Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Effect of Phase Transition Temperature on Therapeutic Efficacy of Liposomal Bortezomib

Author(s): Mitra Korani, Sara Nikoofal-Sahlabadi, Amin R. Nikpoor, Solmaz Ghaffari, Hossein Attar, Mohammad Mashreghi and Mahmoud R. Jaafari*

Volume 20, Issue 6, 2020

Page: [700 - 708] Pages: 9

DOI: 10.2174/1871520620666200101150640

Price: $65


Aims: Here, three liposomal formulations of DPPC/DPPG/Chol/DSPE-mPEG2000 (F1), DPPC/DPPG/Chol (F2) and HSPC/DPPG/Chol/DSPE-mPEG2000 (F3) encapsulating BTZ were prepared and characterized in terms of their size, surface charge, drug loading, and release profile. Mannitol was used as a trapping agent to entrap the BTZ inside the liposomal core. The cytotoxicity and anti-tumor activity of formulations were investigated in vitro and in vivo in mice bearing tumor.

Background: Bortezomib (BTZ) is an FDA approved proteasome inhibitor for the treatment of mantle cell lymphoma and multiple myeloma. The low solubility of BTZ has been responsible for the several side effects and low therapeutic efficacy of the drug. Encapsulating BTZ in a nano drug delivery system; helps overcome such issues. Among NDDSs, liposomes are promising diagnostic and therapeutic delivery vehicles in cancer treatment.

Objective: Evaluating anti-tumor activity of bortezomib liposomal formulations.

Methods: Data prompted us to design and develop three different liposomal formulations of BTZ based on Tm parameter, which determines liposomal stiffness. DPPC (Tm 41°C) and HSPC (Tm 55°C) lipids were chosen as variables associated with liposome rigidity. In vitro cytotoxicity assay was then carried out for the three designed liposomal formulations on C26 and B16F0, which are the colon and melanoma cancer mouse-cell lines, respectively. NIH 3T3 mouse embryonic fibroblast cell line was also used as a normal cell line. The therapeutic efficacy of these formulations was further assessed in mice tumor models.

Result: MBTZ were successfully encapsulated into all the three liposomal formulations with a high entrapment efficacy of 60, 64, and 84% for F1, F2, and F3, respectively. The findings showed that liposomes mean particle diameter ranged from 103.4 to 146.8nm. In vitro cytotoxicity studies showed that liposomal-BTZ formulations had higher IC50 value in comparison to free BTZ. F2-liposomes with DPPC, having lower Tm of 41°C, showed much higher anti-tumor efficacy in mice models of C26 and B16F0 tumors compared to F3-HSPC liposomes with a Tm of 55°C. F2 formulation also enhanced mice survival compared with untreated groups, either in BALB/c or in C57BL/6 mice.

Conclusion: Our findings indicated that F2-DPPC-liposomal formulations prepared with Tm close to body temperature seem to be effective in reducing the side effects and increasing the therapeutic efficacy of BTZ and merits further investigation.

Keywords: Bortezomib, liposomes, antitumor activity, proteasome inhibitors, transition temperature, remote loading, colorectal neoplasms, melanoma.

Graphical Abstract
Kubicek, G.J.; Werner-Wasik, M.; Machtay, M.; Mallon, G.; Myers, T.; Ramirez, M.; Andrews, D.; Curran, W.J., Jr; Dicker, A.P. Phase I trial using proteasome inhibitor bortezomib and concurrent temozolomide and radiotherapy for central nervous system malignancies. Int. J. Radiat. Oncol. Biol. Phys., 2009, 74(2), 433-439.
Mahindra, A.; Hideshima, T.; Anderson, K.C. Multiple myeloma: biology of the disease. Blood Rev., 2010, 24, S5-S11.
Hsieh, F.Y.; Tengstrand, E.; Pekol, T.M.; Guerciolini, R.; Miwa, G. Elucidation of potential bortezomib response markers in mutliple myeloma patients. J. Pharm. Biomed. Anal., 2009, 49(1), 115-122.
Besse, B.; Planchard, D.; Veillard, A-S.; Taillade, L.; Khayat, D.; Ducourtieux, M.; Pignon, J-P.; Lumbroso, J.; Lafontaine, C.; Mathiot, C. Phase 2 study of frontline bortezomib in patients with advanced non-small cell lung cancer. Lung Cancer, 2012, 76(1), 78-83.
Sato, A.; Asano, T.; Ito, K.; Asano, T. Vorinostat and bortezomib synergistically cause ubiquitinated protein accumulation in prostate cancer cells. J. Urol., 2012, 188(6), 2410-2418.
Kubiczkova, L.; Pour, L.; Sedlarikova, L.; Hajek, R.; Sevcikova, S. Proteasome inhibitors – molecular basis and current perspectives in multiple myeloma. J. Cell. Mol. Med., 2014, 18(6), 947-961.
Arastu-Kapur, S.; Anderl, J.L.; Kraus, M.; Parlati, F.; Shenk, K.D.; Lee, S.J.; Muchamuel, T.; Bennett, M.K.; Driessen, C.; Ball, A.J. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin. Cancer Res., 2011, 17(9), 2734-2743.
Johnson, D.E. The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr. Relat. Cancer, 2015, 22(1), T1-T17.
Canfield, S.E.; Zhu, K.; Williams, S.A.; McConkey, D.J. Bortezomib inhibits docetaxel-induced apoptosis via a p21-dependent mechanism in human prostate cancer cells. Mol. Cancer Ther., 2006, 5(8), 2043-2050.
Nawrocki, S.T.; Sweeney-Gotsch, B.; Takamori, R.; McConkey, D.J. The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol. Cancer Ther., 2004, 3(1), 59-70.
Drexler, H.C.A. Activation of the cell death program by inhibition of proteasome function. Proc. Natl. Acad. Sci. USA, 1997, 94(3), 855-860.
Rodríguez-Martín, M.; Sáez-Rodríguez, M.; García-Bustínduy, M.; Martín-Herrera, A.; Noda-Cabrera, A. Bortezomib-induced cutaneous lesions in multiple myeloma patients: a case report. Dermatol. Online J., 2008, 14(11), 14.
[PMID: 19094852]
Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009, 71(3), 409-419.
Niewerth, D.; Jansen, G.; Assaraf, Y.G.; Zweegman, S.; Kaspers, G.J.L.; Cloos, J. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist. Updat., 2015, 18, 18-35.
Korani, M.; Ghaffari, S.; Attar, H.; Mashreghi, M.; Jaafari, M.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine , 2019, 20, 102013
Barenholz, Y. Liposome application: Problems and prospects. Curr. Opin. Colloid Interface Sci., 2001, 6(1), 66-77.
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145.
Jain, R.K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev., 1987, 6(4), 559-593.
Charrois, G.J.R.; Allen, T.M. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim. Biophys. Acta (BBA)-. Biomembranes, 2004, 1663(1), 167-177.
Lasic, D.D.; Papahadjopoulos, D. Liposomes revisited. Science, 1995, 267(5202), 1275-1276.
[] [PMID: 7871422]
Stathopoulos, G.P.; Boulikas, T. Lipoplatin formulation review article. J. Drug Deliv., 2012., Article ID581363
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci., 2015, 10(2), 81-98.
Wu, H.; Yu, M.; Miao, Y.; He, S.; Dai, Z.; Song, W.; Liu, Y.; Song, S.; Ahmad, E.; Wang, D. Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharm. Sin. B, 2019, 9(4), 858-870.
Huang, Z.; Jaafari, M.R.; Szoka, F.C., Jr Disterolphospholipids: nonexchangeable lipids and their application to liposomal drug delivery. Angew. Chem., 2009, 121(23), 4210-4213.
Huang, Z.; Szoka, F.C., Jr Sterol-modified phospholipids: cholesterol and phospholipid chimeras with improved biomembrane properties. J. Am. Chem. Soc., 2008, 130(46), 15702-15712.
Amin, M.; Badiee, A.; Jaafari, M.R. Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. Int. J. Pharm., 2013, 458(2), 324-333.
Schluep, T.; Hwang, J.; Cheng, J.; Heidel, J.D.; Bartlett, D.W.; Hollister, B.; Davis, M.E. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res., 2006, 12(5), 1606-1614.
Kouroukis, C.T.; Baldassarre, F.G.; Haynes, A.E.; Imrie, K.; Reece, D.E.; Cheung, M.C. Bortezomib in multiple myeloma: a practice guideline. Clin. Oncol. (R. Coll. Radiol.), 2014, 26(2), 110-119.
Cook, G.; Williams, C.; Brown, J.M.; Cairns, D.A.; Cavenagh, J.; Snowden, J.A.; Ashcroft, A.J.; Fletcher, M.; Parrish, C.; Yong, K. High-dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label. Lancet Oncol., 2014, 15(8), 874-885.
Messinger, Y.H.; Gaynon, P.S.; Sposto, R.; van der Giessen, J.; Eckroth, E.; Malvar, J.; Bostrom, B.C. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood, 2012, 120(2), 285-290.
Muscal, J.A.; Thompson, P.A.; Horton, T.M.; Ingle, A.M.; Ahern, C.H.; McGovern, R.M.; Reid, J.M.; Ames, M.M.; Espinoza-Delgado, I.; Weigel, B.J. A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatr. Blood Cancer, 2013, 60(3), 390-395.
Caravita, T.; de Fabritiis, P.; Palumbo, A.; Amadori, S.; Boccadoro, M. Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies. Nat. Rev. Clin. Oncol., 2006, 3(7), 374.
Hall, D.G. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine; John Wiley & Sons: USA, 2006.
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975.
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297.
Alavizadeh, S.H.; Badiee, A.; Golmohammadzadeh, S.; Jaafari, M.R. The influence of phospholipid on the physicochemical properties and anti-tumor efficacy of liposomes encapsulating cisplatin in mice bearing C26 colon carcinoma. Int. J. Pharm., 2014, 473(1-2), 326-333.
Dos Santos, N.; Allen, C.; Doppen, A-M.; Anantha, M.; Cox, K.A.K.; Gallagher, R.C.; Karlsson, G.; Edwards, K.; Kenner, G.; Samuels, L. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim. Biophys. Acta (BBA)-. Biomembranes, 2007, 1768(6), 1367-1377.
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(2), 12.
Zuccari, G.; Milelli, A.; Pastorino, F.; Loi, M.; Petretto, A.; Parise, A.; Marchetti, C.; Minarini, A.; Cilli, M.; Emionite, L. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma. J. Control. Release, 2015, 211, 44-52.
Ashley, J.D.; Stefanick, J.F.; Schroeder, V.A.; Suckow, M.A.; Kiziltepe, T.; Bilgicer, B. Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo. J. Med. Chem., 2014, 57(12), 5282-5292.
Butu, A.; Rodino, S.; Golea, D.; Butu, M.; Butnariu, M.; Negoescu, C.; Dinu Pirvu, C-E. Liposomal nanodelivery system for proteasome inhibitor anticancer drug bortezomib. Farmacia, 2015, 63(2), 224-229.
Martinez, M.; Rathbone, M.; Burgess, D.; Huynh, M. In vitro and in vivo considerations associated with parenteral sustained release products: a review based upon information presented and points expressed at the 2007 Controlled Release Society Annual Meeting. J. Control. Release Off. J. Control. Release Soc., 2008, 129(2), 79.
Cipolla, D.; Wu, H.; Eastman, S.; Redelmeier, T.; Gonda, I.; Chan, H. Development and characterization of an in vitro release assay for liposomal ciprofloxacin for inhalation. J. Pharm. Sci., 2014, 103(1), 314-327.
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
Farzaneh, H.; Ebrahimi Nik, M.; Mashreghi, M.; Saberi, Z.; Jaafari, M.R.; Teymouri, M. A study on the role of cholesterol and phosphatidylcholine in various features of liposomal doxorubicin: From liposomal preparation to therapy. Int. J. Pharm., 2018, 551(1-2), 300-308.
Sebak, A.A. Limitations of pegylated nanocarriers: Unfavourable physicochemical properties, biodistribution patterns and cellular and subcellular fates. Int. J. Appl. Pharm, 2018, 10(5), 6-12.
El-Sayed, A.; Khalil, I.A.; Kogure, K.; Futaki, S.; Harashima, H. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. J. Biol. Chem., 2008, 283(34), 23450-23461.
Kalaydina, R-V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int. J. Nanomedicine, 2018, 13, 4727.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy