Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Bilosomes: Superior Vesicular Carriers

Author(s): Pradnya Palekar-Shanbhag*, Supriya Lande, Riya Chandra and Drushti Rane

Volume 15, Issue 4, 2020

Page: [312 - 320] Pages: 9

DOI: 10.2174/1574885514666190917145510

conference banner
Abstract

In the current era, many formulations have been designed in the form of vesicular carriers like liposomes and niosomes which have been proved to be one of the potential candidates for drug delivery by the oral route but due to the gastrointestinal environment i.e. pH, presence of enzymes, and bile salts, their use is limited. Because of these difficulties, research is being done to increase the stability and efficacy of the drug. Thus bilosomes have been developed as a potential vesicular carrier system for oral vaccine delivery, transdermal and parenteral targeted drug delivery. The present article covers various aspects related to the novel vesicular system that is based on bile salts called bilosomes, for targetted drug delivery systems. It includes information related to bilosome composition, formulation techniques, characterization methods, applications in oral immunization as vaccine delivery approach and advantages over conventional nanocarriers such as liposomes and niosomes. It also focuses on the stability and applications of bilosomes along with scalability and potentiality in biomedical field of oral immunization against various dreadful diseases.

Keywords: Bilosomes, vesicular carriers, vaccine delivery, bile salts, liposomes, niosomes.

Graphical Abstract
[1]
Tanvi R, Meenakshi K. Chauhan. Bilosome: A Bile Salt Based Novel Carrier System Gaining Interest In Pharmaceutical Research. J Drug Deliv Ther 2017; 7(5): 4-16.
[2]
Conacher M, Alexander J, Brewer J. Oral Immunisation With Peptide And Protein Antigens By Formulation In Lipid Vesicles Incorporating Bile Salts (Bilosomes). Vaccine 2001; 19(20-22): 2965-74.
[3]
Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug Discov Today 2016; 21(6): 888-99.
[http://dx.doi.org/10.1016/j.drudis.2016.03.013] [PMID: 27038539]
[4]
Pavlović N, Goločorbin-Kon S, Ðanić M, et al. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front Pharmacol 2018; 9: 1283.
[http://dx.doi.org/10.3389/fphar.2018.01283] [PMID: 30467479]
[5]
Jing L, Xuling W, et al. A Review On Phospholipids And Their Main Applications In Drug Delivery s Systems Data. Asian Journal of Pharmaceutical Sciences 2015; 10(2): 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[6]
Ahmad J, Singhal M, Amin S, et al. Bile salt stabilized vesicles (Bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm Des 2017; 23(11): 1575-88.
[http://dx.doi.org/10.2174/1381612823666170124111142] [PMID: 28120725]
[7]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007; 4(4): 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[8]
Vyas & Khar Targeted And Controlled Drug Delivery System. 2007.
[9]
Gannu P, Pogaku R. Nonionic Surfactant Vesicular Systems For Effective Drug Delivery— An Overview. Acta Pharm Sin B 2011; 1(4): 208-19.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[10]
Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1663-73.
[http://dx.doi.org/10.1016/j.addr.2008.09.002] [PMID: 18845195]
[11]
Hall. Thermodynamics Of Micelle Formation; M.J. Schick (Ed.), Nonionic surfactants: physical chemistry, surfactant science series Marcel Dekker, New York 1987; 23: 233-96.
[12]
Uchegbu I, Vyas S. Non-Ionic Surfactant Based Vesicles (Niosomes) In Drug Delivery. Int J Pharm 1998; 172: 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[13]
Uchegbu I. Non-ionic surfactant vesicles (Niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci 1995; 58: 1-55.
[http://dx.doi.org/10.1016/0001-8686(95)00242-I]
[14]
Arunothayanun P, Bernard MS, Craig DQ, Uchegbu IF, Florence AT. The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyl diglycerol ether. Int J Pharm 2000; 201(1): 7-14.
[http://dx.doi.org/10.1016/S0378-5173(00)00362-8] [PMID: 10867260]
[15]
Lawrence M, Chauhan S, Lawrence S, et al. The formation, characterization and stability of non-ionic surfactant vesicles. STP Pharm Sci 1996; 1: 49-60.
[16]
Shahiwala A, Misra A. Studies in topical application of niosomally entrapped Nimesulide. J Pharm Pharm Sci 2002; 5(3): 220-5.
[PMID: 12553889]
[17]
Shukla A, Katare OP, Singh B, Vyas SP. M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int J Pharm 2010; 385(1-2): 47-52.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.027] [PMID: 19835938]
[18]
Shukla A, Singh B, Katare OP. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br J Pharmacol 2011; 164(2b): 820-7.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01452.x ] [PMID: 21506959]
[19]
Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target 2013; 21(3): 291-9.
[http://dx.doi.org/10.3109/1061186X.2012.747528] [PMID: 30952177]
[20]
[https://www.creative-biostructure.com/mempro%E2%84%A2-liposome-preparation-by- reverse-phase-evaporation-516.htm
[21]
Aburahma MH. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 2016; 23(6): 1847-67.
[PMID: 25390191]
[22]
Shukla A, Khatri K, Gupta PN, Goyal AK, Mehta A, Vyas SP. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci 2008; 11(1): 59-66.
[http://dx.doi.org/10.18433/J3K01M] [PMID: 18445364]
[23]
Jain S, Harde H, Indulkar A, Agrawal AK. Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomedicine (Lond) 2014; 10(2): 431-40.
[http://dx.doi.org/10.1016/j.nano.2013.08.012] [PMID: 24036099]
[24]
Singh P, Prabakaran D, Jain S, Mishra V, Jaganathan KS, Vyas SP. Cholera toxin B subunit conjugated bile salt stabilized vesicles (bilosomes) for oral immunization. Int J Pharm 2004; 278(2): 379-90.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.014] [PMID: 15196642]
[25]
Frey A, Giannasca KT, Weltzin R, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 1996; 184(3): 1045-59.
[http://dx.doi.org/10.1084/jem.184.3.1045] [PMID: 9064322]
[26]
Jani P, Halbert GW, Langridge J, Florence AT. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 1989; 41(12): 809-12.
[http://dx.doi.org/10.1111/j.2042-7158.1989.tb06377.x] [PMID: 2576440]
[27]
Enhsen A, Kramer W, Wess G. Bile acids in drug discovery. Drug Discov Today 1998; 3(9): 409-18.
[http://dx.doi.org/10.1016/S1359-6446(96)10046-5]
[28]
Jain S, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J Liposome Res 2006; 16(4): 331-45.
[http://dx.doi.org/10.1080/08982100600992302] [PMID: 17162576]
[29]
Jain S, Indulkar A, Harde H, Agrawal AK. Oral mucosal immunization using glucomannosylated bilosomes. J Biomed Nanotechnol 2014; 10(6): 932-47.
[http://dx.doi.org/10.1166/jbn.2014.1800] [PMID: 24749389]
[30]
Jain S, Harde H, Indulkar A, Agrawal AK. Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomedicine (Lond) 2014; 10(2): 431-40.
[http://dx.doi.org/10.1016/j.nano.2013.08.012] [PMID: 24036099]
[31]
Mann JF, Scales HE, Shakir E, et al. Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 2006; 38(2): 90-5.
[http://dx.doi.org/10.1016/j.ymeth.2005.11.002] [PMID: 16414269]
[32]
Dai Y, Zhou R, Liu L, Lu Y, Qi J, Wu W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine 2013; 8: 1921-33.
[PMID: 23690687]
[33]
Chen Y, Lu Y, Chen J, et al. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 2009; 376(1-2): 153-60.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.022] [PMID: 19394416]
[34]
Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[35]
Nobbmann UL. Polydispersity–What Does It Mean for DLS and Chromatography 2014.http://www.materials-talks.com/blog/2014/10/23/polydispersity-what-does-it-mean-for-dls-and-chromatography
[36]
Bera B. Nanoporous silicon prepared by vapour phase strain etch and sacrificial technique. Int J Comput Appl 2015; (1): 42-5.
[37]
Badran M. Formulation And In Vitro Evaluation Of Flufenamic Acid Loaded Deformable Liposome For Improved Skin Delivery. Dig J Nanomater Biostruct 2014; 9: 83-91.
[38]
Chen M, Liu X, Fahr A. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application. Int J Pharm 2011; 408(1-2): 223-34.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.006] [PMID: 21316430]
[39]
Putri D, Dwiastuti R, Marchaban M, et al. Optimization of mixing temperature and sonication duration in liposome preparation. J Pharm Sci Commun 2017; 14: 79-85.
[http://dx.doi.org/10.24071/jpsc.142728]
[40]
Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm 2015; 485(1-2): 329-40.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.033] [PMID: 25796122]
[41]
Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001; 47(1): 3-19.
[http://dx.doi.org/10.1016/S0169-409X(00)00118-6] [PMID: 11251242]
[42]
Baxa U. Imaging of liposomes by transmission electron microscopy.In: Mcneil S, Ed. Characterization of nanoparticles intended for drug delivery methods in molecular biology 2018. 1682
[http://dx.doi.org/10.1007/978-1-4939-7352-1_8]
[43]
Cheng Y, Grigorieff N, Penczek PA, Walz T. A primer to single-particle cryo-electron microscopy. Cell 2015; 161(3): 438-49.
[http://dx.doi.org/10.1016/j.cell.2015.03.050] [PMID: 25910204]
[44]
Frank J. Single-particle imaging of macromolecules by cryo-electron microscopy. Annu Rev Biophys Biomol Struct 2002; 31: 303-19.
[http://dx.doi.org/10.1146/annurev.biophys.31.082901.134202] [PMID: 11988472]
[45]
Grassucci RA, Taylor D, Frank J. Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes. Nat Protoc 2008; 3(2): 330-9.
[http://dx.doi.org/10.1038/nprot.2007.474] [PMID: 18274535]
[46]
Grassucci RA, Taylor DJ, Frank J. Preparation of macromolecular complexes for cryo-electron microscopy. Nat Protoc 2007; 2(12): 3239-46.
[http://dx.doi.org/10.1038/nprot.2007.452] [PMID: 18079724]
[47]
Milne JL, Borgnia MJ, Bartesaghi A, et al. Cryo-electron microscopy-a primer for the non-microscopist. FEBS J 2013; 280(1): 28-45.
[http://dx.doi.org/10.1111/febs.12078] [PMID: 23181775]
[48]
Bibi S, Kaur R, Henriksen-Lacey M, et al. Microscopy imaging of liposomes: from coverslips to environmental SEM. Int J Pharm 2011; 417(1-2): 138-50.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.021] [PMID: 21182914]
[49]
Adler K, Schiemann J. Characterization Of Liposomes By Scanning Electron Microscopy And The Freeze-Fracture Technique. Micron and Microscopica Acta 1985; 16(2): 109-13.
[http://dx.doi.org/10.1016/0739-6260(85)90039-5]
[50]
Niu M, Tan Y, Guan P, et al. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. Int J Pharm 2014; 460(1-2): 119-30.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.028] [PMID: 24275447]
[51]
Guan P, Lu Y, Qi J, et al. Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt. Int J Nanomedicine 2011; 6: 965-74.
[PMID: 21720508]
[52]
Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm 2013; 10(8): 3076-89.
[http://dx.doi.org/10.1021/mp400154a] [PMID: 23758289]
[53]
Selective Permeability of Dialysis Tubing Lab. : Explained. Available at: https://schoolworkhelper.net/selective-permeability-of-dialysis-tubing-lab
[54]
Brayden DJ, Jepson MA, Baird AW. Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 2005; 10(17): 1145-57.
[http://dx.doi.org/10.1016/S1359-6446(05)03536-1] [PMID: 16182207]
[55]
Gebert A, Rothkötter HJ, Pabst R. M cells in Peyer’s patches of the intestine. Int Rev Cytol 1996; 167: 91-159.
[http://dx.doi.org/10.1016/S0074-7696(08)61346-7] [PMID: 8768493]
[56]
Lee S, Kim K, Kumar TS, et al. Synthesis and biological properties of insulin-deoxycholic acid chemical conjugates. Bioconjug Chem 2005; 16(3): 615-20.
[http://dx.doi.org/10.1021/bc049871e] [PMID: 15898729]
[57]
Ahmad J, Singhal M, Amin S, et al. Bile salt stabilized vesicles (Bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm Des 2017; 23(11): 1575-88.
[http://dx.doi.org/10.2174/1381612823666170124111142] [PMID: 28120725]
[58]
Niu M, Lu Y, Hovgaard L, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm 2012; 81(2): 265-72.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.009] [PMID: 22369880]
[59]
Ayogu IJ, Ogbonna O, Ayolugbe CI, Attama AA. Evaluation of the pharmacodynamic activity of insulin from bilosomal formulation. Curr Drug Deliv 2009; 6(4): 415-8.
[http://dx.doi.org/10.2174/156720109789000573] [PMID: 19534705]
[60]
Ahad A, Raish M, Ahmad A, Al-Jenoobi FI, Al-Mohizea AM. Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharm Sci 2018; 111: 409-17.
[http://dx.doi.org/10.1016/j.ejps.2017.10.012] [PMID: 29030177]
[61]
Arora D, Khurana B, Kumar M, et al. Oral immunization against hepatitis B virus using mannosylated bilosomes. Journal of Recent Advances in Pharmaceutical Research 2011; 1: 45-51.
[62]
Mann JF, Ferro VA, Mullen AB, et al. Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine 2004; 22(19): 2425-9.
[http://dx.doi.org/10.1016/j.vaccine.2003.11.067] [PMID: 15193405]
[63]
Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm 2015; 485(1-2): 329-40.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.033] [PMID: 25796122]

© 2024 Bentham Science Publishers | Privacy Policy