Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Cry1A Proteins are Cytotoxic to HeLa but not to SiHa Cervical Cancer Cells

Author(s): Gretel Mendoza-Almanza, Leticia Rocha-Zavaleta, Cecilia Aguilar-Zacarías, Jorge Ayala-Luján and Jorge Olmos*

Volume 20, Issue 12, 2019

Page: [1018 - 1027] Pages: 10

DOI: 10.2174/1389201020666190802114739

Price: $65

Abstract

Background: Bacillus thuringiensis toxins are effective against multiple biological targets such as insects, nematodes, mites, protozoa, and importantly, human cancer cells. One of the main mechanisms by which Cry toxins to trigger cell death is the specific recognition of cadherin-like membrane cell receptors.

Objective: This work aimed to assess the cytotoxicity of the Cry1Ab and Cry1Ac toxins from Bacillus thuringiensis in HeLa, cervical cancer cell line, as well as their antitumor activity in mouse models.

Methods: We analyzed several biological targets of Cry1Ab and Cry1Ac including erythrocytes, insect larvae, as well as cancer and non-cancer cell lines. The viability of HeLa, SiHa, MCF7 and HaCat cells was assessed by MTT 24 h after the administration of Cry toxins. We also studied apoptosis as a possible cytotoxicity mechanism in HeLa. The capacity of Cry toxins to eliminate tumors in xenograft mouse models was also analyzed.

Results: Both toxins, Cry1Ab and Cry1Ac, showed specific cytotoxic activity in HeLa (HPV18+) cervical cancer cell line, with a Cry1Ab LC50 of 2.5 µg/ml, and of 0.5 µg/ml for Cry1Ac. Apoptosis was differentially induced in HeLa cells using the same concentration of Cry1Ab and Cry1Ac toxins. Cry1Ac eliminated 50% of the tumors at 10 µg/ml, and eliminate 100% of the tumors at 30 and 50 µg/ml.

Conclusion: Bacillus thuringiensis Cry1A toxins show dual cytotoxic activity, in insects as well as in HeLa cancer cell line.

Keywords: Bacillus thuringiensis, cytotoxicity, cancer cells, apoptosis, antitumoral activity, toxins.

Graphical Abstract
[1]
Aronson, A.I.; Beckman, W.; Dunn, P. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev., 1986, 50(1), 1-24.
[PMID: 3007957]
[2]
Bravo, A.; Gómez, I.; Porta, H.; García-Gómez, B.I.; Rodriguez-Almazan, C.; Pardo, L.; Soberón, M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol., 2013, 6(1), 17-26.
[http://dx.doi.org/10.1111/j.1751-7915.2012.00342.x] [PMID: 22463726]
[3]
de Maagd, R.A.; Bravo, A.; Crickmore, N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet., 2001, 17(4), 193-199.
[http://dx.doi.org/10.1016/S0168-9525(01)02237-5] [PMID: 11275324]
[4]
Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins (Basel), 2014, 6(12), 3296-3325.
[http://dx.doi.org/10.3390/toxins6123296] [PMID: 25514092]
[5]
Soberón, M.; López-Díaz, J.A.; Bravo, A. Cyt toxins produced by Bacillus thuringiensis: A protein fold conserved in several pathogenic microorganisms. Peptides, 2013, 41, 87-93.
[http://dx.doi.org/10.1016/j.peptides.2012.05.023] [PMID: 22691603]
[6]
Moreno-Fierros, L.; García-Hernández, A.L.; Ilhuicatzi-Alvarado, D.; Rivera-Santiago, L.; Torres-Martínez, M.; Rubio-Infante, N.; Legorreta-Herrera, M. Cry1Ac protoxin from Bacillus thuringiensis promotes macrophage activation by upregulating CD80 and CD86 and by inducing IL-6, MCP-1 and TNF-α cytokines. Int. Immunopharmacol., 2013, 17(4), 1051-1066.
[http://dx.doi.org/10.1016/j.intimp.2013.10.005] [PMID: 24157331]
[7]
Adel-Patient, K.; Guimaraes, V.D.; Paris, A.; Drumare, M.F.; Ah-Leung, S.; Lamourette, P.; Nevers, M.C.; Canlet, C.; Molina, J.; Bernard, H.; Créminon, C.; Wal, J.M. Immunological and metabolomic impacts of administration of Cry1Ab protein and MON 810 maize in mouse. PLoS One, 2011, 6(1)e16346
[http://dx.doi.org/10.1371/journal.pone.0016346] [PMID: 21298004]
[8]
Mesnage, R.; Clair, E.; Gress, S.; Then, C.; Székács, A.; Séralini, G.E. Cytotoxicity on human cells of Cry1Ab and Cry1Ac Bt insecticidal toxins alone or with a glyphosate-based herbicide. J. Appl. Toxicol., 2013, 33(7), 695-699.
[http://dx.doi.org/10.1002/jat.2712] [PMID: 22337346]
[9]
Dean, D.H.; Rajamohan, F.; Lee, M.K.; Wu, S.J.; Chen, X.J.; Alcantara, E.; Hussain, S.R. Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis--a minireview. Gene, 1996, 179(1), 111-117.
[http://dx.doi.org/10.1016/S0378-1119(96)00442-8] [PMID: 8955636]
[10]
Karim, S.; Dean, D.H. Pesticidal and receptor binding properties of Bacillus thuringiensis Cry1Ab and Cry1Ac delta-endotoxin mutants to Pectinophora gossypiella and Helicoverpa zea. Curr. Microbiol., 2000, 41(6), 430-440.
[http://dx.doi.org/10.1007/s002840010163] [PMID: 11080394]
[11]
Vázquez-Padrón, R.I.; Gonzáles-Cabrera, J.; García-Tovar, C.; Neri-Bazan, L.; Lopéz-Revilla, R.; Hernández, M.; Moreno-Fierro, L.; de la Riva, G.A. Cry1Ac protoxin from Bacillus thuringiensis sp. kurstaki HD73 binds to surface proteins in the mouse small intestine. Biochem. Biophys. Res. Commun., 2000, 271(1), 54-58.
[http://dx.doi.org/10.1006/bbrc.2000.2584] [PMID: 10777680]
[12]
Rubio, V.P.; Bravo, A.; Olmos, J. Identification of a Bacillus thuringiensis surface layer protein with cytotoxic activity against MDA-MB-231 Breast Cancer Cells. J. Microbiol. Biotechnol., 2017, 27(1), 36-42.
[http://dx.doi.org/10.4014/jmb.1607.07020] [PMID: 27713207]
[13]
Mizuki, E.; Park, Y.S.; Saitoh, H.; Yamashita, S.; Akao, T.; Higuchi, K.; Ohba, M. Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clin. Diagn. Lab. Immunol., 2000, 7(4), 625-634.
[http://dx.doi.org/10.1128/cdli.7.4.625-634.2000] [PMID: 10882663]
[14]
Yamashita, S.; Katayama, H.; Saitoh, H.; Akao, T.; Park, Y.S.; Mizuki, E.; Ohba, M.; Ito, A. Typical three-domain cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. J. Biochem., 2005, 138(6), 663-672.
[http://dx.doi.org/10.1093/jb/mvi177] [PMID: 16428294]
[15]
Nagamatsu, Y.; Okamura, S.; Saitou, H.; Akao, T.; Mizuki, E. Three Cry toxins in two types from Bacillus thuringiensis strain M019 preferentially kill human hepatocyte cancer and uterus cervix cancer cells. Biosci. Biotechnol. Biochem., 2010, 74(3), 494-498.
[http://dx.doi.org/10.1271/bbb.90615] [PMID: 20208360]
[16]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[17]
Resource document World Health Organization., http://www.afro.who.int/health-topics/cancer
[18]
Salomon, D. ayalon, O.; Patel-King, R.; Hynes, R.; Geiger, B. Extrajunctional distribution of N-cadherin in cultures human endothelial cells. J. Cell Sci., 1992, 102, 7-17.
[PMID: 1500442]
[19]
Manuel Iglesias, J.; Beloqui, I.; García-García, F.; Leis, O.; Vazquez-Martin, A.; Eguiara, A.; Cufi, S.; Pavon, A.; Menendez, J.A.; Dopazo, J.; Martin, A.G. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS One, 2013, 8(10)e77281
[http://dx.doi.org/10.1371/journal.pone.0077281] [PMID: 24124614]
[20]
Hu, D.; Zhou, J.; Wang, F.; Shi, H.; Li, Y.; Li, B. HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo. Arch. Gynecol. Obstet., 2015, 292(6), 1345-1354.
[http://dx.doi.org/10.1007/s00404-015-3787-x] [PMID: 26093522]
[21]
Montano, E.; Vivo, M.; Guarino, A.M.; di Martino, O.; Di Luccia, B.; Calabrò, V.; Caserta, S.; Pollice, A. Colloidal Silver induces cytoeskeleton reorganization and E-cadherin recruitment at cell-cell contacts in HaCat cell. Pharmaceuticals (Basel), 2019, 12(2), 1-13.
[http://dx.doi.org/10.3390/ph12020072] [PMID: 31096606]
[22]
Malvar, T.; Gawron-Burke, C.; Baum, J.A. Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo mutations that result in CryIIIA overproduction. J. Bacteriol., 1994, 176(15), 4742-4749.
[http://dx.doi.org/10.1128/jb.176.15.4742-4749.1994] [PMID: 8045905]
[23]
Ibarra, J.E.; Federici, B.A. Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. J. Bacteriol., 1986, 165(2), 527-533.
[http://dx.doi.org/10.1128/jb.165.2.527-533.1986] [PMID: 3944061]
[24]
Drobniewski, F.A.; Ellar, D.J. Purification and properties of a 28-kilodalton hemolytic and mosquitocidal protein toxin of Bacillus thuringiensis subsp. darmstadiensis 73-E10-2. J. Bacteriol., 1989, 171(6), 3060-3067.
[http://dx.doi.org/10.1128/jb.171.6.3060-3067.1989] [PMID: 2566594]
[25]
Bravo, A.; Sarabia, S.; López, L.; Ontiveros, H.; Abarca, C.; Ortíz, A.; Ortíz, M.; Lina, L.; Villalobos, F.J.; Peña, G.; Nuñez-Valdez, M.E.; Soberón, M.; Quintero, R. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol., 1998, 64(12), 4965-4972.
[PMID: 9835590]
[26]
Mendoza, G.; Portillo, A.; Arias, E.; Ribas, R.M.; Olmos, J. New combinations of cry genes from Bacillus thuringiensis strains isolated from northwestern Mexico. Int. Microbiol., 2012, 15(4), 211-218.
[PMID: 23844480]
[27]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[28]
Jiménez-Juárez, N.; Muñoz-Garay, C.; Gómez, I.; Saab-Rincón, G.; Damian-Almazo, J.Y.; Gill, S.S.; Soberón, M.; Bravo, A. Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae. J. Biol. Chem., 2007, 282(29), 21222-21229.
[http://dx.doi.org/10.1074/jbc.M701314200] [PMID: 17537728]
[29]
Thomas, W.E.; Ellar, D.J. Bacillus thuringiensis var israelensis crystal δ-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci., 1983, 60, 181-197.
[PMID: 6874728]
[30]
Griko, N.B.; Rose-Young, L.; Zhang, X.; Carpenter, L.; Candas, M.; Ibrahim, M.A.; Junker, M.; Bulla, L.A., Jr Univalent binding of the Cry1Ab toxin of Bacillus thuringiensis to a conserved structural motif in the cadherin receptor BT-R1. Biochemistry, 2007, 46(35), 10001-10007.
[http://dx.doi.org/10.1021/bi700769s] [PMID: 17696320]
[31]
Flores-Escobar, B.; Rodríguez-Magadan, H.; Bravo, A.; Soberón, M.; Gómez, I. Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis. Appl. Environ. Microbiol., 2013, 79(15), 4543-4550.
[http://dx.doi.org/10.1128/AEM.01062-13] [PMID: 23686267]
[32]
Rubio-Infante, N.; Moreno-Fierros, L. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. J. Appl. Toxicol., 2016, 36(5), 630-648.
[http://dx.doi.org/10.1002/jat.3252] [PMID: 26537666]
[33]
Zhang, X.; Candas, M.; Griko, N.B.; Taussig, R.; Bulla, L.A. Jr A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA, 2006, 103(26), 9897-9902.
[http://dx.doi.org/10.1073/pnas.0604017103] [PMID: 16788061]
[34]
Torres-Martínez, M.; Rubio-Infante, N.; García-Hernández, A.L.; Nava-Acosta, R.; Ilhuicatzi-Alvarado, D.; Moreno-Fierros, L. Cry1Ac toxin induces macrophage activation via ERK1/2, JNK and p38 mitogen-activated protein kinases. Int. J. Biochem. Cell Biol., 2016, 78, 106-115.
[http://dx.doi.org/10.1016/j.biocel.2016.06.022] [PMID: 27394658]
[35]
Blaschuk, O.W.; Devemy, E. Cadherins as novel targets for anti-cancer therapy. Eur. J. Pharmacol., 2009, 625(1-3), 195-198.
[http://dx.doi.org/10.1016/j.ejphar.2009.05.033] [PMID: 19836380]
[36]
Chubicka, T.; Girija, D.; Deepa, K.; Salini, S.; Meera, N.; Raghavamenon, A.C.; Divya, M.K.; Babu, T.D. A parasporin from Bacillus thuringiensis native to Peninsular India induces apoptosis in cancer cells through intrinsic pathway. J. Biosci., 2018, 43(2), 407-416.
[http://dx.doi.org/10.1007/s12038-018-9759-0] [PMID: 29872027]
[37]
Guide for the care and use of laboratory animals., 1996.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy