Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Detection of Cold Stress in Plants using Fluorescence Lifetime Imaging (FLIM)

Author(s): Owen Peng, Walter Akers and Mikhail Y. Berezin*

Volume 17, Issue 3, 2021

Published on: 30 December, 2019

Page: [317 - 327] Pages: 11

DOI: 10.2174/1573411016666191230145030

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cold stress injury to plants is a highly complex process and a significant cost to agricultural food production. This stress adversely affects metabolism, growth and productivity of plants. Timely visualization of plants’ cold stress is important for identifying injury to the plants and for predicting a plant's survival. While there is a developed understanding of physiology and biology associated with this condition, early detection and assessment of the injury remain difficult. A rapid, remote method for quantitatively measuring cold stress in situ will aid producers in selecting cold-tolerant plants for breeding and for identifying appropriate remedies.

Methods: Standard methods such as electrolyte leakage assays correctly and quantitatively evaluate the damage. However, these methods are laborious and costly, not applicable for non-invasive highthroughput screening of plants in the field. To address this problem, we have evaluated a new sensitive method based on the fluorescence lifetime imaging (FLIM) that can be used for injury assessment.

Results: Standard methods such as electrolyte leakage assays correctly and quantitatively evaluate the damage. However, these methods are laborious and costly, not applicable for non-invasive highthroughput screening of plants in the field. To address this problem, we have evaluated a new sensitive method based on the fluorescence lifetime imaging (FLIM) that can be used for injury assessment. We have demonstrated that the fluorescence lifetime of chlorophyll’s autofluorescence in intact leaves from Periwinkle (Vinca Minor) plants is correlated with the degree of injury. Nonlinear regression identifies the long-lifetime component of the fluorescence decay, showing a high sensitivity for detecting injury mere minutes after plant exposure to -20°C, while no gross visual differences could be distinguished. Moreover, conventional color imaging, reflection, or and steady-state fluorescence intensity showed lower sensitivity in detecting cold stress.

Conclusion: FLIM was shown to be more sensitive than visual or camera-based inspection and can be potentially used for rapid and remote monitoring of the health of individual plants and crops in the field and will aid in the selection of cold-tolerant crop variants.

Keywords: Cold stress, FLIM, fluorescence lifetime, plants, spectroscopy of plants, the reflection of plants.

Graphical Abstract
[1]
Yadav, S.K. Cold stress tolerance mechanisms in plants. A review. Biochim. Biophys. Acta Biomembr., 2010, 30(3), 515-527.
[2]
Yamori, W.; Hikosaka, K.; Way, D.A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res., 2014, 119(1-2), 101-117.
[http://dx.doi.org/10.1007/s11120-013-9874-6] [PMID: 23801171]
[3]
Burke, M.; Gusta, L.; Quamme, H.; Weiser, C.; Li, P. Freezing and injury in plants. Annu. Rev. Plant Physiol., 1976, 27(1), 507-528.
[http://dx.doi.org/10.1146/annurev.pp.27.060176.002451]
[4]
Thomashow, M.F. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol., 1998, 118(1), 1-8.
[http://dx.doi.org/10.1104/pp.118.1.1] [PMID: 9733520]
[5]
Chinnusamy, V.; Ohta, M.; Kanrar, S.; Lee, B.H.; Hong, X.; Agarwal, M.; Zhu, J-K. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev., 2003, 17(8), 1043-1054.
[http://dx.doi.org/10.1101/gad.1077503] [PMID: 12672693]
[6]
Sanghera, G.S.; Wani, S.H.; Hussain, W.; Singh, N.B. Engineering cold stress tolerance in crop plants. Curr. Genomics, 2011, 12(1), 30-43.
[http://dx.doi.org/10.2174/138920211794520178] [PMID: 21886453]
[7]
Kasuga, M.; Liu, Q.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol., 1999, 17(3), 287-291.
[http://dx.doi.org/10.1038/7036] [PMID: 10096298]
[8]
Cruz, R.P.d.; Sperotto, R.A.; Cargnelutti, D.; Adamski, J.M. de FreitasTerra, T.; Fett, J. P., Avoiding damage and achieving cold tolerance in rice plants. Food Energy Secur., 2013, 2(2), 96-119.
[http://dx.doi.org/10.1002/fes3.25]
[9]
Moshelion, M.; Altman, A. Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnol., 2015, 33(6), 337-342.
[http://dx.doi.org/10.1016/j.tibtech.2015.03.001] [PMID: 25842169]
[10]
Lindén, L.; Palonen, P.; Lindén, M. Relating freeze-induced electrolyte leakage measurements to lethal temperature in red raspberry. J. Am. Soc. Hortic. Sci., 2000, 125(4), 429-435.
[http://dx.doi.org/10.21273/JASHS.125.4.429]
[11]
Hincha, D.; Schmitt, J. Freeze-thaw injury and cryoprotection of thylakoid membranes. Water and life; Springer, 1992, pp. 316-337.
[http://dx.doi.org/10.1007/978-3-642-76682-4_19]
[12]
Rohde, P.; Hincha, D.K.; Heyer, A.G. Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Plant J., 2004, 38(5), 790-799.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02080.x ] [PMID: 15144380]
[13]
Honjoh, K.; Shimizu, H.; Nagaishi, N.; Matsumoto, H.; Suga, K.; Miyamoto, T.; Iio, M.; Hatano, S. Improvement of freezing tolerance in transgenic tobacco leaves by expressing the hiC6 gene. Biosci. Biotechnol. Biochem., 2001, 65(8), 1796-1804.
[http://dx.doi.org/10.1271/bbb.65.1796] [PMID: 11577720]
[14]
Steponkus, P.L.; Lynch, D.V.; Uemura, M.; Heber, U.; Pearce, R.S. The influence of cold acclimation on the lipid composition and cryobehaviour of the plasma membrane of isolated rye protoplasts. Philos T R Soc B, 1990, 326(1237), 571-583.
[http://dx.doi.org/10.1098/rstb.1990.0032]
[15]
Chaerle, L.; Van Der Straeten, D. Imaging techniques and the early detection of plant stress. Trends Plant Sci., 2000, 5(11), 495-501.
[http://dx.doi.org/10.1016/S1360-1385(00)01781-7 ] [PMID: 11077259]
[16]
Fuller, M.P.; Wisniewski, M. The use of infrared thermal imaging in the study of ice nucleation and freezing of plants1. J. Therm. Biol., 1998, 23(2), 81-89.
[http://dx.doi.org/10.1016/S0306-4565(98)00013-8]
[17]
Miralles-Crespo, J.; Martínez-López, J.A.; Franco-Leemhuis, J.A.; Bañón-Arias, S. Determining freezing injury from changes in chlorophyll fluorescence in potted oleander plants. HortScience, 2011, 46(6), 895-900.
[http://dx.doi.org/10.21273/HORTSCI.46.6.895]
[18]
Mishra, A.; Heyer, A.G.; Mishra, K.B. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods, 2014, 10(1), 38.
[http://dx.doi.org/10.1186/1746-4811-10-38] [PMID: 25400689]
[19]
Ehlert, B.; Hincha, D.K. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods, 2008, 4(1), 12.
[http://dx.doi.org/10.1186/1746-4811-4-12] [PMID: 18505561]
[20]
Berezin, M.Y.; Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev., 2010, 110(5), 2641-2684.
[http://dx.doi.org/10.1021/cr900343z] [PMID: 20356094]
[21]
Zhegalova, N.G.; Gonzales, G.; Berezin, M.Y. Synthesis of nitric oxide probes with fluorescence lifetime sensitivity. Org. Biomol. Chem., 2013, 11(47), 8228-8234.
[http://dx.doi.org/10.1039/c3ob41498a] [PMID: 24166035]
[22]
Gustafson, T.P.; Dergunov, S.A.; Akers, W.J.; Cao, Q.; Magalotti, S.; Achilefu, S.; Pinkhassik, E.; Berezin, M.Y. Blood triggered rapid release porous nanocapsules. RSC Advances, 2013, 3(16), 5547-5555.
[http://dx.doi.org/10.1039/c3ra22693j] [PMID: 23606942]
[23]
Zeng, S.L.; Grabowska, D.; Shahverdi, K.; Sudlow, L.C.; Achilefu, S.; Berezin, M.Y. Fluorescence lifetime imaging reveals heterogeneous functional distribution of eGFP expressed in Xenopus oocytes. Methods Appl. Fluoresc., 2019, 8(1)015001
[http://dx.doi.org/10.1088/2050-6120/ab51f8] [PMID: 31658452]
[24]
Guo, K.; Achilefu, S.; Berezin, M.Y. Dating bloodstains with fluorescence lifetime measurements. Chemistry, 2012, 18(5), 1303-1305.
[http://dx.doi.org/10.1002/chem.201102935] [PMID: 22238188]
[25]
Marcu, L. Fluorescence lifetime techniques in medical applications. Ann. Biomed. Eng., 2012, 40(2), 304-331.
[http://dx.doi.org/10.1007/s10439-011-0495-y] [PMID: 22273730]
[26]
Dysli, C.; Wolf, S.; Berezin, M.Y.; Sauer, L.; Hammer, M.; Zinkernagel, M.S. Fluorescence lifetime imaging ophthalmoscopy. Prog. Retin. Eye Res., 2017, 60(Suppl. C), 120-143.
[http://dx.doi.org/10.1016/j.preteyeres.2017.06.005 ] [PMID: 28673870]
[27]
Donaldson, L.A.; Radotic, K. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. J. Microsc., 2013, 251(2), 178-187.
[http://dx.doi.org/10.1111/jmi.12059] [PMID: 23763341]
[28]
Zeng, Y.; Zhao, S.; Wei, H.; Tucker, M.P.; Himmel, M.E.; Mosier, N.S.; Meilan, R.; Ding, S-Y. In situ micro-spectroscopic investigation of lignin in poplar cell walls pretreated by maleic acid. Biotechnol. Biofuels, 2015, 8(1), 126.
[http://dx.doi.org/10.1186/s13068-015-0312-1] [PMID: 26312066]
[29]
Matsubara, S.; Chen, Y-C.; Caliandro, R. Govindjee.; Clegg, R.M. Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching. J. Photochem. Photobiol. B, 2011, 104(1-2), 271-284.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.01.003 ] [PMID: 21356597]
[30]
Chanoca, A.; Burkel, B.; Kovinich, N.; Grotewold, E.; Eliceiri, K.W.; Otegui, M.S. Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins. Plant J., 2016, 88(5), 895-903.
[http://dx.doi.org/10.1111/tpj.13297] [PMID: 27500780]
[31]
Breunig, H.G.; Tümer, F.; König, K. Multiphoton imaging of freezing and heating effects in plant leaves. J. Biophotonics, 2013, 6(8), 622-630.
[http://dx.doi.org/10.1002/jbio.201200093] [PMID: 22987831]
[32]
Sylak-Glassman, E.J.; Malnoë, A.; De Re, E.; Brooks, M.D.; Fischer, A.L.; Niyogi, K.K.; Fleming, G.R. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Proc. Natl. Acad. Sci. USA, 2014, 111(49), 17498-17503.
[http://dx.doi.org/10.1073/pnas.1418317111] [PMID: 25422428]
[33]
Schmuck, G.; Moya, I.; Pedrini, A.; van der Linde, D.; Lichtenthaler, H.K.; Stober, F.; Schindler, C.; Goulas, Y. Chlorophyll fluorescence lifetime determination of waterstressed C3- and C4-plants. Radiat. Environ. Biophys., 1992, 31(2), 141-151.
[http://dx.doi.org/10.1007/BF01211212] [PMID: 1609059]
[34]
Gates, D.M.; Keegan, H.J.; Schleter, J.C.; Weidner, V.R. Spectral properties of plants. Appl. Opt., 1965, 4(1), 11-20.
[http://dx.doi.org/10.1364/AO.4.000011]
[35]
Kim, D.M.; Zhang, H.; Zhou, H.; Du, T.; Wu, Q.; Mockler, T.C.; Berezin, M.Y. Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis. Sci. Rep., 2015, 5, 15919.
[http://dx.doi.org/10.1038/srep15919] [PMID: 26531782]
[36]
Lee, D.W.; Graham, R. Leaf optical properties of rainforest sun and extreme shade plants. Am. J. Bot., 1986, 73(8), 1100-1108.
[http://dx.doi.org/10.1002/j.1537-2197.1986.tb08557.x]
[37]
Hamzeh, S.; Naseri, A.A. AlaviPanah, S. K.; Mojaradi, B.; Bartholomeus, H. M.; Clevers, J. G. P. W.; Behzad, M., Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices. Int J Appl Earth Obs, 2013, 21, 282-290.
[http://dx.doi.org/10.1016/j.jag.2012.07.002]
[38]
Sankaran, S.; Ehsani, R.; Inch, S.A.; Ploetz, R.C. Evaluation of visible-near infrared reflectance spectra of avocado leaves as a non-destructive sensing tool for detection of laurel wilt. Plant Dis., 2012, 96(11), 1683-1689.
[http://dx.doi.org/10.1094/PDIS-01-12-0030-RE] [PMID: 30727463]
[39]
Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 1979, 8(2), 127-150.
[http://dx.doi.org/10.1016/0034-4257(79)90013-0]
[40]
Lichtenthaler, H.; Wenzel, O.; Buschmann, C.; Gitelson, A. Plant stress detection by reflectance and fluorescence. Ann. N. Y. Acad. Sci., 1998, 851(1), 271-285.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09002.x]
[41]
Buschmann, C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth. Res., 2007, 92(2), 261-271.
[http://dx.doi.org/10.1007/s11120-007-9187-8] [PMID: 17525834]
[42]
Agati, G.; Mazzinghi, P.; Lipucci di Paola, M.; Fusi, F.; Cecchi, G. The F685/F730 chlorophyll fluorescence ratio as indicator of chilling stress in plants. J. Plant Physiol., 1996, 148(3), 384-390.
[http://dx.doi.org/10.1016/S0176-1617(96)80270-7]
[43]
Iermak, I.; Vink, J.; Bader, A.N.; Wientjes, E.; van Amerongen, H. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta, 2016, 1857(9), 1473-1478.
[http://dx.doi.org/10.1016/j.bbabio.2016.05.005] [PMID: 27239747]
[44]
Thomashow, M.F. Plant Cold Acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50(1), 571-599.
[http://dx.doi.org/10.1146/annurev.arplant.50.1.571 ] [PMID: 15012220]
[45]
Steponkus, P.; Webb, M. Freeze-induced dehydration and membrane destabilization in plants. Water and life; Springer, 1992, pp. 338-362.
[http://dx.doi.org/10.1007/978-3-642-76682-4_20]
[46]
McCully, M.E.; Canny, M.J.; Huang, C.X. The management of extracellular ice by petioles of frost-resistant herbaceous plants. Ann. Bot., 2004, 94(5), 665-674.
[http://dx.doi.org/10.1093/aob/mch191] [PMID: 15355865]
[47]
Hincha, D.K.; Schmitt, J.M. Freeze-Thaw Injury and Cryoprotection of Thylakoid Membranes. Water and Life: Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels, Somero, G.N.; Osmond, C.B.; Bolis, C.L., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1992, pp. 316-337.
[http://dx.doi.org/10.1007/978-3-642-76682-4_19]
[48]
Hincha, D.K.; Schmitt, J.M. Mechanical freeze-thaw damage and frost hardening in leaves and isolated thylakoids from spinach. I. Mechanical freeze-thaw damage in an artificial stroma medium. Plant Cell Environ., 1988, 11(1), 41-46.
[http://dx.doi.org/10.1111/j.1365-3040.1988.tb01775.x]
[49]
Steponkus, P.L.; Uemura, M.; Webb, M. Membrane destabilization during freeze-induced dehydration; Curr Top Plant Physiol: USA, 1993.
[50]
Levitt, J. Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses; In: Academic Press:; , 1980.
[51]
Barnes, A.C.; Benning, C.; Roston, R.L. Chloroplast membrane remodeling during freezing stress is accompanied by cytoplasmic acidification activating sensitive to freezing2. Plant Physiol., 2016, 171(3), 2140-2149.
[http://dx.doi.org/10.1104/pp.16.00286] [PMID: 27233750]
[52]
Jensen, M.; Heber, U.; Oettmeier, W. Chloroplast membrane damage during freezing: The lipid phase. Cryobiology, 1981, 18(3), 322-335.
[http://dx.doi.org/10.1016/0011-2240(81)90105-X] [PMID: 6263547]
[53]
Goiffon, R.J.; Akers, W.J.; Berezin, M.Y.; Lee, H.; Achilefu, S. Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging. J. Biomed. Opt., 2009, 14(2), 020501-020501.
[http://dx.doi.org/10.1117/1.3095800] [PMID: 19405707]
[54]
Brody, S.S.; Brody, M. Fluorescence properties of aggregated chlorophyll in vivo and in vitro. Trans. Faraday Soc., 1962, 58, 416-428.
[http://dx.doi.org/10.1039/tf9625800416]
[55]
Barzda, V.; de Grauw, C.J.; Vroom, J.; Kleima, F.J.; van Grondelle, R.; van Amerongen, H.; Gerritsen, H.C. Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. Biophys. J., 2001, 81(1), 538-546.
[http://dx.doi.org/10.1016/S0006-3495(01)75720-7 ] [PMID: 11423435]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy