Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Chemistry and Synthesis of Thienopyrazine, Pyrrolopyrazine and Furopyrazine Derivatives

Author(s): Majid M. Heravi*, Afsaneh Feiz and Ayoob Bazgir*

Volume 23, Issue 24, 2019

Page: [2635 - 2663] Pages: 29

DOI: 10.2174/1385272823666191106101954

Price: $65

Open Access Journals Promotions 2
Abstract

Bicyclic compounds derived from pyrazine and aromatic five-membered heterocycles including thiophene, furan and pyrrole show various biological and pharmacological properties, such as anti-inflammatory, antiviral, antitumor, antioxidant, antimycobacterial, and cytostatic activities. In many cases, it has been demonstrated that there are more potent cytostatic and cytotoxic agents against human tumor cell lines, leukemia, colon cancer, central nervous system cancer, melanoma, ovarian cancer, prostate cancer and breast cancer. They are also useful precursors for the large scale preparation of inorganicorganic hybrid solar cells, suitable acceptors for the synthesis of low-band gap polymers. They use ligands for serotoninergic 5-HT7 receptor and are effective in neurogical and psychiatric diseases, antimalarial, neuroleptic and cardiovascular. The absence of any useful review concerning the chemistry and synthesis of the above-mentioned heterocyles encouraged us to underscore the recent advances in chemistry and synthetic approaches leading to the preparation of thienopyrazines, pyrrolopyrazines and furopyrazines since 1990.

Keywords: Five-membered heterocycles, pyrazines, bicyclic heterocycles, aza-six membered heterocycles, thienopyrazines, pyrrolopyrazines, furopyrazines.

Next »
Graphical Abstract
[1]
Tišler, M.; Stanovnik, B. Pyridazines and their benzo derivatives. Compr. Heterocycl. Chem., 1984, 3, 1-56.
[2]
Selvam, Th.P.; James, C.R.; Dniandev, Ph.V.; Valzita, S.K. A mini review of pyrimidine and fused pyrimidine marketed drugs. Res. Pharm., 2012, 2, 1-9.
[3]
Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 2002, 45(25), 5604-5606.
[http://dx.doi.org/10.1021/jm020310n] [PMID: 12459027]
[4]
Asif, M. The pharmacological importance of some diazine containing drug molecules. SOP Trans. Org. Chem., 2014, 1, 1-16.
[http://dx.doi.org/10.15764/STAC.2014.01001]
[5]
Somerville, R.L. Encyclopedia of Genetics; Elsevier Science, 2001.
[6]
Parker, J. Encyclopedia of Genetics; Elsevier Science, 2001.
[7]
Chemistry for Biologists, Nucleic acids. Available at:, http://www.rsc.org/Education/Teachers/Resources/cfb/nucleicacids.htm (Accessed June 14th 2019).
[8]
Gerald, F.; James, P. The Vitamins, 5th ed; Elsevier, 2017.
[9]
Nohr, D.; Biesalski, H.K. Vitamin B1. Ref. Mod. Food Sci. 2016, 701-703.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.01073-8]
[10]
Khoo, K.S.; Lee, S.Y.; Ooi, C.W.; Fu, X.; Miao, X.; Ling, T.Ch.; Show, P.L. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresour. Technol., 2019, 288, 121-606.
[http://dx.doi.org/10.1016/j.biortech.2019.121606] [PMID: 31178260]
[11]
Smith, M.B. Organic Chemistry: An Acid-Base Approach; Taylor & Francis, 2011.
[12]
Heterocyclic Compounds. IUPAC Gold Book, Spiro compounds. Available at: https://goldbook.iupac.org/html/H/H02798 (Accessed on 25th July, 2019)
[13]
Sondhi, S.M.; Singh, N.; Johar, M.; Kumar, A. Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives. Bioorg. Med. Chem., 2005, 13(22), 6158-6166.
[http://dx.doi.org/10.1016/j.bmc.2005.06.063] [PMID: 16115773]
[14]
Wermuth, C.G. Are pyridazines privileged structures? MedChemComm, 2011, 2, 935-941.
[http://dx.doi.org/10.1039/c1md00074h]
[15]
Maga, J.A. Pyrazine update. Food Rev. Int., 2009, 8, 479-558.
[http://dx.doi.org/10.1080/87559129209540951]
[16]
Wagner, R.; Czerny, M.; Bielohradsky, J.; Grosch, W. Structure-odour-activity relationships of alkylpyrazines. Z. Lebensm. Unters. Forsch., 1999, 208, 308-316.
[http://dx.doi.org/10.1007/s002170050422]
[17]
Müller, R.; Rappert, S. Pyrazines: occurrence, formation and biodegradation. Appl. Microbiol. Biotechnol., 2010, 85(5), 1315-1320.
[http://dx.doi.org/10.1007/s00253-009-2362-4] [PMID: 19957079]
[18]
de Castro, S.; Familiar, O.; Andrei, G.; Snoeck, R.; Balzarini, J.; Camarasa, M.J.; Velázquez, S. From β-amino-γ-sultone to unusual bicyclic pyridine and pyrazine heterocyclic systems: synthesis and cytostatic and antiviral activities. ChemMedChem, 2011, 6(4), 686-697.
[http://dx.doi.org/10.1002/cmdc.201000546] [PMID: 21370477]
[19]
Lima, C.H.S.; Bispo, M.L.F.; De Souza, M.V.N. Pirazinamida: um farmacoessencial no tratamento da tuberculose. Rev. Virtual Quim., 2011, 3, 159-180.
[20]
Dolezal, M.; Kralova, K. Synthesis and evaluation of pyrazine derivatives with herbicidal activity. Tech. Rijeka Croatia, 2011, 8, 581-610.
[http://dx.doi.org/10.5772/13482]
[21]
Kayagil, I.; Demirayak, S. Synthesis of some 2,3,6,8-tetraarylimidazo[1,2-a]pyrazine derivatives by using either reflux or microwave irradiation method, and investigation their anticancer activities. Turk. J. Chem., 2011, 3, 13-24.
[22]
Lee, S.J.; Kong, Y.D.; Jeon, M.G. Pyrido[2,3-b]pyrazines derivatives as antitumor agents. Patent no. KR2008004646 2008.
[23]
Muci, A.; Finer, J.T.; Lu, P. Preparation of imidazo[4,5-b]pyrazine derivatives as modulator of skeletal muscle myosin. Patent no. WO2008016669, 2008.
[24]
Abdel-Megid, M.M.; Elmahdy, K.M.; Elkazak, A.H.; Seada, M.F.; Mohamed, O. Chemistry of thienopyrimidines and their biological applications. J. Pharm. Appl. Chem., 2016, 2, 103-127.
[http://dx.doi.org/10.18576/jpac/020301]
[25]
Kheder, N.A.; Mabkhot, Y.N. Synthesis and antimicrobial studies of some novel bis-[1,3,4] thiadiazole and bis-thiazole pendant to thieno[2,3-b]thiophene moiety. Int. J. Mol. Sci., 2012, 13(3), 3661-3670.
[http://dx.doi.org/10.3390/ijms13033661] [PMID: 22489174]
[26]
Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.D.; Esrafili, M. New page to access pyrazines and their ring fused analogues: synthesis from N-propargylamines. Curr. Org. Synth., 2017, 14, 557-567.
[http://dx.doi.org/10.2174/1570179413666160818144816]
[27]
Campos, J.F.; Queiroz, M.J.R.P.; Berteina-Raboin, S. Synthesis of new thieno[3, 2-b]pyridines and thieno[2, 3-b] pyrazines by palladium cross-coupling. ChemistrySelect, 2017, 2, 6945-6948.
[http://dx.doi.org/10.1002/slct.201701054]
[28]
Bhadoriya, U.; Jain, D.K. Fused heterocycles as a potent biological agent; recent advancement. Int. J. Pharm. Sci. Res., 2016, 6, 1874-1880.
[29]
Huang, K.; Qin, Y.; Yan, Ch.; Chen, M.; Xu, L.; Jia, Ch.; Zhong, X. Thieno[3,4-b] pyrazine and 9, 9-di-n-octylfluorene based copolymer for efficient inorganic-organic hybrid solar cells. Synth. React. Inorg. Met.-Org. Chem., 2017, 47, 60-64.
[30]
Yew, G.Y.; Lee, S.Y.; Show, P.L.; Tao, Y.; Law, C.L.; Nguyen, T.T.C.; Chang, J.S. Recent advances in algae biodiesel production: from upstream cultivation to downstream processing. Bioresour. Technol. Rep., 2019, 7100227
[http://dx.doi.org/10.1016/j.biteb.2019.100227]
[31]
Shah, M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-Producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front. Plant Sci., 2016, 7, 531.
[http://dx.doi.org/10.3389/fpls.2016.00531]
[32]
Pavé, G.; Lazar, S.; Lesnard, A.; Rault, S.; Guillaumet, G. Synthesis of aminopyrrolo[1,2-a]thieno[3,2-e]pyrazine derivatives as serotoninergic 5-HT7 ligands. ARKIVOC, 2010, 10, 116-131.
[33]
Lim, J.; Altman, M.D.; Gibeau, C.R. Thienopyrazine inhibitors of IRAK4 activity. WO patent 144849 A1, September 15, 2016.
[34]
Lim, J.; Altman, M.D.; Gibeau, C.R. Thienopyrazine inhibitors of IRAK4 activity. US patent 0051035 A1, February 22 2018.
[35]
Konkol, K.L.; Schwiderski, R.L.; Rasmussen, S.C. Synthesis, characterization, and electropolymerization of extended fused-ring thieno[3,4-b]pyrazine-based terthienyls. Materials (Basel), 2016, 9(6), 404.
[http://dx.doi.org/10.3390/ma9060404] [PMID: 28773538]
[36]
Lu, M.; Wang, W.; Liang, L.; Yan, Sh.; Ling, Q. Synthesis of D–A low-bandgap polymer based thieno[3,4-b]pyrazine and benzo[1,2-b:4,5- b′]dithiophene for polymer solar cells. Polym. Bull., 2017, 74, 603-614.
[http://dx.doi.org/10.1007/s00289-016-1732-1]
[37]
Nietfeld, J.P.; Heth, C.L.; Rasmussen, S.C. Poly(acenaphtho[1,2-b]thieno[3,4-e]pyrazine): a new low band gap conjugated polymer. Chem. Commun. (Camb.), 2008, (8), 981-983.
[http://dx.doi.org/10.1039/b713126g] [PMID: 18283356]
[38]
Ferreira, S.B.; Kaiser, C.R. Pyrazine derivatives: a patent review. Expert Opinion Therapeutic Patents., 2012, 22, 1033-1051.
[39]
Jorgensen, A.; Faarup, P.; Guddal, E.; Jeppesen, L. Thienopyrazinediones, their preparation and use. US patent 5284847, February 8, 1994.
[40]
Castellote, I.; Vaquero, J.J.; Fernández-Gadea, J.; Alvarez-Builla, J. Pyrrolodiazines. 6. Palladium-catalyzed arylation, heteroarylation, and amination of 3,4-dihydropyrrolo[1,2-a]pyrazines. J. Org. Chem., 2004, 69(25), 8668-8675.
[http://dx.doi.org/10.1021/jo048898o] [PMID: 15575742]
[41]
Terenin, V.I.; Kabanova, E.V.; Feoktistova, E.S. Synthesis and properties of pyrrolo[1,2-a] pyrazines. Chem. Heterocycl. Compd., 1991, 27, 1037-1048.
[http://dx.doi.org/10.1007/BF00486793]
[42]
French, K.J.; Zhuang, Y.; Schrecengost, R.S.; Copper, J.E.; Xia, Z.; Smith, C.D. Cyclohexyl-octahydro-pyrrolo[1,2-a]pyrazine-based inhibitors of human N-myristoyltransferase-1. J. Pharmacol. Exp. Ther., 2004, 309(1), 340-347.
[http://dx.doi.org/10.1124/jpet.103.061572] [PMID: 14724220]
[43]
Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J.M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; Rochette, J.; Sergheraert, C.; Jarry, C. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo[1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J. Med. Chem., 2004, 47(8), 1997-2009.
[http://dx.doi.org/10.1021/jm0310840] [PMID: 15055999]
[44]
Sablayrolles, C.; Cros, G.H.; Milhavet, J.C.; Rechenq, E.; Chapat, J.P.; Boucard, M.; Serrano, J.J.; McNeill, J.H. Synthesis of imidazo[1,2-a]pyrazine derivatives with uterine-relaxing, antibronchospastic, and cardiac-stimulating properties. J. Med. Chem., 1984, 27(2), 206-212.
[http://dx.doi.org/10.1021/jm00368a018] [PMID: 6319701]
[45]
Trejo, A.; Arzeno, H.; Browner, M.; Chanda, S.; Cheng, S.; Comer, D.D.; Dalrymple, S.A.; Dunten, P.; Lafargue, J.; Lovejoy, B.; Freire-Moar, J.; Lim, J.; Mcintosh, J.; Miller, J.; Papp, E.; Reuter, D.; Roberts, R.; Sanpablo, F.; Saunders, J.; Song, K.; Villasenor, A.; Warren, S.D.; Welch, M.; Weller, P.; Whiteley, P.E.; Zeng, L.; Goldstein, D.M. Design and synthesis of 4-azaindoles as inhibitors of p38 MAP kinase. J. Med. Chem., 2003, 46(22), 4702-4713.
[http://dx.doi.org/10.1021/jm0301787] [PMID: 14561090]
[46]
Meijer, L.; Flajolet, M.; Greengard, P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol. Sci., 2004, 25(9), 471-480.
[http://dx.doi.org/10.1016/j.tips.2004.07.006] [PMID: 15559249]
[47]
Mapelli, M.; Massimiliano, L.; Crovace, C.; Seeliger, M.A.; Tsai, L-H.; Meijer, L.; Musacchio, A. Mechanism of CDK5/p25 binding by CDK inhibitors. J. Med. Chem., 2005, 48(3), 671-679.
[http://dx.doi.org/10.1021/jm049323m] [PMID: 15689152]
[48]
Arban, R.; Bianchi, F.; Buson, A.; Cremonesi, S.; Di Fabio, R.; Gentile, G.; Micheli, F.; Pasquarello, A.; Pozzan, A.; Tarsi, L.; Terreni, S.; Tonelli, F. Pyrrolo[1,2-a]pyrazine and pyrazolo[1,5-a]pyrazine: novel, potent, and selective series of Vasopressin 1b receptor antagonists. Bioorg. Med. Chem. Lett., 2010, 20(17), 5044-5049.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.037] [PMID: 20674355]
[49]
Saini, K.M.; Kumar, S.; Patel, M.; Saunthwal, R.K.; Verma, A.K. Trifluoroacetic acid mediated one‐pot synthesis of furo‐fused quinoxalines/pyrazines. Eur. J. Org. Chem., 2017, 3707-3715.
[http://dx.doi.org/10.1002/ejoc.201700541]
[50]
Nakhi, A.; Rahman, M.S.; Seerapu, G.P.; Banote, R.K.; Kumar, K.L.; Kulkarni, P.; Haldar, D.; Pal, M. Transition metal free hydrolysis/cyclization strategy in a single pot: synthesis of fused furo N-heterocycles of pharmacological interest. Org. Biomol. Chem., 2013, 11(30), 4930-4934.
[http://dx.doi.org/10.1039/c3ob41069b] [PMID: 23824158]
[51]
Takahashi, Y.; Iinuma, Y.; Kubota, T.; Tsuda, M.; Sekiguchi, M.; Mikami, Y.; Fromont, J.; Kobayashi, J. Hyrtioseragamines A and B, new alkaloids from the sponge Hyrtios species. Org. Lett., 2011, 13(4), 628-631.
[http://dx.doi.org/10.1021/ol102867x] [PMID: 21247076]
[52]
Heravi, M.M.; Talaie, B. Ketenes as privileged synthons in the syntheses of heterocyclic compounds. Part 1: three- and four-membered heterocycles. Adv. Heterocycl. Chem., 2014, 113, 143-244.
[http://dx.doi.org/10.1016/B978-0-12-800170-7.00004-3]
[53]
Khaghaninejad, S.; Heravi, M.M. Paal-Knorr reaction in the synthesis of heterocyclic compounds. Adv. Heterocycl. Chem., 2014, 111, 95-146.
[http://dx.doi.org/10.1016/B978-0-12-420160-6.00003-3]
[54]
Heravi, M.M.; Nazari, N. Bischler-Napieralski reaction in total synthesis of isoquinoline-based natural products. an old reaction, a new application. Curr. Org. Chem., 2015, 19, 2358-2408.
[http://dx.doi.org/10.2174/1385272819666150730214506]
[55]
Heravi, M.M.; Zadsirjan, V. Recent advances in the synthesis of benzo[b]furans. Adv. Heterocycl. Chem., 2015, 117, 261-376.
[http://dx.doi.org/10.1016/bs.aihch.2015.08.003]
[56]
Heravi, M.M.; Alishiri, T. Dimethyl acetylene carboxylate as a building block in heterocyclic synthesis. Adv. Heterocycl. Chem., 2014, 113, 1-66.
[http://dx.doi.org/10.1016/B978-0-12-800170-7.00001-8]
[57]
Heravi, M.M.; Khaghaninejad, S.; Mostofi, M. Pechmann reaction in the synthesis of coumarin derivatives. Adv. Heterocycl. Chem., 2014, 112, 1-50.
[http://dx.doi.org/10.1016/B978-0-12-800171-4.00001-9]
[58]
Heravi, M.M.; Fathi, V.V. Recent advances in application of amino acids: key building blocks in design and syntheses of heterocyclic compounds. RSC Advances, 2015, 114, 77-145.
[59]
Heravi, M.M.; Talaee, B. Ketenes as privileged synthons in the syntheses of heterocyclic compounds part 2: five-membered heterocycles. Adv. Heterocycl. Chem., 2015, 114, 147-225.
[http://dx.doi.org/10.1016/bs.aihch.2015.02.001]
[60]
Talaei, B.; Heravi, M.M. Diketene a privileged synthon in the synthesis of heterocycles. Part 2: six-membered ring heterocycles Adv. Het. Chem., 2018, 125, 1-106.
[http://dx.doi.org/10.1016/bs.aihch.2017.10.004]
[61]
Mohammadkhani, L.; Heravi, M.M. Synthesis of various N‐heterocycles using the ugi four‐center three‐component reaction. ChemistrySelect, 2019, 4, 10187-10196.
[62]
Heravi, M.M.; Talaei, B. Diketene as privileged synthon in the syntheses of heterocycles part 1: four- and five-membered ring heterocyclesa adv. Het. Chem., 2017, 122, 43-114.
[63]
Hosseinnejad, T.; Heravi, M.M.; Firouzi, R. Regioselectivity in sonogashira synthesis of 6-(4-nitrobenzyl)-2-phenylthiazolo[3,2-b]1,2,4-triazole: a quantum chemistry study. J. Mol. Model., 2013, 19(2), 951-961.
[http://dx.doi.org/10.1007/s00894-012-1639-1] [PMID: 23097004]
[64]
Ghassemzadeh, M.; Bolourtchian, M.; Chitsaz, S.; Neumüller, B.; Heravi, M.M. Syntheses of new sulfur-nitrogen palladacycles - crystal structures of [(AMTTO)PaBr2]2 3.5THF, [(AMTTO)PdI2]2 3MeOH, [(AMTTO)Pd(PPh3)Br]Br MeOH, and [(AMTTO)Pd(PPh3)I]2MeOH (AMTTO=4-amino-6-methyl-1,2,4-triazine-3-thione-5-one). Eur. J. Inorg. Chem., 2000, 2000, 1877-1882.
[http://dx.doi.org/10.1002/1099-0682(200008)2000:8<1877:AID-EJIC1877>3.0.CO;2-K]
[65]
Heravi, M.M.; Kivanloo, A.; Rahimzadeh, M.; Bakavoli, M.; Ghassemzadeh, M.; Neumüller, B. Regioselective synthesis of 6-benzylthiazolo[3,2-b]1,2,4-triazoles during sonogashira coupling. Tetrahedron Lett., 2005, 46, 1607-1610.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.091]
[66]
Heravi, M.M.; Motamedi, R.; Bamoharram, F.F.; Seify, N. A catalytic method for synthesis of 6-aryl-1H-pyrazolo[3,4-d]pyrimidin-4[5H]-ones by heteropolyacids: H-14[NaP5W29MoO110] and H3PMo12O40. Catal. Commun., 2007, 8, 1467-1471.
[http://dx.doi.org/10.1016/j.catcom.2006.12.012]
[67]
Heravi, M.M.; Sadjadi, S.; Oskooie, H.A. Hekmat Shoar, R.; Bamoharram, F.F. A direct oxidative route for the synthesis of pyrimidines using heteropolyacids. Tetrahedron Lett., 2009, 50, 662-666.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.105]
[68]
Mirsafaei, R.; Heravi, M.M.; Hosseinnejad, T.; Ahmadi, S. Copper(II) nanoparticles: an efficient and reusable catalyst in green oxidation of benzyl alcohols to benzaldehydes in water: green catalytic oxidation of benzyl alcohols to benzaldehydes. Appl. Organomet. Chem., 2016, 30, 823-830.
[http://dx.doi.org/10.1002/aoc.3509]
[69]
Sadjadi, S.; Heravi, M.M.; Nazari, N. Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Advances, 2016, 6, 53203-53272.
[http://dx.doi.org/10.1039/C6RA02143C]
[70]
Heravi, M.M.; Zadsirjan, V.; Dehghani, M.; Ahmadi, T. Towards click chemistry: multicomponent reactions via combinations of name reactions. Tetrahedron, 2018, 74, 3391-3457.
[http://dx.doi.org/10.1016/j.tet.2018.04.076]
[71]
Heravi, M.M.; Hashemi, E.; Beheshtiha, Y.S.; Ahmadi, S.; Hosseinnejad, T. PdCl2 on modified poly(styrene-co-maleic anhydride): a highly active and recyclable catalyst for the Suzuki-Miyaura and Sonogashira reactions. J. Mol. Catal. Chem., 2015, 394, 74-82.
[http://dx.doi.org/10.1016/j.molcata.2014.07.001]
[72]
Ebrahimpour-Malamir, F.; Hosseinnejad, T.; Mirsafaei, R.; Heravi, M.M. Synthesis, characterization and computational study of CuI nanoparticles immobilized on modified poly (styrene-co-maleic anhydride) as a green, efficient and recyclable heterogeneous catalyst in the synthesis of 1,4-disubstituted 1,2,3-triazoles via click reaction. Appl. Organomet. Chem., 2018, 32e3913
[http://dx.doi.org/10.1002/aoc.3913]
[73]
Heravi, M.M.; Bakhtiari, Kh.; Oskooie, H.A.; Taheri, Sh. MnCl2-promoted synthesis of quinoxaline derivatives at room temperature. Heteroatom Chem., 2008, 19, 218-220.
[http://dx.doi.org/10.1002/hc.20401]
[74]
Heravi, M.M.; Bakhtiari, Kh.; Tehrani, M.H.; Javadi, N.M.; Oskooie, H.A. Facile synthesis of quinoxaline derivatives using o-iodoxybenzoic acid (IBX) at room temperature. ARKIVOC, 2006, 16, 16-22.
[75]
Heravi, M.M.; Bakhtiari, Kh.; Bamoharram, F.F.; Tehrani, M.H. Wells-Dawson type heteropolyacid catalyzed synthesis of quinoxaline derivatives at room temperature. Monatsh. Chem., 2007, 138, 465-467.
[http://dx.doi.org/10.1007/s00706-007-0594-5]
[76]
Beheshtiha, Y.S.; Heravi, M.M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Tavakoli-Hossieni, N. Efficient and green synthesis of 1,2-disubstituted benzimidazoles and quinoxalines using bronsted acid ionic liquid, [(CH2)4SO3HMIM][HSO4], in water at room temperature. Synth. Commun., 2010, 40, 1216-1223.
[http://dx.doi.org/10.1080/00397910903062280]
[77]
Heravi, M.M.; Nami, N.; Oskooie, H.A.; Hekmatshoar, R. Microwave-assisted synthesis of quinoxalines, benzoxazines, and benzothiazines under solvent-free conditions. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180, 1873-1878.
[http://dx.doi.org/10.1080/104265090889585]
[78]
Sehneller, S.W.; Clough, F.W.; Hardee, L.E. A simple synthesis of thieno[2,3-b]pyrazine and thieno[2,3-h I pyridine. J. Heterocycl. Chem., 1976, 13, 273-275.
[http://dx.doi.org/10.1002/jhet.5570130214]
[79]
Bourguignon, J.; Lemarchand, M.; Queguiner, G. Nouvelles syntheses de la thieno [2,3-b] pyrazine. J. Heterocycl. Chem., 1980, 17, 257-264.
[http://dx.doi.org/10.1002/jhet.5570170210]
[80]
Taylor, E.C.; Reiter, L.A. Studies on the molybdenum cofactor.an unequivocal totalsynthesis of (f)-urothione. J. Am. Chem. Soc., 1989, 111, 285-291.
[http://dx.doi.org/10.1021/ja00183a043]
[81]
Taylor, E.C.; Reiter, L.A. Unequivocal total synthesis of deoxyurothione. J. Org. Chem., 1982, 47, 528-531.
[http://dx.doi.org/10.1021/jo00342a031]
[82]
El-Shafei, A.K.; El-Sayed, A.M.; Abdel-Ghany, H.; El-Saghier, A.M.M. Synthesis and reactions of some pyrazine derivatives. Synth. Commun., 1994, 24, 1895-1916.
[http://dx.doi.org/10.1080/00397919408010198]
[83]
Volovenko, Y.M.; Dubinina, G.G. Synthesis and properties of 6-amino-7-hetaryl-5-R-5H pyrrolo- [2,3-b]pyrazine-2,3-dicarbonitriles. Chem. Heterocycl. Compd., 2002, 38, 336-343.
[http://dx.doi.org/10.1023/A:1015695522610]
[84]
Belema, M.; Bunker, A.; Nguyen, V.N.; Beaulieu, F.; Ouellet, C.; Qiu, Y.; Zhang, Y.; Martel, A.; Burke, J.R.; McIntyre, K.W.; Pattoli, M.A.; Daloisio, C.; Gillooly, K.M.; Clarke, W.J.; Brassil, P.J.; Zusi, F.Ch.; Vyas, D.M. Synthesis and structure-activity relationship of imidazo(1,2-a)thieno(3,2-e)pyrazines as IKK-β inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(15), 4284-4289.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.031] [PMID: 17540562]
[85]
Badran, M.M.; Roshdy, M.A.S.; El-Hameid, M.K. synthesis of certain fused pyrrolothieno[3-2e] pyrazine derivatives with possible anxiolytic activity. OCAIJ, 2013, 9, 427-436.
[86]
Kolli, S.K.; Nakhi, A.; Medishetti, R.; Yellanki, S.; Kulkarni, P.; Ramesh Raju, R.; Pal, M. NaSH in the construction of thiophene ring fused with N-heterocycles: A rapid and inexpensive synthesis of novel small molecules as potential inducers of apoptosis. Bioorg. Med. Chem. Lett., 2014, 24(18), 4460-4465.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.096] [PMID: 25168747]
[87]
Motoyama, R.; Sato, K.; Imoto, E. ThiopheneCompounds.IV-VIII. IV. On the decarboxylative and dehylogenative nitration of thiophene derivatives. Nippon Kagaku Zasshi, 1957, 78, 779-784.
[http://dx.doi.org/10.1246/nikkashi1948.78.779]
[88]
Outurquin, F.; Paulmier, C. Synthèse de nouveaux systems hétérocycliques thiophéniquesazotés à partir du diamino-3, 4-thiophène. Bull. Soc. Chim. Fr., 1983, II, 153-158.
[89]
Binder, D.; Noe, Ch.R.; Geibler, F.; Hillebrand, F. Thiophene as a structural element of physiologically active compounds IX: Thienopyrazine- 1,4-dioxides. Arch. Pharm. (Weinheim), 1981, 314, 564-567.
[http://dx.doi.org/10.1002/ardp.19813140614]
[90]
Mørkved, E.H.; Beukes, J.A.; Mo, F. o-Quinonoid heterocycles: synthesis and crystal structure of 2,3-dicyano-5,7-bismethylthieno[3,4-b]pyrazine. Molecules, 2007, 12(8), 1623-1631.
[http://dx.doi.org/10.3390/12081623] [PMID: 17960078]
[91]
Li, J.Ch.; Hwang, M.L.; Lee, E.W.; Lee, S.H.; Yu, S.Ch.; Lee, Y.S. Synthesis and characterization of N-(2- ethylhexyl) carbazole-2,3-bis (4-fluorophenyl)) thieno[3,4-b]pyrazine copolymer. Bull. Korean Chem. Soc., 2010, 31, 2073-2076.
[http://dx.doi.org/10.5012/bkcs.2010.31.7.2073]
[92]
Kenning, D.D.; Mitchell, K.A.; Calhoun, T.R.; Funfar, M.R.; Sattler, D.J.; Rasmussen, S.C. Thieno[3,4-b]pyrazines: synthesis, structure, and reactivity. J. Org. Chem., 2002, 67(25), 9073-9076.
[http://dx.doi.org/10.1021/jo0262255] [PMID: 12467431]
[93]
Li, J.; Li, Q.; Liu, D. Novel thieno-[3,4-b]-pyrazines cored dendrimers with carbazole dendrons: design, synthesis, and application in solution-processed red organic light-emitting diodes. ACS Appl. Mater. Interfaces, 2011, 3(6), 2099-2107.
[http://dx.doi.org/10.1021/am200317k] [PMID: 21585198]
[94]
Abdo, N.I.; El-Shehawy, A.A.; El-Barbary, A.A. Lee, Lee, J. S. Palladium-catalyzed direct c–h arylation of thieno[3,4-b]pyrazines: synthesis of advanced oligomeric and polymeric materials. Eur. J. Org. Chem., 2012, 5540-5551.
[http://dx.doi.org/10.1002/ejoc.201200769]
[95]
Liyanage, N.P.; Yella, A.; Nazeeruddin, M.; Grätzel, M.; Delcamp, J.H. Thieno[3,4-b]pyrazine as an electron deficient π-Bridge in D-A-π-A DSCs. ACS Appl. Mater. Interfaces, 2016, 8(8), 5376-5384.
[http://dx.doi.org/10.1021/acsami.5b12503] [PMID: 26866909]
[96]
Alghamdi, A.A.B.; Imragaa, A.; Abdel-Halim, E.S.; Iraqi, A. Synthesis and characterization of novel thiophene and carbazole-based polymers - optical and electrochemical characterization. Int. J. Electrochem. Sci., 2016, 11, 5111-5127.
[http://dx.doi.org/10.20964/2016.06.57]
[97]
Mozingo, R.; Harris, S.A.; Wolf, D.E.; Hoffhine, Ch.E.; Easton, N.R.; Folkers, K. Hydrogenation of compounds containing divalent sulfur. J. Am. Chem. Soc., 1945, 67, 2092-2095.
[http://dx.doi.org/10.1021/ja01228a011] [PMID: 21005673]
[98]
Wen, L.; Rasmussen, S.C. Synthesis and structural characterization of 2,5-dihalo-3,4-dinitrothiophenes. J. Chem. Crystallogr., 2007, 37, 387-398.
[http://dx.doi.org/10.1007/s10870-006-9160-y]
[99]
Wen, L.; Nietfeld, J.P.; Amb, C.M.; Rasmussen, S.C. Synthesis and characterization of new 2,3-disubstituted thieno[3,4-b]pyrazines: Tunable building blocks for low band gap conjugated materials. J. Org. Chem., 2008, 73(21), 8529-8536.
[http://dx.doi.org/10.1021/jo801632z] [PMID: 18839993]
[100]
Zou, Y.; Wan, M.; Sang, G.; Ye, M.; Li, Y. An alternative copolymer of carbazole and thieno[3,4b]pyrazine: synthesis and mercury detection. Adv. Funct. Mater., 2008, 18, 2724-2732.
[http://dx.doi.org/10.1002/adfm.200800567]
[101]
Matsumoto, K.; Uchida, T. Cycloaddition reactions of cycloimmoniumylides with triphenylcyclopropene. J. Chem. Soc. Perkin Trans., 1981, 1, 73-77.
[http://dx.doi.org/10.1039/p19810000073]
[102]
Kobayashi, Y.; Katsuma, T.; Morinaga, K. Studies on the reactions of heterocyclic compounds. V. Syntheses of diaziniumylides and their conversion to azaindolizines. Chem. Pharm. Bull. (Tokyo), 1971, 19, 2106-2115.
[http://dx.doi.org/10.1248/cpb.19.2106]
[103]
Vierfond, J.M.; Mettey, Y.; Mascrier-Demagny, L.; Miocque, M. Cyclisation par aminationintramoléculairedans la série de la pyrazine. Tetrahedron Lett., 1981, 22, 1219-1222.
[http://dx.doi.org/10.1016/S0040-4039(01)90279-5]
[104]
Noel, S.; Faveau, C.; Norez, C.; Rogier, C.; Mettey, Y.; Becq, F. Discovery of pyrrolo[2,3-b]pyrazines derivatives as submicromolar affinity activators of wild type, G551D, and F508del cystic fibrosis transmembrane conductance regulator chloride channels. J. Pharmacol. Exp. Ther., 2006, 319(1), 349-359.
[http://dx.doi.org/10.1124/jpet.106.104521] [PMID: 16829626]
[105]
Houminer, Y. The unusual formation of pyrrolo[1,2‐a]pyrazines in the reaction of alkylpyrazine anions with trans‐1,2‐dichloroethylene. J. Heterocycl. Chem., 1981, 18, 445-446.
[http://dx.doi.org/10.1002/jhet.5570180251]
[106]
Nikishkin, N.I.; Huskens, J.; Verboom, W. Transition metal-catalyzed functionalization of pyrazines. Org. Biomol. Chem., 2013, 11(22), 3583-3602.
[http://dx.doi.org/10.1039/c3ob40460a] [PMID: 23632914]
[107]
Corbet, J.P.; Paris, J.M.; Cotrel, C. Une nouvelle reaction de cyclisation conduisant a des pyrrolo [1, 2-a] pyrazines. Tetrahedron Lett., 1982, 23, 3565-3566.
[http://dx.doi.org/10.1016/S0040-4039(00)87670-4]
[108]
Dubinina, G.G.; Platonov, M.O.; Golovach, S.M.; Borysko, P.O.; Tolmachov, A.O.; Volovenko, Y.M. Novel 5,7-disubstituted 6-amino-5Hpyrrolo[ 3,2-b]pyrazine-2,3-dicarbonitriles, the promising protein kinase inhibitors with antiproliferative activity. Eur. J. Med. Chem., 2006, 41(6), 727-737.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.019] [PMID: 16675067]
[109]
Herz, W.; Tocker, S. The Pomeranz-Fritsch reaction in the pyrrole series. The synthesis of apoharmine. J. Am. Chem. Soc., 1955, 77, 6355-6357.
[http://dx.doi.org/10.1021/ja01628a081]
[110]
Paudler, W.; Dunham, D. Dictionary of organic compounds. J. Het. Chem., 1965, 2, 410-413.
[http://dx.doi.org/10.1002/jhet.5570020417]
[111]
Shvedov, V.I.; Altukhova, L.B.; Grinev, A.N. A new method for the synthesis of pyrrolo[1,2-a]pyrazines and pyrrolo[1,2-a] quinoxalines. Chem. Heterocycl. Compd., 1970, 6, 975-977.
[http://dx.doi.org/10.1007/BF00480627]
[112]
Chen, W.; Hu, M.; Wu, J.; Zou, H.; Yu, Y. Domino approach for the synthesis of pyrrolo[1,2-α]pyrazine from vinyl azides. Org. Lett., 2010, 12(17), 3863-3865.
[http://dx.doi.org/10.1021/ol101538x] [PMID: 20677803]
[113]
Brimble, M.A.; Rowan, D.R. Synthesis of peramine, an insect feeding deterrent mycotoxin from Acremonium lolii. J. Chem. Soc. Chem. Commun., 1988, 14, 978-979.
[http://dx.doi.org/10.1039/c39880000978]
[114]
He, Y.; Lin, M.; Li, Z.; Liang, X.; Li, G.; Antilla, J.C. Direct synthesis of chiral 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines via a catalytic asymmetric intramolecular aza-Friedel-Crafts reaction. Org. Lett., 2011, 13(17), 4490-4493.
[http://dx.doi.org/10.1021/ol2018328] [PMID: 21834569]
[115]
Güven, S. Construction of pyrrolo[1,2-a]pyrazine structure by metal catalyzed cyclization of n-propargyl substituted pyrroles. PhD Thesis, Middle East Technical University: Ankara, 2013.
[http://dx.doi.org/10.1.1.633.6586]
[116]
Stroganova, T.A.; Vasilin, V.K.; Krapivin, G.D. Furan ring transformation as key stage in the synthesis of 5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-d]pyrazines. Chem. Heterocycl. Compd., 2018, 54, 188-196.
[http://dx.doi.org/10.1007/s10593-018-2253-7]
[117]
Tong, Y.C.; Kerlinger, H.O. Reaction of tetrachloropyrazine with active methylene compounds. J. Heterocycl. Chem., 1983, 20, 365-368.
[http://dx.doi.org/10.1002/jhet.5570200220]
[118]
Charushin, V.N.; Chupakhin, O.N. Reactions of azines with bifunctional nucleophiles: cyclizations and ring transformations. Adv. Heterocycl. Chem., 1988, 43, 301-353.
[http://dx.doi.org/10.1016/S0065-2725(08)60256-1]
[119]
Charushin, V.N.; Mokrushina, G.A.; Petrova, G.M.; Alexandrov, G.G.; Chupakhin, O.N. One-step route to fluorinated furo[2,3,-b]quinoxalines. Mendeleev Commun., 1998, 8, 133-134.
[http://dx.doi.org/10.1070/MC1998v008n04ABEH000973]
[120]
Parks, L.E. Polyfunctionalisedpyrimidines and Pyrazines from Perhalogenated Precursors, PhD Thesis, Durham University; Durham,. 2008.
[121]
Timmermans, P.B.M.W.M.; Kruse, C.G.; van der Gen, A. Furo‐ and thieno[2,3‐b]pyrazines. Part 1. Synthesis of 2‐substituted derivatives. Recl. Trav. Chim. Pays Bas, 1978, 97, 81-84.
[http://dx.doi.org/10.1002/recl.19780970306]
[122]
Ermolatev, D.S.; Pravinchandra Mehta, V.; Van der Eycken, E.V. Synthesis of furo[2,3‐b]pyrazine nucleoside analogues with 1,2,3‐triazole linkage. QSAR Comb. Sci., 2007, 26, 1266-1273.
[http://dx.doi.org/10.1002/qsar.200740123]
[123]
Ermolat’ev, D.S.; Pravinchandra Mehta, V.; Van der Eycken, E.V. Ag+ -mediated synthesis of substituted Furo[2,3-b]pyrazines. Synlett, 2007, 20, 3117-3122.
[http://dx.doi.org/10.1055/s-2007-992358]
[124]
Mehta, V.P.; Modha, S.G.; Ermolat’ev, D.; Van Hecke, K.; VanMeervelt, L.; Van der Eycken, E.V. Diversity-oriented synthesis of substituted furo[2,3-b] pyrazines. Aust. J. Chem., 2009, 62, 27-41.
[http://dx.doi.org/10.1071/CH08376]
[125]
Kurti, J.; Surjan, P.R.; Kertesz, M. Electronic structure and optical absorption of poly(biisothianaphthene-methine) and poly(isonaphthothiophene-thiophene): Two low-band-gap polymers. J. Am. Chem. Soc., 1991, 113, 9865-9867.
[http://dx.doi.org/10.1021/ja00026a031]
[126]
Bredas, J.L.; Heeger, A.J.; Wudl, F. Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives. J. Chem. Phys., 1986, 85, 4673-4678.
[http://dx.doi.org/10.1063/1.451741]
[127]
Bredas, J.L. Theoretical design of polymeric conductors. Synth. Met., 1987, 17, 115-121.
[http://dx.doi.org/10.1016/0379-6779(87)90725-9]
[128]
Havinga, E.E.; Hoeve, W.T.; Wynberg, H. Alternate donor-acceptor small-band-gap semiconducting polymers; polysquaraines and polycroconaines. Synth. Met., 1993, 55, 299-306.
[http://dx.doi.org/10.1016/0379-6779(93)90949-W]
[129]
Kitamura, Ch.; Tanaka, Sh.; Yamashita, Y. Synthesis of new narrow band gap polymers based on 5,7-di(2-thienyl) thieno[3,4-b]pyrazine and its derivatives. J. Chem. Soc. Chem. Commun., 1994, 13, 1585-1586.
[http://dx.doi.org/10.1039/c39940001585]
[130]
Roncali, J. Synthetic principles for bandgap control in linear ð-conjugated systems. J. Chem. Rev., 1997, 97, 173-205.
[http://dx.doi.org/10.1021/cr950257t]
[131]
Rasmussen, S.C.; Mulholland, M.E.; Schwiderski, R.L.; Larsen, C.A. Thieno[3,4-b]pyrazines and its extended analogs: important buildings blocks for conjugated materials. J. Heterocycl. Chem., 2012, 49, 479-493.
[http://dx.doi.org/10.1002/jhet.1051]
[132]
Rasmussen, S.C.; Schwiderski, R.L.; Mulholland, M.E. Thieno[3,4-b]pyrazines and their applications to low band gap organic materials. Chem. Commun. (Camb.), 2011, 47(41), 11394-11410.
[http://dx.doi.org/10.1039/c1cc12754c] [PMID: 21785759]
[133]
Pomerantz, M.; Chaloner-Gill, B.; Harding, L.O.; Tseng, J.J.; Pomerantz, W.J. Poly(2,3 dihexylthieno[3,4-b]pyrazine). A new processable low band-gap polyheterocycle. J. Chem. Soc. Chem. Commun., 1992, 22, 1672-1673.
[http://dx.doi.org/10.1039/c39920001672]
[134]
Bourass, M. TouimiBenjelloun, A.; Benzakour, M.; Mcharfi, M.; Hamidi, M.; Bouzzine, S.M.; Serein-Spirau, F.; Jarrosson, T.; Lère-Porte, J.P.; Sotiropoulos, J.M.; Bouachrine, M. The computational study of the electronic and optoelectronics properties of new materials based on thienopyrazine for application in dye solar cells. J. Mater. Environ. Sci., 2016, 7, 700-712.
[135]
Menberu, W.; Kinfe, E. Computational study on conducting polymers of thieno [3,4-b] pyrazines and its derivatives. J. Comput. Methods Mol. Des., 2018, 8, 1-12.
[136]
Rasmussen, S.C.; Sattler, D.J.; Mitchell, K.A.; Maxwell, J. Photophysical characterization of 2,3-difunctionalized thieno[3,4 b]pyrazines. J. Lumin., 2004, 190, 111-119.
[http://dx.doi.org/10.1016/j.jlumin.2004.01.088]
[137]
Wen, L.; Heth, C.L.; Rasmussen, S.C. Thieno[3,4-b]pyrazine-based oligothiophenes: simple models of donor-acceptor polymeric materials. Phys. Chem. Chem. Phys., 2014, 16(16), 7231-7240.
[http://dx.doi.org/10.1039/C4CP00312H] [PMID: 24608186]
[138]
Lin, L.; Morisaki, Y.; Chujo, Y. Synthesis of through-space conjugated polymers containing [2.2]paracyclophane and thieno[3,4-b]pyrazine in the main chain. J. Polym. Sci. A Polym. Chem., 2009, 47, 7003-7011.
[http://dx.doi.org/10.1002/pola.23739]
[139]
Jayapal, M.; Haque, A.; Al-Busaidi, I.J.; Al-Balushi, R.; Al-Suti, M.K.; Islam, Sh.M.; Khan, M.S.; Dittmer, J.J. Synthesis and characterization of a thienopyrazine-based low band-gap poly(aryleneethynylene) and photocell studies of the poly-yne/perylene dye blend with broad photocurrent spectrum. Curr. Org. Chem., 2017, 21, 2017-2027.
[http://dx.doi.org/10.2174/1385272821666170420152645]
[140]
Armand, J.; Bellec, Ch.; Boulares, L.; Chaquin, P.; Masure, D.; Pinson, J. Electrochemical and chemical reduction of furopyrazines, thienopyrazines, furoquinoxalines, and thienoquinoxalines. J. Org. Chem., 1991, 56, 4840-4845.
[http://dx.doi.org/10.1021/jo00016a008]
[141]
Mcallister, B.T.; Schon, T.B.; DiCarmine, P.M.; Seferos, D.S. A study of fused-ring thieno[3,4-e]pyrazine polymers as n-type materials for organic supercapacitors. Polym. Chem., 2017, 8, 5194-5202.
[http://dx.doi.org/10.1039/C7PY00512A]
[142]
Mínguez, J.M.; Castellote, M.I.; Vaquero, J.J.; García-Navio, J.L.; Alvarez-Builla, J.; Castaño, O.; Andrés, J.L. Pyrrolodiazines. 2. structure and chemistry of pyrrolo[1,2-a]pyrazine and 1,3-dipolar cycloaddition of its azomethine ylides. J. Org. Chem., 1996, 61(14), 4655-4665.
[http://dx.doi.org/10.1021/jo9600969] [PMID: 11667394]
[143]
Lauria, A.; Guarcello, A.; Dattolo, G.; Almerico, A.M. Study of reactivity in the 1,3-dipolar cycloaddition reactions leading to new triazolopyrrolopyrazine ring systems. Synlett, 2010, 14, 2067-2070.
[http://dx.doi.org/10.1055/s-0030-1258532]
[144]
Huang, W.X.; Yu, C.B.; Shi, L.; Zhou, Y.G. Iridium-catalyzed asymmetric hydrogenation of pyrrolo[1,2-a]pyrazinium salts. Org. Lett., 2014, 16(12), 3324-3327.
[http://dx.doi.org/10.1021/ol5013313] [PMID: 24911796]
[145]
Cheeseman, G.W.H.; Cookson, R.F. Chemistry of Heterocyclic Compounds; John Wiley & Sons, 1979.
[http://dx.doi.org/10.1002/9780470187333]
[146]
Ise, T.; Mori, T.; Takahashi, K. Preparation, crystal structures and electrical properties of PF6 and AsF6 salts of a novel furopyrazine-extended donor (BDTFP) with a two-leg ladder type orbital overlapping mode. J. Mater. Chem., 2001, 11, 264-266.
[http://dx.doi.org/10.1039/b008758k]
[147]
Kruse, C.G.; Timmermans, P.B.M.W.M.; van der Laken, C.; van der Gen, A. Furo‐ and thieno[2,3‐b]pyrazines. Part 2. Chemical properties of 2‐substituted derivatives. Rec. Trav. Chim., 1978, 97, 151-180.
[http://dx.doi.org/10.1002/recl.19780970602]
[148]
Fields, E.K.; Meyerson, S. Arynes by pyrolysis of acid anhydrides. J. Org. Chem., 1966, 31, 3307-3309.
[http://dx.doi.org/10.1021/jo01348a046]
[149]
Mukherjee, S.; Roy, P.; Ghorai, B.K. One-pot three-component synthesis of quinoxaline, quinazoline, and phenazine ring systems using fischercarbene complexes. Synthesis, 2011, 9, 1419-1426.
[150]
Roy, P.; Ghorai, B.K. One-pot three-component synthesis of quinoxaline and phenazine ring systems using Fischer carbene complexes. Beilstein J. Org. Chem., 2010, 6, 52-55.
[http://dx.doi.org/10.3762/bjoc.6.52] [PMID: 20625524]
[151]
Claerhout, S.; Sharma, S.; Skold, Ch.; Cavaluzzo, C.; Sandstrom, A.; Larhed, M.; Thirumal, M.; Parmar, V.S.; Van der Eycken, E.V. Synthesis of functionalized furopyrazines as restricted dipeptidomimetics. Tetrahedron, 2012, 68, 3019-3029.
[http://dx.doi.org/10.1016/j.tet.2012.02.022]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy