N.; Che, C-M. Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA. Nat. Commun., 2016, 7, 10655.
[http://dx.doi.org/10.1038/ncomms10655] [PMID: 26883164]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy