Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Antitumor Effect of Zwitterions of Imidazolium Derived from L-methionine in BALB/c Mice with Lymphoma L5178Y

Author(s): Karen C. Vargas-Castro, Ana M. Puebla Pérez, Irma I. Rangel-Salas, Jorge I. Delgado-Saucedo, José B. Pelayo-Vázquez, ">Elvia Becerra-Martínez, Alejandro A. Peregrina-Lucano, Raul R. Quiñonez-Lopez, Gabriela J. Soltero-Reynoso and Sara A. Cortes-Llamas*

Volume 17, Issue 1, 2021

Published on: 06 December, 2019

Page: [33 - 39] Pages: 7

DOI: 10.2174/1573406415666191206093754

Price: $65

Open Access Journals Promotions 2
Abstract

Background: In the therapy of cancer, several treatments have been designed using nanomaterials, among which gold nanoparticles (AuNPs) have been featured as a promising antitumoral agent. Our research group has developed the synthesis of gold nanoparticles L-AuNPs and D-AuNPs stabilized with zwitterions of imidazolium (L-1 and D-1) derived from L-methionine and D-methionine. Because the stabilizer agent is chiral, we observed through circular dichroism that AuNPs also present chirality; such chirality as well as the fact that the stabilizing agent contains fragments of methionine and imidazolium that are commonly involved in biological processes, opens up the possibility that this system may have biological compatibility. Additionally, the presence of methionine in the stabilizing agent opens the application of this system as a possible antitumor agent because methionine is involved in methylation processes of molecules such as DNA.

Objective: The aim of this research is the evaluation of the antitumor activity of gold nanoparticles stabilized with zwitterions of imidazolium (L-AuNPs) derived from L-methionine in the model of BALB/c mice with lymphoma L5178Y.

Methods: Taking as a parameter cell density, the evaluation of the inhibitory effect of L-AuNPs was carried out with a series of in vivo tests in BALB/c type mice; three groups of five mice each were formed (Groups 1, 2 and 3); all mice were i.p. inoculated with the lymphoblast murine L5178Y. Group 1 consisted of mice without treatment. In the Groups 2 and 3 the mice were treated with L-AuNPs at 0.3 mg/Kg on days 1, 7 and 14 by orally and intraperitonally respectively.

Results: These results show low antitumor activity of these gold nanoparticles (L-NPsAu) but interestingly, the imidazolium stabilizing agent of gold nanoparticle (L-1) displayed promising antitumor activity. On the other hand, the enantiomer of L-1, (D-1) as well as asymmetric imidazole derivate from L-methionine (L-2), do not exhibit the same activity as L-1.

Conclusion: The imidazolium stabilizing agent (L-1) displayed promising antitumor activity. Modifications in the structure of L-1 showed that, the stereochemistry (like D-1) and the presence of methionine fragments (like L-2) are determinants in the antitumor activity of this compound.

Keywords: Antitumor effect, lymphoma L5178Y, zwitterions of imidazoliuzwitterions of imidazolium, stereochemistry, lysine, arginine.

Graphical Abstract
[1]
Khan, A.; Rashid, R.; Murtaza, G.; Zahra, A. Trop. J. Pharm., 2014, 13(7), 1169-1177.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[2]
Ghosh, P.S.; Kim, C.K.; Han, G.; Forbes, N.S.; Rotello, V.M. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano, 2008, 2(11), 2213-2218.
[http://dx.doi.org/10.1021/nn800507t] [PMID: 19206385]
[3]
Colognato, R.; Park, M.V.D.Z.; Wick, P.; De Jong, W.H. Advers. Eff. Eng. Nanomater., 2012, 3-24.
[4]
Lomelí-Rosales, D.A.; Rangel-Salas, I.I.; Zamudio-Ojeda, A.; Carbajal-Arízaga, G.G.; Godoy-Alcántar, C.; Manríquez-González, R.; Alvarado-Rodríguez, J.G.; Martínez-Otero, D.; Cortes-Llamas, S.A. Chiral imidazolium-functionalized Au nanoparticles: reversible aggregation and molecular recognition. ACS Omega, 2016, 1(5), 876-885.
[http://dx.doi.org/10.1021/acsomega.6b00141] [PMID: 31457170]
[5]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.A.M.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[6]
Loenen, W.A.M. S-adenosylmethionine: jack of all trades and master of everything? Biochem. Soc. Trans., 2006, 34(Pt 2), 330-333.
[http://dx.doi.org/10.1042/BST0340330] [PMID: 16545107]
[7]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[8]
Bhatnagar, A.; Sharma, P.; Kumar, N. A review on “Imidazoles”: their chemistry and pharmacological potentials. Int. J. Pharm. Tech. Res., 2011, 3(1), 268-282.
[9]
Sharma, G.V.M.; Ramesh, A.; Singh, A.; Srikanth, G.; Jayaram, V.; Duscharla, D.; Jun, J.H.; Ummanni, R.; Malhotra, S.V. MedChemComm, 2014, 5(11), 1751-1760.
[http://dx.doi.org/10.1039/C4MD00277F]
[10]
Wachall, B.G.; Hector, M.; Zhuang, Y.; Hartmann, R.W. Imidazole substituted biphenyls: a new class of highly potent and in vivo active inhibitors of P450 17 as potential therapeutics for treatment of prostate cancer. Bioorg. Med. Chem., 1999, 7(9), 1913-1924.
[http://dx.doi.org/10.1016/S0968-0896(99)00160-1] [PMID: 10530940]
[11]
Tabuteau, H. Substituted Imidazolium Compounds For Treating Disease Patent US 8,901,162 B1 2014.
[12]
Reynoso-Esparza, M.A.; Rangel-Salas, I.I.; Peregrina-Lucano, A.A.; Alvarado-Rodríguez, J.G.; López-Dellamary-Toral, F.A.; Manríquez-González, R.; Espinosa-Macías, M.L.; Cortes-Llamas, S.A. Polyhedron, 2014, 81, 564-571.
[http://dx.doi.org/10.1016/j.poly.2014.07.014]
[13]
Lu, S.C. S-Adenosylmethionine. Int. J. Biochem. Cell Biol., 2000, 32(4), 391-395.
[http://dx.doi.org/10.1016/S1357-2725(99)00139-9] [PMID: 10762064]
[14]
Quiñonez-López, R.R.; Rangel-Salas, I.I.; Estrada-Flores, J.R.; Cortes-Llamas, S.A. Chiral imidazolium salts derived from amino acids: synthesis characterization and structure. Curr. Org. Chem., 2018, 22, 2587-2595.
[15]
Preza, A.M.; Jaramillo, M.E.; Puebla, A.M.; Mateos, J.C.; Hernández, R.; Lugo, E. Antitumor activity against murine lymphoma L5178Y model of proteins from cacao (Theobroma cacao L.) seeds in relation with in vitro antioxidant activity. BMC Complement. Altern. Med., 2010, 10(1), 61-72.
[http://dx.doi.org/10.1186/1472-6882-10-61] [PMID: 20961452]
[16]
Jaramillo-Flores, M.E.; Heriyati-Permady, H.; Puebla-Perez, A.M.; Padilla, E.; Lugo-Cervantes, E.C.; Delgado-Saucedo, J.I.; Ramon-Gallegos, E. Effect of ditaxin and heteranthin and inhibitory effect of Ditaxis heterantha extract on L5178Y tumor development in mice. J. Med. Food., 2011, 14(5), 462-467.
[http://dx.doi.org/10.1089/jmf.2009.0103]
[17]
Beer, J.Z.; Budzicka, E.; Niepokojczycka, E.; Rosiek, O.; Szumiel, I.; Walicka, M. Loss of tumorigenicity with simultaneous changes in radiosensitivity and photosensitivity during in vitro growth of L5178Y murine lymphoma cells. Cancer Res., 1983, 43(10), 4736-4742.
[PMID: 6883332]
[18]
Reynoso-Orozco, R.; Delgado-Saucedo, J.I.; Puebla-Pérez, A.M.; Calvo-Méndez, C.; Carr, D.; Velázquez-Magaña, S.; Santerre, A. Rev. Salud Anim., 2008, 30(2), 128-132.
[19]
Wojnicki, M.; Luty-Błocho, M.; Bednarski, M.; Dudek, M.; Knutelska, J.; Sapa, J.; Zygmunt, M.; Nowak, G.; Fitzner, K. Tissue distribution of gold nanoparticles after single intravenous administration in mice. Pharmacol. Rep., 2013, 65(4), 1033-1038.
[http://dx.doi.org/10.1016/S1734-1140(13)71086-7] [PMID: 24145099]
[20]
Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces, 2008, 66(2), 274-280.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.004] [PMID: 18722754]
[21]
Zhang, X.D.; Wu, D.; Shen, X.; Liu, P.X.; Yang, N.; Zhao, B.; Zhang, H.; Sun, Y.M.; Zhang, L.A.; Fan, F.Y. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int. J. Nanomed. 2011, 6, 2071"-2081.
[http://dx.doi.org/10.2147/IJN.S21657]
[22]
Zhang, X.D.; Wu, H.Y.; Wu, D.; Wang, Y.Y.; Chang, J.H.; Zhai, Z.B.; Meng, A.M.; Liu, P.X.; Zhang, L.A.; Fan, F.Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomed. 2010, 5, 771-781.
[http://dx.doi.org/ 10.2147/IJN.S8428.]
[23]
Williams, K.; Lee, E. Importance of drug enantiomers in clinical pharmacology. Drugs, 1985, 30(4), 333-354.
[http://dx.doi.org/10.2165/00003495-198530040-00003] [PMID: 3905334]
[24]
Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci., 2006, 2(2), 85-100.
[PMID: 23674971]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy