Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

阿尔茨海默病和视网膜变性:眼液和组织中必需微量金属的发现

卷 16, 期 12, 2019

页: [1073 - 1083] 页: 11

弟呕挨: 10.2174/1567205016666191023114015

价格: $65

Open Access Journals Promotions 2
摘要

背景:尽管神经退行性疾病可能会严重影响老年人的个体活动,但世界各地的预期寿命都在增加。其中,阿尔茨海默氏病(AD)是工业化国家中最具有社会成本的与年龄相关的疾病之一。迄今为止,视网膜疾病在发展中国家似乎更为普遍,并且主要是老年人。年龄相关性黄斑变性(AMD)是一种迟发性神经退行性视网膜疾病,与AD具有多种临床和病理特征,包括氧化应激,炎症和淀粉样蛋白形成等应激刺激。 方法:在两种疾病中,有害的细胞内/细胞外沉积物都有许多相似之处。衰老,高胆固醇血症,高血压,肥胖,动脉硬化和吸烟是发展这两种疾病的危险因素。细胞衰老的途径在视网膜和大脑中具有相似的细胞器和信号传导模式。寻找新的研究策略的可能性代表了向他们披露潜在的治疗方法的进步。必需的微量金属主要通过影响复杂的多因素发病机制来影响代谢过程,从而在视网膜,视神经和大脑的生理和病理状况中都起着至关重要的作用。 结论:因此,本综述针对与AD和AMD相关的一些最新调查的必需微量金属提供了当前知识。全身和眼部液体中必需金属水平的变化可能反映了AMD的早期阶段,可能揭示了与AD共享的神经退行性途径,这可能为潜在的早期发现打开了大门。

关键词: 金属示踪剂,早期诊断,阿尔茨海默氏病,与年龄有关的黄斑变性,铜,眼液

Next »
[1]
Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 389(10076): 1323-35. (2017).
[http://dx.doi.org/10.1016/S0140-6736(16)32381-9] [PMID: 28236464]
[2]
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature 539(7628): 180-6. (2016).
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[3]
François M, Bull CF, Fenech MF, Leifert WR. Current state of saliva biomarkers for aging and Alzheimer’s disease. Curr Alzheimer Res 16(1): 56-66. (2019).
[http://dx.doi.org/10.2174/1567205015666181022094924] [PMID: 30345919]
[4]
Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, de-la-Torre A. Visual features in Alzheimer’s disease: from basic mechanisms to clinical overview. Neural Plast 20182941783 (2018).
[http://dx.doi.org/10.1155/2018/2941783] [PMID: 30405709]
[5]
Colijn JM, Buitendijk GHS, Prokofyeva E, Alves D, Cachulo ML, Khawaja AP, et al. Prevalence of age-related macular degeneration in Europe: the past and the future. Ophthalmology 124(12): 1753-63. (2017).
[http://dx.doi.org/10.1016/j.ophtha.2017.05.035] [PMID: 28712657]
[6]
Kaarniranta K, Salminen A, Haapasalo A, Soininen H, Hiltunen M. Age-related macular degeneration (AMD): Alzheimer’s disease in the eye? J Alzheimers Dis 24(4): 615-31. (2011).
[http://dx.doi.org/10.3233/JAD-2011-101908] [PMID: 21297256]
[7]
Ratnayaka JA, Serpell LC, Lotery AJ. Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye (Lond) 29(8): 1013-26. (2015).
[http://dx.doi.org/10.1038/eye.2015.100] [PMID: 26088679]
[8]
Biscetti L, Luchetti E, Vergaro A, Menduno P, Cagini C, Parnetti L. Associations of Alzheimer’s disease with macular degeneration. Front Biosci (Elite Ed) 9: 174-91. (2017).
[http://dx.doi.org/10.2741/e794] [PMID: 27814598]
[9]
van Attekum MHA, Eldering E, Kater AP. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica 102(9): 1469-76. (2017).
[http://dx.doi.org/10.3324/haematol.2016.142679] [PMID: 28775118]
[10]
Squitti R, Simonelli I, Cassetta E, Lupoi D, Rongioletti M, Ventriglia M, et al. Patients with increased non-ceruloplasmin copper appear a distinct sub-group of Alzheimer’s disease: a neuroimaging study. Curr Alzheimer Res 14(12): 1318-26. (2017).
[http://dx.doi.org/10.2174/1567205014666170623125156] [PMID: 28669331]
[11]
Squitti R, Ventriglia M, Gennarelli M, Colabufo NA, El Idrissi IG, Bucossi S, et al. Non-ceruloplasmin copper distincts subtypes in Alzheimer’s disease: a genetic study of ATP7B frequency. Mol Neurobiol 54(1): 671-81. (2017).
[http://dx.doi.org/10.1007/s12035-015-9664-6] [PMID: 26758278]
[12]
Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res 30(4): 217-38. (2011).
[http://dx.doi.org/10.1016/j.preteyeres.2011.02.004] [PMID: 21440663]
[13]
Lynn SA, Keeling E, Munday R, Gabha G, Griffiths H, Lotery AJ, et al. The complexities underlying age-related macular degeneration: could amyloid beta play an important role? Neural Regen Res 12(4): 538-48. (2017).
[http://dx.doi.org/10.4103/1673-5374.205083] [PMID: 28553324]
[14]
Wills NK, Ramanujam VM, Kalariya N, Lewis JR, van Kuijk FJ. Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and gender. Exp Eye Res 87(2): 80-8. (2008).
[http://dx.doi.org/10.1016/j.exer.2008.04.013] [PMID: 18579132]
[15]
Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94(3): 296-306. (2011).
[http://dx.doi.org/10.1016/j.pneurobio.2011.05.001] [PMID: 21600264]
[16]
Bucossi S, Ventriglia M, Panetta V, Salustri C, Pasqualetti P, Mariani S, et al. Copper in Alzheimer’s disease: a meta-analysis of serum,plasma, and cerebrospinal fluid studies. J Alzheimers Dis 24(1): 175-85. (2011).
[http://dx.doi.org/10.3233/JAD-2010-101473] [PMID: 21187586]
[17]
Li DD, Zhang W, Wang ZY, Zhao P. Serum copper, zinc, and iron levels in patients with Alzheimer’s disease: a meta-analysis of case-control studies. Front Aging Neurosci 9: 300. (2017).
[http://dx.doi.org/10.3389/fnagi.2017.00300] [PMID: 28966592]
[18]
Morante S. The role of metals in beta-amyloid peptide aggregation: X-Ray spectroscopy and numerical simulations. Curr Alzheimer Res 5(6): 508-24. (2008).
[http://dx.doi.org/10.2174/156720508786898505] [PMID: 19075577]
[19]
Rasmussen J, Mahler J, Beschorner N, Kaeser SA, Häsler LM, Baumann F, et al. Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer’s disease. Proc Natl Acad Sci USA 114(49): 13018-23. (2017).
[http://dx.doi.org/10.1073/pnas.1713215114] [PMID: 29158413]
[20]
Selkoe DJ. Clearing the brain’s amyloid cobwebs. Neuron 32(2): 177-80. (2001).
[http://dx.doi.org/10.1016/S0896-6273(01)00475-5] [PMID: 11683988]
[21]
Stewart KL, Radford SE. Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophys Rev 9(4): 405-19. (2017).
[http://dx.doi.org/10.1007/s12551-017-0271-9] [PMID: 28631243]
[22]
Ha C, Ryu J, Park CB. Metal ions differentially influence the aggregation and deposition of Alzheimer’s beta-amyloid on a solid template. Biochemistry 46(20): 6118-25. (2007).
[http://dx.doi.org/10.1021/bi7000032] [PMID: 17455909]
[23]
Araujo DM, Cotman CW. Beta-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 569(1): 141-5. (1992).
[http://dx.doi.org/10.1016/0006-8993(92)90380-R] [PMID: 1611474]
[24]
de Leon MJ, Pirraglia E, Osorio RS, Glodzik L, Saint-Louis L, Kim HJ, et al. The nonlinear relationship between cerebrospinal fluid Aβ42 and tau in preclinical Alzheimer’s disease. PLoS One 13(2)e0191240 (2018).
[http://dx.doi.org/10.1371/journal.pone.0191240] [PMID: 29415068]
[25]
Hauptmann S, Scherping I, Dröse S, Brandt U, Schulz KL, Jendrach M, et al. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 30(10): 1574-86. (2009).
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.12.005] [PMID: 18295378]
[26]
Cabrera DeBuc D, Somfai GM, Arthur E, Kostic M, Oropesa S, Mendoza Santiesteban C. Investigating multimodal diagnostic eye biomarkers of cognitive impairment by measuring vascular and neurogenic changes in the retina. Front Physiol 9: 1721. (2018).
[http://dx.doi.org/10.3389/fphys.2018.01721] [PMID: 30574092]
[27]
Ye Z, He SZ, Li ZH. Effect of Aβ protein on inhibiting proliferation and promoting apoptosis of retinal pigment epithelial cells. Int J Ophthalmol 11(6): 929-34. (2018).
[PMID: 29977803]
[28]
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp (Suppl. 101)133-64. (2012).
[PMID: 22945569]
[29]
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2): 60-72. (2014).
[http://dx.doi.org/10.2478/intox-2014-0009] [PMID: 26109881]
[30]
Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13(8): 1205-18. (2008).
[http://dx.doi.org/10.1007/s00775-008-0404-5] [PMID: 18604568]
[31]
Bansal SL, Asthana S. Biologically essential and non-essential elements causing toxicity in environment. J Environ Anal Toxicol 8: 557. (2018).
[http://dx.doi.org/10.4172/2161-0525.1000557]
[32]
Mamun MA, Ghani RB. The role of iron and Zn in cognitive development of children Asian J Med. Biol Res 3: 145-51. (2017).
[33]
Walker EM Jr, Walker SM. Effects of iron overload on the immune system. Ann Clin Lab Sci 30(4): 354-65. (2000).
[PMID: 11045759]
[34]
Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531(1-2): 81-92. (2003).
[http://dx.doi.org/10.1016/j.mrfmmm.2003.08.004] [PMID: 14637247]
[35]
Duc C, Cellier F, Lobréaux S, Briat JF, Gaymard F. Regulation of iron homeostasis in Arabidopsis thaliana by the clock regulator time for coffee. J Biol Chem 284: 36271-81. (2009).
[36]
Wong BX, Duce JA. The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 5: 81. (2014).
[http://dx.doi.org/10.3389/fphar.2014.00081] [PMID: 24795635]
[37]
Roger SD, Tio M, Park HC, Choong HL, Goh B, Cushway TR, et al. Intravenous iron and erythropoiesis-stimulating agents in haemodialysis: a systematic review and meta-analysis. Nephrology (Carlton) 22(12): 969-76. (2017).
[http://dx.doi.org/10.1111/nep.12940] [PMID: 27699922]
[38]
Bandyopadhyay S, Huang X, Lahiri DK, Rogers JT. Novel drug targets based on metallobiology of Alzheimer’s disease. Expert Opin Ther Targets 14(11): 1177-97. (2010).
[http://dx.doi.org/10.1517/14728222.2010.525352] [PMID: 20942746]
[39]
Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: implications in Alzheimer’s disease. Mol Psychiatry 24(3): 345-63. (2019).
[http://dx.doi.org/10.1038/s41380-018-0266-3] [PMID: 30470799]
[40]
Osredkar J, Sustar N. Copper and Zn, Biological role and significance of copper/Zn imbalance J Clinic Toxicol S3: 001 (2011).
[41]
Supasai S, Aimo L, Adamo AM, Mackenzie GG, Oteiza PI. Zinc deficiency affects the STAT1/3 signaling pathways in part through redox-mediated mechanisms. Redox Biol 11: 469-81. (2017).
[http://dx.doi.org/10.1016/j.redox.2016.12.027] [PMID: 28086195]
[42]
Bafaro E, Liu Y, Xu Y, Dempski RE. The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther 2: 17029. (2017).
[http://dx.doi.org/10.1038/sigtrans.2017.29] [PMID: 29218234]
[43]
Krężel A, Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci 18(6): 1237. (2017).
[http://dx.doi.org/10.3390/ijms18061237] [PMID: 28598392]
[44]
Turski ML, Thiele DJ. New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 284(2): 717-21. (2009).
[http://dx.doi.org/10.1074/jbc.R800055200] [PMID: 18757361]
[45]
Masoud AM, Bihaqi SW, Machan JT, Zawia NH, Renehan WE. Early-life exposure to lead (Pb) alters the expression of microRNA that target proteins associated with Alzheimer’s disease. J Alzheimers Dis 51(4): 1257-64. (2016).
[http://dx.doi.org/10.3233/JAD-151018] [PMID: 26923026]
[46]
Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 25(4): 823-9. (2005).
[http://dx.doi.org/10.1523/JNEUROSCI.4335-04.2005] [PMID: 15673661]
[47]
Glass TA, Bandeen-Roche K, McAtee M, Bolla K, Todd AC, Schwartz BS. Neighborhood psychosocial hazards and the association of cumulative lead dose with cognitive function in older adults. Am J Epidemiol 169(6): 683-92. (2009).
[http://dx.doi.org/10.1093/aje/kwn390] [PMID: 19155330]
[48]
Brewer GJ. Divalent copper as a major triggering agent in Alzheimer’s disease. J Alzheimers Dis 46(3): 593-604. (2015).
[http://dx.doi.org/10.3233/JAD-143123] [PMID: 25854930]
[49]
Squitti R, Mendez AJ, Simonelli I, Ricordi C. Diabetes and Alzheimer’s disease: can elevated free copper predict the risk of the disease? J Alzheimers Dis 56(3): 1055-64. (2017).
[http://dx.doi.org/10.3233/JAD-161033] [PMID: 27983558]
[50]
Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 15(7): 760-74. (2016).
[http://dx.doi.org/10.1016/S1474-4422(16)00065-X] [PMID: 27302240]
[51]
Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 58(6): 585-609. (2013).
[http://dx.doi.org/10.1016/j.survophthal.2012.12.002] [PMID: 24160731]
[52]
Mannar MG, Sankar R. Micronutrient fortification of foods--rationale, application and impact. Indian J Pediatr 71(11): 997-1002. (2004).
[53]
Bhattacharya PT, Misra SR, Hussain M. Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica (Cairo) 20165464373 (2016).
[http://dx.doi.org/10.1155/2016/5464373] [PMID: 27433374] [http://dx.doi.org/10.1007/BF02828115] [PMID: 15572820]
[54]
Samuelson DA, Smith P, Ulshafer RJ, Hendricks DG, Whitley RD, Hendricks H, et al. X-ray microanalysis of ocular melanin in pigs maintained on normal and low zinc diets. Exp Eye Res 56(1): 63-70. (1993).
[http://dx.doi.org/10.1006/exer.1993.1009] [PMID: 8432335]
[55]
Tate DJ Jr, Miceli MV, Newsome DA. Zinc protects against oxidative damage in cultured human retinal pigment epithelial cells. Free Radic Biol Med 26(5-6): 704-13. (1999).
[http://dx.doi.org/10.1016/S0891-5849(98)00253-6] [PMID: 10218660]
[56]
Mao X, Ye J, Zhou S, Pi R, Dou J, Zang L, et al. The effects of chronic copper exposure on the amyloid protein metabolisim associated genes’ expression in chronic cerebral hypoperfused rats. Neurosci Lett 518(1): 14-8. (2012).
[http://dx.doi.org/10.1016/j.neulet.2012.04.030] [PMID: 22542740]
[57]
Rembach A, Doecke JD, Roberts BR, Watt AD, Faux NG, Volitakis I, et al. AIBL research group. Longitudinal analysis of serum copper and ceruloplasmin in Alzheimer’s disease. J Alzheimers Dis 34(1): 171-82. (2013).
[http://dx.doi.org/10.3233/JAD-121474] [PMID: 23168449]
[58]
Squitti R. Copper subtype of Alzheimer’s disease (AD): meta-analyses, genetic studies and predictive value of non-ceruloplasmim copper in mild cognitive impairment conversion to full AD. J Trace Elem Med Biol 28(4): 482-5. (2014).
[http://dx.doi.org/10.1016/j.jtemb.2014.06.018] [PMID: 25066791]
[59]
Li Y, Jiao Q, Xu H, Du X, Shi L, Jia F, et al. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s disease. Front Mol Neurosci 10: 339. (2017).
[http://dx.doi.org/10.3389/fnmol.2017.00339] [PMID: 29114205]
[60]
Schrag M, Mueller C, Zabel M, Crofton A, Kirsch WM, Ghribi O, et al. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis 59: 100-10. (2013).
[http://dx.doi.org/10.1016/j.nbd.2013.07.005] [PMID: 23867235]
[61]
Wang ZX, Tan L, Wang HF, Ma J, Liu J, Tan MS, et al. Serum iron, zinc, and copper levels in patients with Alzheimer’s disease: a replication study and meta-analyses. J Alzheimers Dis 47(3): 565-81. (2015).
[http://dx.doi.org/10.3233/JAD-143108] [PMID: 26401693]
[62]
La Penna G, Hureau C, Andreussi O, Faller P. Identifying, by first-principles simulations, Cu[Amyloid-β] species making fenton-type reactions in Alzheimer’s disease. J Phys Chem 117(51): 16455-67. (2013).
[63]
Squitti R, Ghidoni R, Scrascia F, Benussi L, Panetta V, Pasqualetti P, et al. Free copper distinguishes mild cognitive impairment subjects from healthy elderly individuals. J Alzheimers Dis 23(2): 239-48. (2011).
[http://dx.doi.org/10.3233/JAD-2010-101098] [PMID: 20930297]
[64]
Squitti R, Bressi F, Pasqualetti P, Bonomini C, Ghidoni R, Binetti G, et al. Longitudinal prognostic value of serum “free” copper in patients with Alzheimer disease. Neurology 72(1): 50-5. (2009).
[http://dx.doi.org/10.1212/01.wnl.0000338568.28960.3f] [PMID: 19122030]
[65]
López N, Tormo C, De Blas I, Llinares I, Alom J. Oxidative stress in Alzheimer’s disease and mild cognitive impairment with high sensitivity and specificity. J Alzheimers Dis 33(3): 823-9. (2013).
[http://dx.doi.org/10.3233/JAD-2012-121528] [PMID: 23076075]
[66]
Catalani S, Paganelli M, Gilberti ME, Rozzini L, Lanfranchi F, Padovani A, et al. Free copper in serum: an analytical challenge and its possible applications. J Trace Elem Med Biol 45: 176-80. (2018).
[http://dx.doi.org/10.1016/j.jtemb.2017.11.006] [PMID: 29173476]
[67]
Sendzik M, Pushie MJ, Stefaniak E, Haas KL. Structure and affinity of Cu(I) bound to human serum albumin. Inorg Chem 56(24): 15057-65. (2017).
[http://dx.doi.org/10.1021/acs.inorgchem.7b02397] [PMID: 29166002]
[68]
Sensi SL, Granzotto A, Siotto M, Squitti R. Copper and Zinc Dysregulation in Alzheimer’s disease. Trends Pharmacol Sci 39(12): 1049-63. (2018).
[http://dx.doi.org/10.1016/j.tips.2018.10.001] [PMID: 30352697]
[69]
Squitti R, Zito G. Anti-copper therapies in Alzheimer’s disease: new concepts. Recent Patents CNS Drug Discov 4(3): 209-19. (2009).
[http://dx.doi.org/10.2174/157488909789104802] [PMID: 19891600]
[70]
Faller P, Hureau C, La Penna G. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Acc Chem Res 47(8): 2252-9. (2014).
[http://dx.doi.org/10.1021/ar400293h] [PMID: 24871565]
[71]
Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of copper in the onset of Alzheimer’s disease compared to other metals. Front Aging Neurosci 9: 446. (2018).
[http://dx.doi.org/10.3389/fnagi.2017.00446] [PMID: 29472855]
[72]
Wang D, Zhang Q, Hu X, Wang W, Zhu X, Yuan Z. Pharmacodynamics in Alzheimer’s disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomater 65: 327-38. (2018).
[http://dx.doi.org/10.1016/j.actbio.2017.10.039] [PMID: 29111371]
[73]
Raffa DF, Rickard GA, Rauk A. Ab initio modelling of the structure and redox behaviour of copper(I) bound to a His-His model peptide: relevance to the beta-amyloid peptide of Alzheimer’s disease. J Biol Inorg Chem 12(2): 147-64. (2007).
[http://dx.doi.org/10.1007/s00775-006-0175-9] [PMID: 17013614]
[74]
Brown AM, Lemkul JA, Schaum N, Bevan DR. Simulations of monomeric amyloid β-peptide (1-40) with varying solution conditions and oxidation state of Met35: implications for aggregation. Arch Biochem Biophys 545: 44-52. (2014).
[http://dx.doi.org/10.1016/j.abb.2014.01.002] [PMID: 24418316]
[75]
Hayden EY, Hoi KK, Lopez J, Inayathullah M, Condron MM, Teplow DB. Identification of key regions and residues controlling Aβ folding and assembly. Sci Rep 7(1): 12434. (2017).
[http://dx.doi.org/10.1038/s41598-017-10845-6] [PMID: 28974765]
[76]
Faller P, Hureau C, Berthoumieu O. Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β peptide. Inorg Chem 52(21): 12193-206. (2013).
[http://dx.doi.org/10.1021/ic4003059] [PMID: 23607830]
[77]
Atrián-Blasco E, Del Barrio M, Faller P, Hureau C. Ascorbate oxidation by Cu(Amyloid-β) complexes: determination of the intrinsic rate as a function of alterations in the peptide sequence revealing key residues for reactive oxygen species production. Anal Chem 90(9): 5909-15. (2018).
[http://dx.doi.org/10.1021/acs.analchem.8b00740] [PMID: 29611698]
[78]
Peters DG, Connor JR, Meadowcroft MD. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis 81: 49-65. (2015).
[http://dx.doi.org/10.1016/j.nbd.2015.08.007] [PMID: 26303889]
[79]
Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1): 47-52. (1998).
[http://dx.doi.org/10.1016/S0022-510X(98)00092-6] [PMID: 9667777]
[80]
Everett J, Céspedes E, Shelford LR, Exley C, Collingwood JF, Dobson J, et al. Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer’s disease peptide β-amyloid (1-42). J R Soc Interface 11(95)20140165 (2014).
[http://dx.doi.org/10.1098/rsif.2014.0165] [PMID: 24671940]
[81]
Kepp K. Alzheimer’s disease: how metal ions define b-amyloid function. Coord Chem Rev 351: 127-59. (2017).
[http://dx.doi.org/10.1016/j.ccr.2017.05.007]
[82]
Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 14: 100-15. (2018).
[http://dx.doi.org/10.1016/j.redox.2017.08.015] [PMID: 28888202]
[83]
Frazzini V, Rockabrand E, Mocchegiani E, Sensi SL. Oxidative stress and brain aging: is zinc the link? Biogerontology 7(5-6): 307-14. (2006).
[http://dx.doi.org/10.1007/s10522-006-9045-7] [PMID: 17028932]
[84]
Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL. Zinc dyshomeostasis: a key modulator of neuronal injury. J Alzheimers Dis 8(2): 93-108. (2005).
[http://dx.doi.org/10.3233/JAD-2005-8202] [PMID: 16308478]
[85]
Ventriglia M, Brewer GJ, Simonelli I, Mariani S, Siotto M, Bucossi S, et al. Zinc in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. J Alzheimers Dis 46(1): 75-87. (2015).
[http://dx.doi.org/10.3233/JAD-141296] [PMID: 25697706]
[86]
Li X, Yang W, Jiang LH. Alteration in Intracellular Zn2+ Homeostasis as a result of TRPM2 channel activation contributes to ROS-induced hippocampal neuronal death. Front Mol Neurosci 10: 414. (2017).
[http://dx.doi.org/10.3389/fnmol.2017.00414] [PMID: 29311807]
[87]
Surendran H, Rathod RJ, Pal R. Generation of transplantable retinal pigmented epithelial (RPE) cells for treatment of age-related macular degeneration (AMD). Methods Mol Biol 33: 1-16. (2018).
[http://dx.doi.org/10.1007/7651_2018_140] [PMID: 29896658]
[88]
Kersten E, Paun CC, Schellevis RL, Hoyng CB, Delcourt C, Lengyel I, et al. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv Ophthalmol 63(1): 9-39. (2018).
[http://dx.doi.org/10.1016/j.survophthal.2017.05.003] [PMID: 28522341]
[89]
Pujol-Lereis LM, Schäfer N, Kuhn LB, Rohrer B, Pauly D. Interrelation between oxidative stress and complement activation in models of age-related macular degeneration. Adv Exp Med Biol 854: 87-93. (2016).
[http://dx.doi.org/10.1007/978-3-319-17121-0_13] [PMID: 26427398]
[90]
He X, Hahn P, Iacovelli J, Wong R, King C, Bhisitkul R, et al. Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 26(6): 649-73. (2007).
[http://dx.doi.org/10.1016/j.preteyeres.2007.07.004] [PMID: 17921041]
[91]
Shu W, Dunaief JL. Potential treatment of retinal diseases with iron chelators. Pharmaceuticals (Basel) 11(4): 11. (2018).
[http://dx.doi.org/10.3390/ph11040112] [PMID: 30360383]
[92]
Li Y, Song D, Song Y, Zhao L, Wolkow N, Tobias JW, et al. Iron-induced local complement component 3 (C3) up-regulation via non-canonical transforming growth factor (TGF)-β signaling in the retinal pigment epithelium. J Biol Chem 290(19): 11918-34. (2015).
[http://dx.doi.org/10.1074/jbc.M115.645903] [PMID: 25802332]
[93]
Erie JC, Good JA, Butz JA, Pulido JS. Reduced zinc and copper in the retinal pigment epithelium and choroid in age-related macular degeneration. Am J Ophthalmol 147(2): 276-282.e1. (2009).
[http://dx.doi.org/10.1016/j.ajo.2008.08.014] [PMID: 18848316]
[94]
Jünemann AG, Stopa P, Michalke B, Chaudhri A, Reulbach U, Huchzermeyer C, et al. Levels of aqueous humor trace elements in patients with non-exsudative age-related macular degeneration: a case-control study. PLoS One 8(2) e56734 (2013).
[http://dx.doi.org/10.1371/journal.pone.0056734] [PMID: 23457607]
[95]
Gnana-Prakasam JP, Martin PM, Smith SB, Ganapathy V. Expression and function of iron-regulatory proteins in retina. IUBMB Life 62(5): 363-70. (2010).
[http://dx.doi.org/10.1002/iub.326] [PMID: 20408179]
[96]
Baumann B, Sterling J, Song Y, Song D, Fruttiger M, Gillies M, et al. Conditional müller cell ablation leads to retinal iron accumulation. Invest Ophthalmol Vis Sci 58(10): 4223-34. (2017).
[http://dx.doi.org/10.1167/iovs.17-21743] [PMID: 28846772]
[97]
Theurl M, Song D, Clark E, Sterling J, Grieco S, Altamura S, et al. Mice with hepcidin-resistant ferroportin accumulate iron in the retina. FASEB J 30(2): 813-23. (2016).
[http://dx.doi.org/10.1096/fj.15-276758] [PMID: 26506980]
[98]
Ciudin A, Hernández C, Simó R. Iron overload in diabetic retinopathy: a cause or a consequence of impaired mechanisms? Exp Diabetes Res 2010714108 (2010).
[http://dx.doi.org/10.1155/2010/714108] [PMID: 20827392]
[99]
Spiridon M, Kamm D, Billups B, Mobbs P, Attwell D. Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina. J Physiol 506(Pt 2): 363-76. (1998).
[http://dx.doi.org/10.1111/j.1469-7793.1998.363bw.x] [PMID: 9490865]
[100]
Qian H, Malchow RP, Chappell RL, Ripps H. Zinc enhances ionic currents induced in skate Müller (glial) cells by the inhibitory neurotransmitter GABA. Proc Biol Sci 263(1371): 791-6. (1996).
[http://dx.doi.org/10.1098/rspb.1996.0118] [PMID: 8763797]
[101]
Szabo ST, Harry GJ, Hayden KM, Szabo DT, Birnbaum L. Comparison of metal levels between postmortem brain and ventricular fluid in Alzheimer’s disease and nondemented elderly controls. Toxicol Sci 150(2): 292-300. (2016).
[http://dx.doi.org/10.1093/toxsci/kfv325] [PMID: 26721301]
[102]
Organisciak D, Wong P, Rapp C, Darrow R, Ziesel A, Rangarajan R, et al. Light-induced retinal degeneration is prevented by zinc, a component in the age-related eye disease study formulation. Photochem Photobiol 88(6): 1396-407. (2012).
[http://dx.doi.org/10.1111/j.1751-1097.2012.01134.x] [PMID: 22385127]
[103]
Song D, Zhao L, Li Y, Hadziahmetovic M, Song Y, Connelly J, et al. The oral iron chelator deferiprone protects against systemic iron overload-induced retinal degeneration in hepcidin knockout mice. Invest Ophthalmol Vis Sci 55(7): 4525-32. (2014).
[http://dx.doi.org/10.1167/iovs.14-14568] [PMID: 24970260]
[104]
Newsome DA. A randomized, prospective, placebo-controlled clinical trial of a novel zinc-monocysteine compound in age-related macular degeneration. Curr Eye Res 33(7): 591-8. (2008).
[http://dx.doi.org/10.1080/02713680802178437] [PMID: 18600492]
[105]
Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev 7 CD000254 (2017).
[106]
Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration Cochrane Database Syst Rev 7: CD000253CD000253 (2017).
[107]
Hohberger B, Chaudhri MA, Michalke B, Lucio M, Nowomiejska K, Schlötzer-Schrehardt U, et al. Levels of aqueous humor trace elements in patients with open-angle glaucoma. J Trace Elem Med Biol 45: 150-5. (2018).
[http://dx.doi.org/10.1016/j.jtemb.2017.10.003] [PMID: 29173472]
[108]
Bollero P, Ricchiuti MR, Laganà GDI, Fusco G, Lione R, Cozza P. Correlations between dental malocclusions, ocular motility, and convergence disorders: a cross-sectional study in growing subjects. Oral Implantol (Rome) 10(3): 289-94. (2017).
[http://dx.doi.org/10.11138/orl/2017.10.3.289] [PMID: 29285332]
[109]
Frost S, Guymer R, Aung KZ, Macaulay SL, Sohrabi HR, Bourgeat P, et al. AIBL Research Group. Alzheimer’s disease and the early signs of age-related macular degeneration. Curr Alzheimer Res 13(11): 1259-66. (2016).
[http://dx.doi.org/10.2174/1567205013666160603003800] [PMID: 27335042]
[110]
Zhao Y, Bhattacharjee S, Jones BM, Hill JM, Clement C, Sambamurti K, et al. Beta-amyloid precursor protein (βapp) processing in alzheimer’s disease (AD) and age-related macular degeneration (AMD). Mol Neurobiol 52(1): 533-44. (2015).
[http://dx.doi.org/10.1007/s12035-014-8886-3] [PMID: 25204496]
[111]
Rygiel K. Novel strategies for Alzheimer’s disease treatment: an overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol 48(6): 629-36. (2016).
[http://dx.doi.org/10.4103/0253-7613.194867] [PMID: 28066098]
[112]
Dentchev T, Milam AH, Lee VM, Trojanowski JQ, Dunaief JL. Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 9: 184-90. (2003).
[PMID: 12764254]
[113]
Mo JJ, Li JY, Yang Z, Liu Z, Feng JS. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer’s disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 4(12): 931-42. (2017).
[http://dx.doi.org/10.1002/acn3.469] [PMID: 29296624]
[114]
Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537(7618): 50-6. (2016).
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[115]
Bush AI. The metal theory of Alzheimer’s disease. J Alzheimers Dis 33(1): S277-81. (2013).
[http://dx.doi.org/10.3233/JAD-2012-129011] [PMID: 22635102]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy