Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

间歇性低氧对MCF7乳腺癌细胞株葡萄糖代谢基因表达的影响

卷 20, 期 3, 2020

页: [216 - 222] 页: 7

弟呕挨: 10.2174/1568009619666191116095847

价格: $65

Open Access Journals Promotions 2
摘要

背景:缺氧条件会诱导分子改变,从而影响癌细胞的存活率和化学抗性表型。 目的:本研究旨在探讨间歇性低氧条件对乳腺癌MCF7细胞葡萄糖代谢基因表达的影响。 方法:使用聚合酶链反应阵列法分析基因表达。另外,检查细胞抗性,存活和迁移率以确保低氧对细胞的影响。 结果:30次低氧发作通过显着(p值<0.05)上调所涉及的PCK2,PHKG1,ALDOC,G6PC,GYS2,ALDOB,HK3,PKLR,PGK2,PDK2,ACO1和H6PD基因的表达来诱导Warburg效应在糖酵解中获得。此外,主要糖异生酶基因的表达显着下调(ANOVA,p值<0.05)。这些分子改变与增加的MCF7细胞分裂和迁移速率有关。但是,在暴露于60次缺氧事件的MCF7细胞中,发作30次后诱导的分子和表型变化已正常化。 结论:从这项研究得出的结论是,30次间歇性低氧发作可通过上调糖酵解途径相关基因的表达来提高MCF7乳腺癌细胞的存活率并诱导Warburg效应。这些结果可能会加深我们对缺氧条件下乳腺癌细胞分子改变的了解。

关键词: 低氧,MCF7细胞,糖酵解,warburg,细胞抗性,糖酵解途径。

图形摘要
[1]
Farris, A.L.; Rindone, A.N.; Grayson, W.L. Oxygen delivering biomaterials for tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(20), 3422-3432.
[http://dx.doi.org/10.1039/C5TB02635K] [PMID: 27453782]
[2]
Eales, K.L.; Hollinshead, K.E.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis, 2016, 5e190
[http://dx.doi.org/10.1038/oncsis.2015.50] [PMID: 26807645]
[3]
Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med., 2007, 80(2), 51-60.
[PMID: 18160990]
[4]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.), 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[5]
McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol., 2014, 87(1035)20130676
[http://dx.doi.org/10.1259/bjr.20130676] [PMID: 24588669]
[6]
Leithner, K.; Wohlkoenig, C.; Stacher, E. Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model - role of tumor stroma cells. BMC Cancer, 2014, 14, 40.
[http://dx.doi.org/10.1186/1471-2407-14-40] [PMID: 24460801]
[7]
Höckel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001, 93(4), 266-276.
[http://dx.doi.org/10.1093/jnci/93.4.266] [PMID: 11181773]
[8]
Challapalli, A.; Carroll, L.; Aboagye, E.O. Molecular mechanisms of hypoxia in cancer. Clin. Transl. Imaging, 2017, 5(3), 225-253.
[http://dx.doi.org/10.1007/s40336-017-0231-1] [PMID: 28596947]
[9]
Loreti, E.; Valeri, M.C.; Novi, G.; Perata, P. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiol., 2018, 176(2), 1286-1298.
[http://dx.doi.org/10.1104/pp.17.01002] [PMID: 29084901]
[10]
Luoto, K.R.; Kumareswaran, R.; Bristow, R.G. Tumor hypoxia as a driving force in genetic instability. Genome Integr., 2013, 4(1), 5.
[http://dx.doi.org/10.1186/2041-9414-4-5] [PMID: 24152759]
[11]
Hielscher, A.; Gerecht, S. Hypoxia and free radicals: role in tumor progression and the use of engineering-based platforms to address these relationships. Free Radic. Biol. Med., 2015, 79, 281-291.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.015] [PMID: 25257256]
[12]
Hamdan, F.H.; Zihlif, M.A. Gene expression alterations in chronic hypoxic MCF7 breast cancer cell line. Genomics, 2014, 104(6 Pt B), 477-481.
[http://dx.doi.org/10.1016/j.ygeno.2014.10.010] [PMID: 25449175]
[13]
Flamant, L.; Roegiers, E.; Pierre, M.; Hayez, A.; Sterpin, C.; De Backer, O.; Arnould, T.; Poumay, Y.; Michiels, C. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer, 2012, 12, 391.
[http://dx.doi.org/10.1186/1471-2407-12-391] [PMID: 22954140]
[14]
Rademakers, S.E.; Lok, J.; van der Kogel, A.J.; Bussink, J.; Kaanders, J.H. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer, 2011, 11, 167.
[http://dx.doi.org/10.1186/1471-2407-11-167] [PMID: 21569415]
[15]
Denko, N.C. Hypoxic regulation of metabolism offers new opportunities for anticancer therapy. Expert Rev. Anticancer Ther., 2014, 14(9), 979-981.
[http://dx.doi.org/10.1586/14737140.2014.930345] [PMID: 24930453]
[16]
Chen, H.; Lee, L.S.; Li, G.; Tsao, S.W.; Chiu, J.F. Upregulation of glycolysis and oxidative phosphorylation in benzo[α]pyrene and arsenic-induced rat lung epithelial transformed cells. Oncotarget, 2016, 7(26), 40674-40689.
[http://dx.doi.org/10.18632/oncotarget.9814] [PMID: 27276679]
[17]
Li, X.B.; Gu, J.D.; Zhou, Q.H. Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy. Thorac. Cancer, 2015, 6(1), 17-24.
[http://dx.doi.org/10.1111/1759-7714.12148] [PMID: 26273330]
[18]
Adekola, K.; Rosen, S.T.; Shanmugam, M. Glucose transporters in cancer metabolism. Curr. Opin. Oncol., 2012, 24(6), 650-654.
[http://dx.doi.org/10.1097/CCO.0b013e328356da72] [PMID: 22913968]
[19]
Vyatkina, G.; Bhatia, V.; Gerstner, A.; Papaconstantinou, J.; Garg, N. Impaired mitochondrial respiratory chain and bioenergetics during chagasic cardiomyopathy development. Biochim. Biophys. Acta, 2004, 1689(2), 162-173.
[http://dx.doi.org/10.1016/j.bbadis.2004.03.005] [PMID: 15196597]
[20]
Justus, C.R.; Leffler, N.; Ruiz-Echevarria, M.; Yang, L.V. In vitro cell migration and invasion assays. J. Vis. Exp., 2014, 88.
[21]
Toffoli, S.; Michiels, C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J., 2008, 275(12), 2991-3002.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06454.x] [PMID: 18445039]
[22]
Annibaldi, A.; Widmann, C. Glucose metabolism in cancer cells. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(4), 466-470.
[http://dx.doi.org/10.1097/MCO.0b013e32833a5577] [PMID: 20473153]
[23]
Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[24]
Robey, I.F.; Stephen, R.M.; Brown, K.S.; Baggett, B.K.; Gatenby, R.A.; Gillies, R.J. Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia, 2008, 10(8), 745-756.
[http://dx.doi.org/10.1593/neo.07724] [PMID: 18670636]
[25]
Bettum, I.J.; Gorad, S.S.; Barkovskaya, A.; Pettersen, S.; Moestue, S.A.; Vasiliauskaite, K.; Tenstad, E.; Øyjord, T.; Risa, Ø.; Nygaard, V.; Mælandsmo, G.M.; Prasmickaite, L. Metabolic reprogramming supports the invasive phenotype in malignant melanoma. Cancer Lett., 2015, 366(1), 71-83.
[http://dx.doi.org/10.1016/j.canlet.2015.06.006] [PMID: 26095603]
[26]
Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell, 2010, 40(2), 294-309.
[http://dx.doi.org/10.1016/j.molcel.2010.09.022] [PMID: 20965423]
[27]
Yang, J.; Kalhan, S.C.; Hanson, R.W. What is the metabolic role of phosphoenolpyruvate carboxykinase? J. Biol. Chem., 2009, 284(40), 27025-27029.
[http://dx.doi.org/10.1074/jbc.R109.040543] [PMID: 19636077]
[28]
Gray, L.R.; Tompkins, S.C.; Taylor, E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci., 2014, 71(14), 2577-2604.
[http://dx.doi.org/10.1007/s00018-013-1539-2] [PMID: 24363178]
[29]
Tanner, L.B.; Goglia, A.G.; Wei, M.H.; Sehgal, T.; Parsons, L.R.; Park, J.O.; White, E.; Toettcher, J.E.; Rabinowitz, J.D. Four key steps control glycolytic flux in mammalian cells. Cell Syst., 2018, 7(1), 49-62.
[http://dx.doi.org/10.1016/j.cels.2018.06.003]
[30]
Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci., 2014, 39(8), 347-354.
[http://dx.doi.org/10.1016/j.tibs.2014.06.005] [PMID: 25037503]
[31]
Chen, Y.; Wan, Y.; Wang, Y.; Zhang, H.; Jiao, Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int. J. Nanomedicine, 2011, 6, 2321-2326.
[PMID: 22072869]
[32]
Ontikatze, T.; Rudner, J.; Handrick, R.; Belka, C.; Jendrossek, V. Dihydroartemisinin is a hypoxia-active anti-cancer drug in colorectal carcinoma cells. Front. Oncol., 2014, 4, 116.
[http://dx.doi.org/10.3389/fonc.2014.00116] [PMID: 24904829]
[33]
Adeva-Andany, M.M.; González-Lucán, M.; Donapetry-García, C.; Fernández-Fernández, C.; Ameneiros-Rodríguez, E. Glycogen metabolism in humans. BBA Clin., 2016, 5, 85-100.
[http://dx.doi.org/10.1016/j.bbacli.2016.02.001] [PMID: 27051594]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy