Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Activation of Transient Receptor Potential Vanilloid (TRPV) 4 as a Therapeutic Strategy in Osteoarthritis

Author(s): Masakazu Atobe*

Volume 19, Issue 24, 2019

Page: [2254 - 2267] Pages: 14

DOI: 10.2174/1568026619666191010162850

Price: $65

conference banner
Abstract

Transient receptor potential vanilloid (TRPV) 4 belongs to the TRPV subfamily of TRP ion channels. TRPV4 channels play a critical role in chondrocytes and thus TRPV4 is an attractive target of Disease-Modifying Osteoarthritis Drugs (DMOADs). Initial investigations of small molecules by Glaxo Smith Klein (GSK) as both agonists and antagonists via oral/intravenous administration have led to the use of existing agonists as lead compounds for biological studies. Our recent results suggest that local injection of a TRPV4 agonist is a potential treatment for osteoarthritis (OA). This review briefly summarizes updates regarding TRPV4 agonists based on recent advances in drug discovery, and particularly the local administration of TRPV4 agonists.

Keywords: Osteoarthritis, Anabolic effect, Intra-articular administration, Chondrocyte differentiation, Agonist, Short-term stimulation, Sox9.

« Previous
Graphical Abstract
[1]
Mankin, H.J.; Lippiello, L. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J. Bone Joint Surg. Am., 1970, 52(3), 424-434.
[http://dx.doi.org/10.2106/00004623-197052030-00002] [PMID: 4246573]
[2]
Buchwalter, J.A.; Martin, J.A. Osteoarthritis. Adv. Drug Deliv. Rev., 2006, 58, 150-167.
[http://dx.doi.org/10.1016/j.addr.2006.01.006]
[3]
Goldring, S.R.; Goldring, M.B. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat. Res., 2004, (427)(Suppl.), S27-S36.
[http://dx.doi.org/10.1097/01.blo.0000144854.66565.8f] [PMID: 15480070]
[4]
Miyamoto, M.; Ito, H.; Mukai, S.; Kobayashi, T.; Yamamoto, H.; Kobayashi, M.; Maruyama, T.; Akiyama, H.; Nakamura, T. Simultaneous stimulation of EP2 and EP4 is essential to the effect of prostaglandin E2 in chondrocyte differentiation. Osteoarthritis Cartilage, 2003, 11(9), 644-652.
[http://dx.doi.org/10.1016/S1063-4584(03)00118-3] [PMID: 12954235]
[5]
Fields, G.B. New strategies for targeting matrix metalloproteinases. Matrix Biol., 2015, 44-46, 239-246.
[http://dx.doi.org/10.1016/j.matbio.2015.01.002] [PMID: 25595836]
[6]
El Bakali, J.; Gras-Masse, H.; Maingot, L.; Deprez, B.; Dumont, J.; Leroux, F.; Deprez-Poulain, R. Inhibition of aggrecanases as a therapeutic strategy in osteoarthritis. Future Med. Chem., 2014, 6(12), 1399-1412.
[http://dx.doi.org/10.4155/fmc.14.84] [PMID: 25329196]
[7]
Connor, J.R.; LePage, C.; Swift, B.A.; Yamashita, D.; Bendele, A.M.; Maul, D.; Kumar, S. Protective effects of a cathepsin K inhibitor, SB-553484, in the canine partial medial meniscectomy model of osteoarthritis. Osteoarthritis Cartilage, 2009, 17(9), 1236-1243.
[http://dx.doi.org/10.1016/j.joca.2009.03.015] [PMID: 19361586]
[8]
Hayami, T.; Zhuo, Y.; Wesolowski, G.A.; Pickarski, M.; Duong, L.T. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. Bone, 2012, 50(6), 1250-1259.
[http://dx.doi.org/10.1016/j.bone.2012.03.025] [PMID: 22484689]
[9]
Hellio le Graverand, M.P.; Clemmer, R.S.; Redifer, P.; Brunell, R.M.; Hayes, C.W.; Brandt, K.D.; Abramson, S.B.; Manning, P.T.; Miller, C.G.; Vignon, E. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee. Ann. Rheum. Dis., 2013, 72(2), 187-195.
[http://dx.doi.org/10.1136/annrheumdis-2012-202239] [PMID: 23144445]
[10]
Medivir. (Accessed . www.medivir.com)
[11]
Karsdal, M.A.; Michaelis, M.; Ladel, C.; Siebuhr, A.S.; Bihlet, A.R.; Andersen, J.R.; Guehring, H.; Christiansen, C.; Bay-Jensen, A.C.; Kraus, V.B. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future. Osteoarthritis Cartilage, 2016, 24(12), 2013-2021.
[http://dx.doi.org/10.1016/j.joca.2016.07.017] [PMID: 27492463]
[12]
Deshmukh, V.; Hu, H.; Barroga, C.; Bossard, C.; Kc, S.; Dellamary, L.; Stewart, J.; Chiu, K.; Ibanez, M.; Pedraza, M.; Seo, T.; Do, L.; Cho, S.; Cahiwat, J.; Tam, B.; Tambiah, J.R.S.; Hood, J.; Lane, N.E.; Yazici, Y. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage, 2018, 26(1), 18-27.
[http://dx.doi.org/10.1016/j.joca.2017.08.015] [PMID: 28888902]
[13]
Moore, E.E.; Bendele, A.M. Thompson, D. L.; Littau, A.; Waggie, K. S.; Readon, B.; Ellsworth, J. L. Fiblobrast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage, 2005, 13, 623-631.
[http://dx.doi.org/10.1016/j.joca.2005.03.003] [PMID: 15896984]
[14]
Racunica, T.L.; Teichtahl, A.J.; Wang, Y.; Wluka, A.E.; English, D.R.; Giles, G.G.; O’Sullivan, R.; Cicuttini, F.M. Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum., 2007, 57(7), 1261-1268.
[http://dx.doi.org/10.1002/art.22990] [PMID: 17907212]
[15]
Fransen, M.; McConnell, S.; Harmer, A.R.; Van der Esch, M.; Simic, M.; Bennell, K.L. Exercise for osteoarthritis of the knee. Cochrane Database Syst. Rev., 2015, 1CD004376
[http://dx.doi.org/[DOI: 10.1002/14651858.CD004376.pub3] [PMID: 25569281]
[16]
Pingguan-Murphy, B.; El-Azzeh, M.; Bader, D.L.; Knight, M.M. Cyclic compression of chondrocytes modulates a purinergic calcium signalling pathway in a strain rate- and frequency-dependent manner. J. Cell. Physiol., 2006, 209(2), 389-397.
[http://dx.doi.org/10.1002/jcp.20747] [PMID: 16883605]
[17]
Madden, R.M.; Han, S.K.; Herzog, W. The effect of compressive loading magnitude on in situ chondrocyte calcium signaling. Biomech. Model. Mechanobiol., 2015, 14(1), 135-142.
[http://dx.doi.org/10.1007/s10237-014-0594-4] [PMID: 24853775]
[18]
Han, S.K.; Wouters, W.; Clark, A.; Herzog, W. Mechanically induced calcium signaling in chondrocytes in situ. J. Orthop., 2015, 30(3), 475-481.
[http://dx.doi.org/[DOI: 10.1002/jor.21536]
[19]
Edlich, M.; Yellowley, C.E.; Jacobs, C.R.; Donahue, H.J. Oscillating fluid flow regulates cytosolic calcium concentration in bovine articular chondrocytes. J. Biomech., 2001, 34(1), 59-65.
[http://dx.doi.org/10.1016/S0021-9290(00)00158-5] [PMID: 11425081]
[20]
Browning, J.A.; Saunders, K.; Urban, J.P.; Wilkins, R.J. The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes. Biorheology, 2004, 41(3-4), 299-308.
[PMID: 15299262]
[21]
Chao, P.H.; West, A.C.; Hung, C.T. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. Am. J. Physiol. Cell Physiol., 2006, 291(4), C718-C725.
[http://dx.doi.org/10.1152/ajpcell.00127.2005] [PMID: 16928775]
[22]
O’Conor, C.J.; Leddy, H.A.; Benefield, H.C.; Liedtke, W.B.; Guilak, F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl. Acad. Sci. USA, 2014, 111(4), 1316-1321.
[http://dx.doi.org/10.1073/pnas.1319569111] [PMID: 24474754]
[23]
Zhou, Y.; David, M.A.; Chen, X.; Wan, L.Q.; Duncan, R.L.; Wang, L.; Lu, X.L. Effects of osmolarity on the spontaneous calcium signaling of in situ juvenile and adult articular chondrocytes. Ann. Biomed. Eng., 2016, 44(4), 1138-1147.
[http://dx.doi.org/10.1007/s10439-015-1406-4] [PMID: 26219403]
[24]
Xu, J.; Wang, W.; Clark, C.C.; Brighton, C.T. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis Cartilage, 2009, 17(3), 397-405.
[http://dx.doi.org/10.1016/j.joca.2008.07.001] [PMID: 18993082]
[25]
Lv, M.; Zhou, Y.; Chen, X.; Han, L.; Wang, L.; Lu, X.L. Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: Roles of calcium sources and cell membrane ion channels. J. Orthop. Res., 2018, 36(2), 730-738.
[http://dx.doi.org/10.1002/jor.23768] [PMID: 28980722]
[26]
Lee, W.; Guilak, F.; Liedtke, W. Role of piezo channels in joint health and injury. Curr. Top. Membr., 2017, 79, 263-273.
[http://dx.doi.org/10.1016/bs.ctm.2016.10.003] [PMID: 28728820]
[27]
Liedtke, W.; Choe, Y.; Martí-Renom, M.A.; Bell, A.M.; Denis, C.S.; Sali, A.; Hudspeth, A.J.; Friedman, J.M.; Heller, S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell, 2000, 103(3), 525-535.
[http://dx.doi.org/10.1016/S0092-8674(00)00143-4] [PMID: 11081638]
[28]
Clapham, D.E. TRP channels as cellular sensors. Nature, 2003, 426(6966), 517-524.
[http://dx.doi.org/10.1038/nature02196] [PMID: 14654832]
[29]
Clapham, D.E.; Runnels, L.W.; Strübing, C. The TRP ion channel family. Nat. Rev. Neurosci., 2001, 2(6), 387-396.
[http://dx.doi.org/10.1038/35077544] [PMID: 11389472]
[30]
Montell, C.; Birnbaumer, L.; Flockerzi, V. The TRP channels, a remarkably functional family. Cell, 2002, 108(5), 595-598.
[http://dx.doi.org/10.1016/S0092-8674(02)00670-0] [PMID: 11893331]
[31]
Montell, C. The TRP superfamily of cation channels. Sci. STKE, 2005, 273e3
[http://dx.doi.org/10.1126/stke.2722005re3]
[32]
Vennekens, R.; Hoenderop, J.G.; Prenen, J.; Stuiver, M.; Willems, P.H.; Droogmans, G.; Nilius, B.; Bindels, R.J. Permeation and gating properties of the novel epithelial Ca(2+) channel. J. Biol. Chem., 2000, 275(6), 3963-3969.
[http://dx.doi.org/10.1074/jbc.275.6.3963] [PMID: 10660551]
[33]
Wu, L.J.; Sweet, T.B.; Clapham, D.E. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev., 2010, 62(3), 381-404.
[http://dx.doi.org/10.1124/pr.110.002725] [PMID: 20716668]
[34]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[35]
Erler, I.; Hirnet, D.; Wissenbach, U.; Flockerzi, V.; Niemeyer, B.A. Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J. Biol. Chem., 2004, 279(33), 34456-34463.
[http://dx.doi.org/10.1074/jbc.M404778200] [PMID: 15192090]
[36]
Arniges, M.; Fernández-Fernández, J.M.; Albrecht, N.; Schaefer, M.; Valverde, M.A. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J. Biol. Chem., 2006, 281(3), 1580-1586.
[http://dx.doi.org/10.1074/jbc.M511456200] [PMID: 16293632]
[37]
Montell, C.; Birnbaumer, L.; Flockerzi, V.; Bindels, R.J.; Bruford, E.A.; Caterina, M.J.; Clapham, D.E.; Harteneck, C.; Heller, S.; Julius, D.; Kojima, I.; Mori, Y.; Penner, R.; Prawitt, D.; Scharenberg, A.M.; Schultz, G.; Shimizu, N.; Zhu, M.X. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell, 2002, 9(2), 229-231.
[http://dx.doi.org/10.1016/S1097-2765(02)00448-3] [PMID: 11864597]
[38]
Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol., 2011, 12(3), 218.
[http://dx.doi.org/10.1186/gb-2011-12-3-218] [PMID: 21401968]
[39]
Rosasco, M.G.; Gordon, S.E. TRP channels: What do they look like? Neurobiology of TRP Channels, 2nd ed; CRC Press: Boca Raton, FL, USA, 2017.
[http://dx.doi.org/10.4324/9781315152837-1]
[40]
Vriens, J.; Watanabe, H.; Janssens, A.; Droogmans, G.; Voets, T.; Nilius, B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 396-401.
[http://dx.doi.org/10.1073/pnas.0303329101] [PMID: 14691263]
[41]
Strotmann, R.; Harteneck, C.; Nunnenmacher, K.; Schultz, G.; Plant, T.D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol., 2000, 2(10), 695-702.
[http://dx.doi.org/10.1038/35036318] [PMID: 11025659]
[42]
Delany, N.S.; Hurle, M.; Facer, P.; Alnadaf, T.; Plumpton, C.; Kinghorn, I.; See, C.G.; Costigan, M.; Anand, P.; Woolf, C.J.; Crowther, D.; Sanseau, P.; Tate, S.N. Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol. Genomics, 2001, 4(3), 165-174.
[http://dx.doi.org/10.1152/physiolgenomics.2001.4.3.165] [PMID: 11160995]
[43]
Wissenbach, U.; Bödding, M.; Freichel, M.; Flockerzi, V. Trp12, a novel TRP related protein from kidney. FEBS Lett., 2000, 485(2-3), 127-134.
[http://dx.doi.org/10.1016/S0014-5793(00)02212-2] [PMID: 11094154]
[44]
Nilius, B.; Prenen, J.; Wissenbach, U.; Bödding, M.; Droogmans, G. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch., 2001, 443(2), 227-233.
[http://dx.doi.org/10.1007/s004240100676] [PMID: 11713648]
[45]
Güler, A.D.; Lee, H.; Iida, T.; Shimizu, I.; Tominaga, M.; Caterina, M. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci., 2002, 22(15), 6408-6414.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06408.2002] [PMID: 12151520]
[46]
Lee, H.; Iida, T.; Mizuno, A.; Suzuki, M.; Caterina, M.J. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci., 2005, 25(5), 1304-1310.
[http://dx.doi.org/10.1523/JNEUROSCI.4745.04.2005] [PMID: 15689568]
[47]
Watanabe, H.; Davis, J.B.; Smart, D.; Jerman, J.C.; Smith, G.D.; Hayes, P.; Vriens, J.; Cairns, W.; Wissenbach, U.; Prenen, J.; Flockerzi, V.; Droogmans, G.; Benham, C.D.; Nilius, B. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem., 2002, 277(16), 13569-13577.
[http://dx.doi.org/10.1074/jbc.M200062200] [PMID: 11827975]
[48]
Watanabe, H.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T.; Nilius, B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature, 2003, 424(6947), 434-438.
[http://dx.doi.org/10.1038/nature01807] [PMID: 12879072]
[49]
Raboune, S.; Stuart, J.M.; Leishman, E.; Takacs, S.M.; Rhodes, B.; Basnet, A.; Jameyfield, E.; McHugh, D.; Widlanski, T.; Bradshaw, H.B. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front. Cell. Neurosci., 2014, 8, 195.
[http://dx.doi.org/10.3389/fncel.2014.00195] [PMID: 25136293]
[50]
Liedtke, W.; Tobin, D.M.; Bargmann, C.I.; Friedman, J.M. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 2003, 100(Suppl. 2), 14531-14536.
[http://dx.doi.org/10.1073/pnas.2235619100] [PMID: 14581619]
[51]
Nilius, B.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T. TRPV4 calcium entry channel: a paradigm for gating diversity. Am. J. Physiol. Cell Physiol., 2004, 286(2), C195-C205.
[http://dx.doi.org/10.1152/ajpcell.00365.2003] [PMID: 14707014]
[52]
Nilius, B.; Watanabe, H.; Vriens, J. The TRPV4 channel: structure-function relationship and promiscuous gating behaviour. Pflugers Arch., 2003, 446(3), 298-303.
[http://dx.doi.org/10.1007/s00424-003-1028-9] [PMID: 12715179]
[53]
Voets, T.; Prenen, J.; Vriens, J.; Watanabe, H.; Janssens, A.; Wissenbach, U.; Bödding, M.; Droogmans, G.; Nilius, B. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem., 2002, 277(37), 33704-33710.
[http://dx.doi.org/10.1074/jbc.M204828200] [PMID: 12093812]
[54]
Krauss, D.; Eisenberg, B.; Gillespie, D. Selectivity sequences in a model calcium channel: role of electrostatic field strength. Eur. Biophys. J., 2011, 40(6), 775-782.
[http://dx.doi.org/10.1007/s00249-011-0691-6] [PMID: 21380773]
[55]
Muramatsu, S.; Wakabayashi, M.; Ohno, T.; Amano, K.; Ooishi, R.; Sugahara, T.; Shiojiri, S.; Tashiro, K.; Suzuki, Y.; Nishimura, R.; Kuhara, S.; Sugano, S.; Yoneda, T.; Matsuda, A. Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J. Biol. Chem., 2007, 282(44), 32158-32167.
[http://dx.doi.org/10.1074/jbc.M706158200] [PMID: 17804410]
[56]
Clark, A.L.; Votta, B.J.; Kumar, S.; Liedke, W.; Guilak, F. Chondroprotective role of the osmotically-sensitive ion channel TRPV4: Age- and sex dependent progression of osteoarthritis in Trpv4 deficient mice. Arthritis Rheum., 2010, 62(10), 2973-2983.
[http://dx.doi.org/10.1002/art.27624] [PMID: 20583100]
[57]
Guilak, F.; Leddy, H.A.; Liedtke, W. Transient receptor potential vanilloid 4: The sixth sense of the musculoskeletal system? Ann. N. Y. Acad. Sci., 2010, 1192, 404-409.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05389.x] [PMID: 20392266]
[58]
Bautista, D.M.; Siemens, J.; Glazer, J.M.; Tsuruda, P.R.; Basbaum, A.I.; Stucky, C.L.; Jordt, S.E.; Julius, D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 2007, 448(7150), 204-208.
[http://dx.doi.org/10.1038/nature05910] [PMID: 17538622]
[59]
Dhaka, A.; Murray, A.N.; Mathur, J.; Earley, T.J.; Petrus, M.J.; Patapoutian, A. TRPM8 is required for cold sensation in mice. Neuron, 2007, 54(3), 371-378.
[http://dx.doi.org/10.1016/j.neuron.2007.02.024] [PMID: 17481391]
[60]
Bagal, S.K.; Brown, A.D.; Cox, P.J.; Omoto, K.; Owen, R.M.; Pryde, D.C.; Sidders, B.; Skerratt, S.E.; Stevens, E.B.; Storer, R.I.; Swain, N.A. Ion channels as therapeutic targets: a drug discovery perspective. J. Med. Chem., 2013, 56(3), 593-624.
[http://dx.doi.org/10.1021/jm3011433] [PMID: 23121096]
[61]
Phelps, C.B.; Wang, R.R.; Choo, S.S.; Gaudet, R. Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J. Biol. Chem., 2010, 285(1), 731-740.
[http://dx.doi.org/10.1074/jbc.M109.052548] [PMID: 19864432]
[62]
Strotmann, R.; Schultz, G.; Plant, T.D. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J. Biol. Chem., 2003, 278(29), 26541-26549.
[http://dx.doi.org/10.1074/jbc.M302590200] [PMID: 12724311]
[63]
Vriens, J.; Owsianik, G.; Janssens, A.; Voets, T.; Nilius, B. Determinants of 4 α-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J. Biol. Chem., 2007, 282(17), 12796-12803.
[http://dx.doi.org/10.1074/jbc.M610485200] [PMID: 17341586]
[64]
Berna-Erro, A.; Izquierdo-Serra, M.; Sepúlveda, R.V.; Rubio-Moscardo, F.; Doñate-Macián, P.; Serra, S.A.; Carrillo-Garcia, J.; Perálvarez-Marín, A.; González-Nilo, F.; Fernández-Fernández, J.M.; Valverde, M.A. Structural determinants of 5′,6′-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci. Rep., 2017, 7(1), 10522.
[http://dx.doi.org/10.1038/s41598-017-11274-1] [PMID: 28874838]
[65]
Inada, H.; Procko, E.; Sotomayor, M.; Gaudet, R. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry, 2012, 51(31), 6195-6206.
[http://dx.doi.org/10.1021/bi300279b] [PMID: 22702953]
[66]
Deng, Z.; Paknejad, N.; Maksaev, G.; Sala-Rabanal, M.; Nichols, C.G.; Hite, R.K.; Yuan, P. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat. Struct. Mol. Biol., 2018, 25(3), 252-260.
[http://dx.doi.org/10.1038/s41594-018-0037-5] [PMID: 29483651]
[67]
White, J.P.; Cibelli, M.; Urban, L.; Nilius, B.; McGeown, J.G.; Nagy, I. TRPV4: molecular conductor of a diverse orchestra. Physiol. Rev., 2016, 96(3), 911-973.
[http://dx.doi.org/10.1152/physrev.00016.2015] [PMID: 27252279]
[68]
Kumar, S.; Pratta, M.A.; Wotta, B.J. Method for activating TRPV4 channel receptors by agonists. U. S. Patent. 60/607,544 . 2004.
[69]
Casillas, L.N.; Jamieson, C.; Marquis, R.W. Novel compounds U.S. Patent, 60/607,705. 2004.
[70]
Casillas, L.N.; Jeong, J. Marquis, R. W. Acyclic 1,3-diemines and uses thereof. Patent, 60/607,678,. 2004.
[71]
Cichy-Knight, M.; Dunn, A.K.; Marquis, R.W. Novel compounds. U. S. Patent, 60/666,794 . 2005.
[72]
Jeong, J.U.; Marquis, R.W. Acyclic 1,4-diamines and uses thereof. U. S. Patent, 60/715,085,. 2005.
[73]
Casillas, L.N.; Marquis, R.W. Novel compounds. U. S. Patent, 60/750,734. 2005.
[74]
Casillas, L.N.; Marquis, R.W. Novel compounds. U. S. Patent,60/758,059,. 2006.
[75]
Marquis, R.W. Novel compounds U. S. Patent, 60/774,386. 2006.
[76]
Jeong, J.U.; Rahman, A.; Chen, X.; Casillas, L.; Lin, M.; Trout, R.; Luengo, J.I.; Lipshutz, D.S.; Marquis, R.W. In: . 238th ACS National Meeting, Washington, DC, United States August 16-202009.
[77]
Casillas, L.T.R.; Lin, M.; Rominger, D.; Donovan, B.; Brown, B.S.; Kulkarni, S.G.; Lipshutz, D.B.; Sanjay, K.; Votta, B.; Luengo, J.I.; Marquis, R. In: . 238th ACS National Meeting, Washington, DC, United States August 16-202009.
[78]
Thorneloe, K.S.; Sulpizio, A.C.; Lin, Z.; Figueroa, D.J.; Clouse, A.K.; McCafferty, G.P.; Chendrimada, T.P.; Lashinger, E.S.; Gordon, E.; Evans, L.; Misajet, B.A.; Demarini, D.J.; Nation, J.H.; Casillas, L.N.; Marquis, R.W.; Votta, B.J.; Sheardown, S.A.; Xu, X.; Brooks, D.P.; Laping, N.J.; Westfall, T.D.N. -((1S)-1-[4-((2S)-2-[(2,4-dichlorophenyl)sulfonyl]amino-3-hydroxypropanoyl)-1-piperazinyl]carbonyl-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J. Pharmacol. Exp. Ther., 2008, 326, 432-442.
[http://dx.doi.org/10.1124/jpet.108.139295] [PMID: 18499743]
[79]
Willette, R.N.; Bao, W.; Nerurkar, S.; Yue, T.L.; Doe, C.P.; Stankus, G.; Turner, G.H.; Ju, H.; Thomas, H.; Fishman, C.E.; Sulpizio, A.; Behm, D.J.; Hoffman, S.; Lin, Z.; Lozinskaya, I.; Casillas, L.N.; Lin, M.; Trout, R.E.L.; Votta, B.J.; Thorneloe, K.; Lashinger, E.S.R.; Figueroa, D.J.; Marquis, R.; Xu, X. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J. Pharmacol. Exp. Ther., 2008, 326(2), 443-452.
[http://dx.doi.org/10.1124/jpet.107.134551] [PMID: 18499744]
[80]
Thorneloe, K.S.; Cheung, M.; Holt, D.A.; Willette, R.N. Properties of the TRPV4 agonist gsk1016790a and the TRPV4 antagonist GSK2193874. Physiol. Rev., 2017, 97(4), 1231-1232.
[http://dx.doi.org/10.1152/physrev.00019.2017] [PMID: 28794166]
[81]
Thorneloe, K.S.; Cheung, M.; Bao, W.; Alsaid, H.; Lenhard, S.; Jian, M-Y.; Costell, M.; Maniscalco-Hauk, K.; Krawiec, J.A.; Olzinski, A.; Gordon, E.; Lozinskaya, I.; Elefante, L.; Qin, P.; Matasic, D.S.; James, C.; Tunstead, J.; Donovan, B.; Kallal, L.; Waszkiewicz, A.; Vaidya, K.; Davenport, E.A.; Larkin, J.; Burgert, M.; Casillas, L.N.; Marquis, R.W.; Ye, G.; Eidam, H.S.; Goodman, K.B.; Toomey, J.R.; Roethke, T.J.; Jucker, B.M.; Schnackenberg, C.G.; Townsley, M.I.; Leopore, J.J.; Willette, R.N. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci. Transl. Med., 2012, 4(159)159ra148
[http://dx.doi.org/10.1126/scitranslmed.3004276]
[82]
Cheung, M.; Bao, W.; Behm, D.J.; Brooks, C.A.; Bury, M.J.; Dowdell, S.E.; Eidam, H.S.; Fox, R.M.; Goodman, K.B.; Holt, D.A.; Lee, D.; Roethke, T.J.; Willette, R.N.; Xu, X.; Ye, G.; Thorneloe, K.S. Discovery of GSK2193874: an orally active, potent, and selective blocker of transient receptor potential vanilloid 4. ACS Med. Chem. Lett., 2017, 8(5), 549-554.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00094] [PMID: 28523109]
[83]
Liedtke, W. TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals. J. Physiol., 2005, 567(Pt. 1), 53-58.
[http://dx.doi.org/10.1113/jphysiol.2005.088963] [PMID: 15961428]
[84]
Banner, K.H.; Igney, F.; Poll, C. TRP channels: emerging targets for respiratory disease. Pharmacol. Ther., 2011, 130(3), 371-384.
[http://dx.doi.org/10.1016/j.pharmthera.2011.03.005] [PMID: 21420429]
[85]
Klausen, T.K.; Pagani, A.; Minassi, A.; Ech-Chahad, A.; Prenen, J.; Owsianik, G.; Hoffmann, E.K.; Pedersen, S.F.; Appendino, G.; Nilius, B. Modulation of the transient receptor potential vanilloid channel TRPV4 by 4α-phorbol esters: a structure-activity study. J. Med. Chem., 2009, 52(9), 2933-2939.
[http://dx.doi.org/10.1021/jm9001007] [PMID: 19361196]
[86]
Pagani, A.; Navarrete, C.; Fiebich, B.L.; Muñoz, E.; Appendino, G. Synthesis and biological evaluation of 12-aminoacylphorboids. J. Nat. Prod., 2010, 73(3), 447-451.
[http://dx.doi.org/10.1021/np9006553] [PMID: 20121237]
[87]
Smith, P.L.; Maloney, K.N.; Pothen, R.G.; Clardy, J.; Clapham, D.E. Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J. Biol. Chem., 2006, 281(40), 29897-29904.
[http://dx.doi.org/10.1074/jbc.M605394200] [PMID: 16899456]
[88]
Ma, X.; He, D.; Ru, X.; Chen, Y.; Cai, Y.; Bruce, I.C.; Xia, Q.; Yao, X.; Jin, J. Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel. Br. J. Pharmacol., 2012, 166(1), 349-358.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01767.x] [PMID: 22049911]
[89]
Tominaga, M.; Sokabe, T.; Kida, N.; Oba, A.; Kanamaru, A.; Fukuda, T. Method for screening substance possessing skin barrier function improvement ability; JP2011115152, June 16,. 2011.
[90]
Sokabe, T.; Fukumi-Tominaga, T.; Yonemura, S.; Mizuno, A.; Tominaga, M. The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J. Biol. Chem., 2010, 285(24), 18749-18758.
[http://dx.doi.org/10.1074/jbc.M110.103606] [PMID: 20413591]
[91]
Denda, M.; Sokabe, T.; Fukumi-Tominaga, T.; Tominaga, M. Effects of skin surface temperature on epidermal permeability barrier homeostasis. J. Invest. Dermatol., 2007, 127(3), 654-659.
[http://dx.doi.org/10.1038/sj.jid.5700590] [PMID: 17068482]
[92]
Yazaki, Y.; Hillis, W.E. Polyphenols of Eucalyptus globulus, E. regnans and E. deglupta. Phytochemistry, 1976, 15, 1180-1182.
[http://dx.doi.org/10.1016/0031-9422(76)85129-1]
[93]
Xue, R-F.; Zhao, T-T.; Wang, B.; Liang, H. Secondary metabolites from Potentilla discolour bunge (Rosaceae). Biochem. Syst. Ecol., 2006, 34, 825-828.
[http://dx.doi.org/10.1016/j.bse.2006.07.003]
[94]
Nawwar, M.A.M.; Buddrus, J.; Bauer, H. Dimeric phenolic constituents from the roots of Tamarix nilotica. Phytochemistry, 1982, 21, 1755-1758.
[http://dx.doi.org/10.1016/S0031-9422(82)85054-1]
[95]
Li, X-C.; Elsohly, H.N.; Hufford, C.D.; Clark, A.M. NMR assignments of ellagic acid derivatives. Magn. Reson. Chem., 1999, 37, 856-859.
[http://dx.doi.org/10.1002/(SICI)1097-458X(199911)37:11<856:AID-MRC529>3.0.CO;2-X]
[96]
Khallouki, F.; Haubner, R.; Hull, W.E.; Erben, G.; Spiegelhalder, B.; Bartsch, H.; Owen, R.W. Isolation, purification and identification of ellagic acid derivatives, catechins, and procyanidins from the root bark of Anisophyllea dichostyla R. Br. Food Chem. Toxicol., 2007, 45(3), 472-485.
[http://dx.doi.org/10.1016/j.fct.2006.09.011] [PMID: 17084499]
[97]
Magid, A.A.; Voutquenne-Nazabadioko, L.; Harakat, D.; Moretti, C.; Lavaud, C. Phenolic glycosides from the stem bark of Caryocar villosum and C. glabrum. J. Nat. Prod., 2008, 71(5), 914-917.
[http://dx.doi.org/10.1021/np800015p] [PMID: 18412393]
[98]
Nasser, A.L.M.; Carli, C.B.A.; Rodrigues, C.M.; Maia, D.C.G.; Carlos, I.Z.; Eberlin, M.N.; Hiruma-Lima, C.A.; Vilegas, W. Identification of ellagic acid derivatives in methanolic extracts from Qualea species. Z. Natforsch. C J. Biosci., 2008, 63(11-12), 794-800.
[http://dx.doi.org/10.1515/znc-2008-11-1203] [PMID: 19227825]
[99]
Atta-Ur-Rahman. Ngounou, F. N.; Choudhary, M. I.; Malik, S.; Makhmoor, T.; Nur-E-Alam, M.; Zareen, S.; Lontsi, D.; Ayafor, J. F.; Sondengam, B. L. New antioxidant and antimicrobial ellagic acid derivatives from Pteleopsis hylodendron. Planta Med., 2001, 67, 335-339.
[http://dx.doi.org/10.1055/s-2001-14306]
[100]
Ohtsuka, N.; Yamamoto, N. TRPV4 activators (in Japanese); JP. 2016138064, August 4. 2015.
[101]
Nakatsu, S.; Yamamoto, T. TRPV4 activators (in Japanese); JP. 2017119639, July 6,. 2017.
[102]
Sato, T.; Kitamura, S.; Takagaki, K. Skin barrier function improving agent containing Pueraria flower treatment product. (in Japanese).JP 2016069341; , 2016.
[103]
Vincent, F.; Acevedo, A.; Nguyen, M.T.; Dourado, M.; DeFalco, J.; Gustafson, A.; Spiro, P.; Emerling, D.E.; Kelly, M.G.; Duncton, M.A.J. Identification and characterization of novel TRPV4 modulators. Biochem. Biophys. Res. Commun., 2009, 389(3), 490-494.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.007] [PMID: 19737537]
[104]
Vincent, F.; Duncton, M.A.J. TRPV4 agonists and antagonists. Curr. Top. Med. Chem., 2011, 11(17), 2216-2226.
[http://dx.doi.org/10.2174/156802611796904861] [PMID: 21671873]
[105]
Duncton, M.A.J. Small molecule agonists and antagonists of TRPV4. In: TRP channels as Therapeutic Targets, from basic science to clinical use; Szallasi, A., Ed.; Elsevier Science B. V: Amsterdam, 2015, pp. 205-219.
[http://dx.doi.org/10.1016/B978-0-12-420024-1.00012-6]
[106]
Yoo, S.; Choi, S.I.; Lee, S.; Song, J.; Yang, C.; Bang, S.; Kim, S.U.; Min, K.H.; Hwang, S.W. Endogenous TRPV4 expression of a hybrid neuronal cell line N18D3 and its utilization to find a novel synthetic ligand. J. Mol. Neurosci., 2017, 63(3-4), 422-430.
[http://dx.doi.org/10.1007/s12031-017-0993-y] [PMID: 29090425]
[107]
Akiyama, H.; Kim, J.E.; Nakashima, K.; Balmes, G.; Iwai, N.; Deng, J.M.; Zhang, Z.; Martin, J.F.; Behringer, R.R.; Nakamura, T.; de Crombrugghe, B. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc. Natl. Acad. Sci. USA, 2005, 102(41), 14665-14670.
[http://dx.doi.org/10.1073/pnas.0504750102] [PMID: 16203988]
[108]
Akiyama, H.; Chaboissier, M-C.; Martin, J.F.; Schedl, A.; de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev., 2002, 16(21), 2813-2828.
[http://dx.doi.org/10.1101/gad.1017802] [PMID: 12414734]
[109]
Phan, M.N.; Leddy, H.A.; Votta, B.J.; Kumar, S.; Levy, D.S.; Lipshutz, D.B.; Lee, S.H.; Liedtke, W.; Guilak, F. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum., 2009, 60(10), 3028-3037.
[http://dx.doi.org/10.1002/art.24799] [PMID: 19790068]
[110]
Cameron, T.L.; Belluoccio, D.; Farlie, P.G.; Brachvogel, B.; Bateman, J.F. Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev. Biol., 2009, 9, 20.
[http://dx.doi.org/10.1186/1471-213X-9-20] [PMID: 19272164]
[111]
Zhou, Y.; David, M.A.; Chen, X.; Wan, L.Q.; Duncan, R.L.; Wang, L.; Lu, X.L. Effects of osmolarity on the spontaneous calcium signaling of in situ juvenile and adult articular chondrocytes. Ann. Biomed. Eng., 2016, 44(4), 1138-1147.
[http://dx.doi.org/10.1007/s10439-015-1406-4] [PMID: 26219403]
[112]
Jablonski, C.L.; Ferguson, S.; Pozzi, A.; Clark, A.L. Integrin α1β1 participates in chondrocyte transduction of osmotic stress. Biochem. Biophys. Res. Commun., 2014, 445(1), 184-190.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.157] [PMID: 24495803]
[113]
O’Conor, C.J.; Ramalingam, S.; Zelenski, N.A.; Benefield, H.C.; Rigo, I.; Little, D.; Wu, C-L.; Chen, D.; Liedtke, W.; McNulty, A.L.; Guilak, F. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci. Rep., 2016, 6, 29053.
[http://dx.doi.org/10.1038/srep29053] [PMID: 27388701]
[114]
Kang, S.S.; Shin, S.H.; Auh, C-K.; Chun, J. Human skeletal dysplasia caused by a constitutive activated transient receptor potential vanilloid 4 (TRPV4) cation channel mutation. Exp. Mol. Med., 2012, 44(12), 707-722.
[http://dx.doi.org/10.3858/emm.2012.44.12.080] [PMID: 23143559]
[115]
Weinstein, M.M.; Tompson, S.W.; Chen, Y.; Lee, B.; Cohn, D.H. Mice expressing mutant Trpv4 recapitulate the human TRPV4 disorders. J. Bone Miner. Res., 2014, 29(8), 1815-1822.
[http://dx.doi.org/10.1002/jbmr.2220] [PMID: 24644033]
[116]
Hines, S.L.; Richter, J.E., Jr; Mohammad, A.N.; Mahim, J.; Atwal, P.S.; Caulfield, T.R. Protein informatics combined with multiple data sources enriches the clinical characterization of novel TRPV4 variant causing an intermediate skeletal dysplasia. Mol. Genet. Genomic Med., 2019, 7(3)e566
[http://dx.doi.org/10.1002/mgg3.566] [PMID: 30693671]
[117]
Camacho, N.; Krakow, D.; Johnykutty, S.; Katzman, P.J.; Pepkowitz, S.; Vriens, J.; Nilius, B.; Boyce, B.F.; Cohn, D.H. Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am. J. Med. Genet. A., 2010, 152A(5), 1169-1177.
[http://dx.doi.org/10.1002/ajmg.a.33392] [PMID: 20425821]
[118]
Hurd, L.; Kirwin, S.M.; Boggs, M.; Mackenzie, W.G.; Bober, M.B.; Funanage, V.L.; Duncan, R.L. A mutation in TRPV4 results in altered chondrocyte calcium signaling in severe metatropic dysplasia. Am. J. Med. Genet. A., 2015, 167A(10), 2286-2293.
[http://dx.doi.org/10.1002/ajmg.a.37182] [PMID: 26249260]
[119]
Yazici, Y.; McAlindon, T.E.; Fleischmann, R.; Gibofsky, A.; Lane, N.E.; Kivitz, A.J.; Skrepnik, N.; Armas, E.; Swearingen, C.J.; DiFrancesco, A.; Tambiah, J.R.S.; Hood, J.; Hochberg, M.C. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthritis Cartilage, 2017, 25(10), 1598-1606.
[http://dx.doi.org/10.1016/j.joca.2017.07.006] [PMID: 28711582]
[120]
Atobe, M.; Nagami, T.; Muramatsu, S.; Ohno, T.; Kitagawa, M.; Suzuki, H.; Ishiguro, M.; Watanabe, A.; Kawanishi, M. Discovery of novel transient receptor potential vanilloid 4 (TRPV4) agonists as regulators of chondrogenic differentiation; identification of quinazolin-4(3H)-ones and in vivo studies on a surgically induced rat model of osteoarthritis. J. Med. Chem., 2019, 62(3), 1468-1483.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01615] [PMID: 30629441]
[121]
Snowden, J.M.; Maroudas, A. The distribution of serum albumin in human normal and degenerate articular cartilage. Biochim. Biophys. Acta, 1976, 428(3), 726-740.
[http://dx.doi.org/10.1016/0304-4165(76)90204-X] [PMID: 1276178]
[122]
Hinata, M.; Imai, S.; Sanaki, T.; Tsuchida, J.; Yoshioka, T.; Higashino, K.; Yamamoto, M.; Imai, M.; Soga, M.; Horita, N.; Fukuda, I.; Ikeda, M.; Yamane, S.; Morita, A.; Kanemasa, T.; Sakaguchi, G.; Hasegawa, M.; Minami, M.; Morioka, Y. Sensitization of transient receptor potential vanilloid 4 and increasing its endogenous ligand 5,6-epoxyeicosatrienoic acid in rats with monoiodoacetate-induced osteoarthritis. Pain, 2018, 159(5), 939-947.
[http://dx.doi.org/10.1097/j.pain.0000000000001169] [PMID: 29438227]
[123]
Alessandri-Haber, N.; Joseph, E.; Dina, O.A.; Liedtke, W.; Levine, J.D. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain, 2005, 118(1-2), 70-79.
[http://dx.doi.org/10.1016/j.pain.2005.07.016] [PMID: 16213085]
[124]
De Petrocellis, L.; Bisogno, T.; Maccarrone, M.; Davis, J.B.; Finazzi-Agro, A.; Di Marzo, V. The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. J. Biol. Chem., 2001, 276(16), 12856-12863.
[http://dx.doi.org/10.1074/jbc.M008555200] [PMID: 11278420]
[125]
Todaka, H.; Taniguchi, J.; Satoh, J.; Mizuno, A.; Suzuki, M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J. Biol. Chem., 2004, 279(34), 35133-35138.
[http://dx.doi.org/10.1074/jbc.M406260200] [PMID: 15187078]
[126]
Muller, C.; Morales, P.; Reggio, P.H. Cannabinoid ligands targeting TRP channels. Front. Mol. Neurosci., 2019, 11, 487.
[http://dx.doi.org/10.3389/fnmol.2018.00487] [PMID: 30697147]
[127]
Iannitti, T.; Lodi, D.; Palmieri, B. Intra-articular injections for the treatment of osteoarthritis: focus on the clinical use of hyaluronic acid. Drugs R D., 2011, 11(1), 13-27.
[http://dx.doi.org/10.2165/11539760-000000000-00000] [PMID: 21142290]
[128]
Surapaneni, L.; Huang, G.; Bodine, A.B.; Brooks, J.R.; Podila, R.; Haley-Zitlin, V. Correlations between chondroitin sulfate physicochemical properties and its in-vitro absorption and antiinflammatory activity. 16 Dec, 2014.[Accessed date] . https://arxiv.org/abs/1412.5562
[129]
Lee, J.K.; Gegg, C.A.; Hu, J.C.; Kass, P.H.; Athanasiou, K.A. Promoting increased mechanical properties of tissue engineered neocartilage via the application of hyperosmolarity and 4α-phorbol 12,13-didecanoate (4αPDD). J. Biomech., 2014, 47(15), 3712-3718.
[http://dx.doi.org/10.1016/j.jbiomech.2014.09.018] [PMID: 25442009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy