Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Pyrazoles as Anti-inflammatory and Analgesic Agents: In-vivo and In-silico Studies

Author(s): Geeta Chahal, Jyoti Monga, Isha Rani, Shubham Saini, Manish Devgun, Asif Husain and Sukhbir Lal Khokra*

Volume 23, Issue 1, 2024

Published on: 12 December, 2023

Page: [39 - 51] Pages: 13

DOI: 10.2174/0118715230275741231207115011

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Pyrazole is a well-known nucleus in the pharmacy field with a wide range of other activities in addition to anti-inflammatory and analgesic, i.e., anticonvulsant, antiviral, and anticancer activities. There are well-known marketed drugs having pyrazole moiety as celecoxib, and lonazolac as COX-II inhibitors.

Aims: We aim to synthesize better anti-inflammatory than existing ones. Thiophene is also known for its analgesic and anti-inflammatory action. Thus, the fusion of both gives better anti-inflammatory agents. In the present studies, derivatives from two series of pyrazole were prepared by reacting substituted chalcone (3a-3f) derivatives prepared from 2-acetyl thiophene. They substituted aromatic aldehydes with phenyl hydrazine to form (5a-5f) and with 2, 4-dinitro phenyl hydrazine giving compounds (6a-6f) separately.

Methods: Purified and characterized pyrazoles have been analyzed for in-vivo analgesic and anti-inflammatory activities by using standard methods. Compounds 5e, 5f, and 6d were proved to be potent analgesics and series (5a-5f) was found to have anti-inflammatory action, which was further validated using docking and ADME studies.

Results: The ADME profile of synthesized compounds was found to be satisfactory.

Conclusion: The synthesized compounds can serve as lead for further drug designing.

Keywords: Docking, molegro virtual docker, swiss adme, pyrazole, anti-inflammatory, analgesic.

Graphical Abstract
[1]
Omar, F.A.; Mahfouz, N.M.; Rahman, M.A. Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem., 1996, 31(10), 819-825.
[http://dx.doi.org/10.1016/0223-5234(96)83976-6] [PMID: 22026938]
[2]
Sandhu, J.S. 2006. Renal effects of selective cyclooxygenase-2 (COX- 2) inhibitors. J. Indian Acad. Clin. Med., 2003, 4(1), 18-20.
[3]
Ostad, S.N. Mohsen Amini; Zahra Haghipour; Leila Karimi; Latifeh Navidpour; Ghahremani, M.H.; Shafiee, A. Inhibitory activities of new series of 4, 5-diaryl thiadiazoles derivaties on lipopolysaccharide-induced Cox-2 expression. Int. J. Pharmacol., 2004, 1(1), 79-84.
[http://dx.doi.org/10.3923/ijp.2005.79.84]
[4]
Rahme, E.; Nedjar, H. Risks and benefits of COX-2 inhibitors vs non-selective NSAIDs: Does their cardiovascular risk exceed their gastrointestinal benefit? A retrospective cohort study. Rheumatology (Oxford), 2007, 46(3), 435-438.
[http://dx.doi.org/10.1093/rheumatology/kel428] [PMID: 17255138]
[5]
Hawkey, C.J. COX-2 inhibitors The Lancet, 1999, 23;353(9149), 307-314.
[6]
Khanna, I.K.; Weier, R.M.; Yu, Y.; Collins, P.W.; Miyashiro, J.M.; Koboldt, C.M.; Veenhuizen, A.W.; Currie, J.L.; Seibert, K.; Isakson, P.C. 1,2-Diarylpyrroles as potent and selective inhibitors of cyclooxygenase-2. J. Med. Chem., 1997, 40(11), 1619-1633.
[http://dx.doi.org/10.1021/jm970036a] [PMID: 9171872]
[7]
Boehm, J.C.; Smietana, J.M.; Sorenson, M.E.; Garigipati, R.S.; Gallagher, T.F.; Sheldrake, P.L.; Bradbeer, J.; Badger, A.M.; Laydon, J.T.; Lee, J.C.; Hillegass, L.M.; Griswold, D.E.; Breton, J.J.; Chabot-Fletcher, M.C.; Adams, J.L. 1-substituted 4-aryl-5-pyridinylimidazoles: A new class of cytokine suppressive drugs with low 5-lipoxygenase and cyclooxygenase inhibitory potency. J. Med. Chem., 1996, 39(20), 3929-3937.
[http://dx.doi.org/10.1021/jm960415o] [PMID: 8831759]
[8]
Li, J.J.; Anderson, G.D.; Burton, E.G.; Cogburn, J.N.; Collins, J.T.; Garland, D.J.; Gregory, S.A.; Huang, H.C.; Isakson, P.C.; Koboldt, C.M. 1,2-Diarylcyclopentenes as selective cyclooxygenase-2 inhibitors and orally active anti-inflammatory agents. J. Med. Chem., 1995, 38(22), 4570-4578.
[http://dx.doi.org/10.1021/jm00022a023] [PMID: 7473585]
[9]
Manivannan, E.; Prasanna, S.; Chaturvedi, S.C. Rationalization of physico-chemical properties of 5, 6-diarylthiazolo [3, 2-b]-1, 2, 4-triazoles towards cyclooxygenase-2 (COX-2) inhibition: A QSAR approach. Indian J. Biochem. Biophys., 2004, 41(4), 179-183.
[10]
Stiller, C.O.; Hjemdahl, P. Lessons from 20 years with COX-2 inhibitors: Importance of dose-response considerations and fair play in comparative trials. J. Intern. Med., 2022, 292(4), 557-574.
[http://dx.doi.org/10.1111/joim.13505] [PMID: 35585779]
[11]
El-Malah, A.A.; Gineinah, M.M.; Deb, P.K.; Khayyat, A.N.; Bansal, M.; Venugopala, K.N.; Aljahdali, A.S. Selective COX-2 inhibitors: Road from success to controversy and the quest for repurposing. Pharmaceuticals (Basel), 2022, 15(7), 827.
[http://dx.doi.org/10.3390/ph15070827] [PMID: 35890126]
[12]
Wang, D.; Dubois, R.N. Prostaglandins and cancer. Gut, 2006, 55(1), 115-122.
[http://dx.doi.org/10.1136/gut.2004.047100] [PMID: 16118353]
[13]
Laine, L. The gastrointestinal effects of nonselective NSAIDs and COX-2-selective inhibitors. Semin. Arthritis Rheum., 2002, 32(3)(Suppl. 1), 25-32.
[http://dx.doi.org/10.1053/sarh.2002.37217] [PMID: 12528071]
[14]
Hawkey, C.J. The gastroenterologist’s caseloadcontribution of the rheumatologist. Semin. Arthritis Rheum., 1997, 26(6)(Suppl. 1), 11-15.
[http://dx.doi.org/10.1016/S0049-0172(97)80047-9] [PMID: 9219314]
[15]
Laine, L.; Smith, R.; Min, K.; Chen, C.; Dubois, R.W. Systematic review: The lower gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs. Aliment. Pharmacol. Ther., 2006, 24(5), 751-767.
[http://dx.doi.org/10.1111/j.1365-2036.2006.03043.x] [PMID: 16918879]
[16]
Deeks, J.J.; Smith, L.A.; Bradley, M.D. Efficacy, tolerability, and upper gastrointestinal safety of celecoxib for treatment of osteoarthritis and rheumatoid arthritis: Systematic review of randomised controlled trials. BMJ, 2002, 325(7365), 619.
[http://dx.doi.org/10.1136/bmj.325.7365.619] [PMID: 12242171]
[17]
Wober, W. Comparative efficacy and safety of nimesulide and diclofenac in patients with acute shoulder, and a meta-analysis of controlled studies with nimesulide. Br. J. Rheumatol., 1999, 38(90001)(Suppl. 1), 33-38.
[http://dx.doi.org/10.1093/rheumatology/38.suppl_1.33] [PMID: 10369404]
[18]
Lücker, P.W.; Pawlowski, C.; Friedrich, I.; Faiella, F.; Magni, E. Double-blind, randomised, multi-centre clinical study evaluating the efficacy and tolerability of nimesulide in comparison with etodalac in patients suffering from osteoarthritis of the knee. Eur. J. Rheumatol. Inflamm., 1994, 14(2), 29-38.
[PMID: 7744131]
[19]
Schnitzer, T.J.; Constantine, G. Etodolac (Lodine) in the treatment of osteoarthritis: Recent studies. J. Rheumatol. Suppl., 1997, 47, 23-31.
[PMID: 9035017]
[20]
Neustadt, D.H. Double blind evaluation of the long-term effects of etodolac versus ibuprofen in patients with rheumatoid arthritis. J. Rheumatol. Suppl., 1997, 47, 17-22.
[PMID: 9035016]
[21]
Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA, 2000, 284(10), 1247-1255.
[http://dx.doi.org/10.1001/jama.284.10.1247] [PMID: 10979111]
[22]
Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Hochberg, M.C.; Kvien, T.K.; Schnitzer, T.J. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N. Engl. J. Med, 2000, 343(21), 1520-1528. 2, 1528.
[http://dx.doi.org/10.1056/NEJM200011233432103] [PMID: 11087881]
[23]
Schnitzer, T.J.; Burmester, G.R.; Mysler, E.; Hochberg, M.C.; Doherty, M.; Ehrsam, E.; Gitton, X.; Krammer, G.; Mellein, B.; Matchaba, P.; Gimona, A.; Hawkey, C.J. comparison of lumiracoxib with naproxen and ibuprofen in the therapeutic arthritis research and gastrointestinal event trial (aff), reduction in ulcer complications: Randomised controlled trial. Lancet, 2004, 364(9435), 665-674.
[http://dx.doi.org/10.1016/S0140-6736(04)16893-1] [PMID: 15325831]
[24]
Farag, A.A.; Khalifa, E.M.; Sadik, N.A.; Abbas, S.Y.; Al-Sehemi, A.G.; Ammar, Y.A. Synthesis, characterization, and evaluation of some novel 4(3H)-quinazolinone derivatives as anti-inflammatory and analgesic agents. Med. Chem. Res., 2013, 22(1), 440-452.
[http://dx.doi.org/10.1007/s00044-012-0046-6]
[25]
Sharma, S.; Srivastava, V.K.; Kumar, A. Newer N-substituted anthranilic acid derivatives as potent anti-inflammatory agents. Eur. J. Med. Chem., 2002, 37(8), 689-697.
[http://dx.doi.org/10.1016/S0223-5234(02)01340-5] [PMID: 12161066]
[26]
Shoman, M.E.; Abdel-Aziz, M.; Aly, O.M.; Farag, H.H.; Morsy, M.A. Synthesis and investigation of anti-inflammatory activity and gastric ulcerogenicity of novel nitric oxide-donating pyrazoline derivatives. Eur. J. Med. Chem., 2009, 44(7), 3068-3076.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.008] [PMID: 18722034]
[27]
Rani, I.; Khokra, S.L.; Kaur, G.; Sharma, P. Anti-inflammatory, analgesic and antimicrobial activities of some synthetic furanones and their pyrrolone derivatives. Int. J. Pharm. Sci. Res., 2021, 12(12), 3339-3348.
[28]
Aggarwal, R.; Bansal, A.; Rozas, I.; Kelly, B.; Kaushik, P.; Kaushik, D. Synthesis, biological evaluation and molecular modeling study of 5-trifluoromethyl-Δ2-pyrazoline and isomeric 5/3-trifluoromethylpyrazole derivatives as anti-inflammatory agents. Eur. J. Med. Chem., 2013, 70, 350-357.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.052] [PMID: 24177361]
[29]
Ahsan, M.J. Anticonvulsant activity and neuroprotection assay of 3-substituted-N-aryl-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide analogues. Arab. J. Chem., 2017, 10, S2762-S2766.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.023]
[30]
Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[31]
El-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44(9), 3746-3753.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.038] [PMID: 19419804]
[32]
Ouyang, G.; Chen, Z.; Cai, X.J.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem., 2008, 16(22), 9699-9707.
[http://dx.doi.org/10.1016/j.bmc.2008.09.070] [PMID: 18945621]
[33]
Cankara Pirol, Ş.; Çalışkan, B.; Durmaz, İ.; Atalay, R.; Banoglu, E. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1- (quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines. Eur. J. Med. Chem., 2014, 87, 140-149.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.056] [PMID: 25247770]
[34]
Kumari, S.; Paliwal, S.; Chauhan, R. Synthesis of pyrazole derivatives possessing anticancer activity: Current status. synthetic communications, 2014, 44(11), 1521-1578.
[35]
David, S.; Perkins, R.S.; Fronczek, F.R.; Kasiri, S.; Mandal, S.S.; Srivastava, R.S. Synthesis, characterization, and anticancer activity of ruthenium-pyrazole complexes. J. Inorg. Biochem., 2012, 111, 33-39.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.02.022] [PMID: 22484498]
[36]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, G.D.; Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[37]
O’Connor, J.P.; Lysz, T. Celecoxib, NSAIDs and the skeleton. Drugs Today (Barc), 2008, 44(9), 693-709.
[http://dx.doi.org/10.1358/dot.2008.44.9.1251573] [PMID: 19137124]
[38]
Riedel, R. Lonazolac-Ca= calcium (3-(p-chlorophenyl)-1- phenylpyrazole-4)-acetate/pharmacological properties of a new antiinflammatory/antirheumatic drug [various animals]. In: Arzneimittelforschung-Drug Research; (Germany, FR). 1981.
[39]
da Cruz, R.M.D.; Mendonça-Junior, F.J.B.; de Mélo, N.B.; Scotti, L.; de Araújo, R.S.A.; de Almeida, R.N.; de Moura, R.O. Thiophene-based compounds with potential anti-inflammatory activity. Pharmaceuticals, 2021, 14(7), 692.
[40]
Lahsasni, S.; Al-Hemyari, D.A.; Ghabbour, H.A.; Mabkhoot, Y.N.; Aleanizy, F.S.; Alothman, A.A.; Almarhoon, Z.M. Synthesis, characterization, and antibacterial and anti-inflammatory activities of new pyrimidine and thiophene derivatives. Journal of Chemistry, 2018.
[41]
Metwally, H.M.; Khalaf, N.A.; Abdel-Latif, E.; Ismail, M.A. Synthesis, DFT investigations, antioxidant, antibacterial activity and SAR-study of novel thiophene-2-carboxamide derivatives. BMC Chem., 2023, 17(1), 1-21.
[42]
Chan, P.F.; Germe, T.; Bax, B.D.; Huang, J.; Thalji, R.K.; Bacqué, E.; Checchia, A.; Chen, D.; Cui, H.; Ding, X.; Ingraham, K.; McCloskey, L.; Raha, K.; Srikannathasan, V.; Maxwell, A.; Stavenger, R.A. Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase. Proc. Natl. Acad. Sci. USA, 2017, 114(22), E4492-E4500.
[43]
Bitew, H.; Mammo, W.; Hymete, A.; Yeshak, M.Y. Antimalarial activity of acetylenic thiophenes from Echinops hoehnelii Schweinf. Molecules, 2017, 22(11), 1965.
[44]
Zani, C.L.; Chiari, E.; Krettli, A.U.; Murta, S.M.; Cunningham, M.L.; Fairlamb, A.H.; Romanha, A.J. Anti-plasmodial and anti-trypanosomal activity of synthetic naphtho [2, 3-b] thiophen-4, 9-quinones. Bioorg. Med. Chem., 1997, 5(12), 2185-2192.
[45]
W. A. G. N. A. T., Abdel-Salam, O. M., & Elmegeed, G. A. Screening for antidepressant, sedative and analgesic activities of novel fused thiophene derivatives. Acta Pharm., 2008, 58(1), 1-14.
[46]
Sondhi, S.M.; Jain, S.; Dinodia, M.; Kumar, A. Synthesis of some thiophene, imidazole and pyridine derivatives exhibiting good anti-inflammatory and analgesic activities. Med. Chem., 2008, 4(2), 146-154.
[47]
Mikhail, D.S. El‐Nassan, H. B., Mahmoud, S. T., & Fahim, S. H. Nonacidic thiophene‐based derivatives as potential analgesic and design, synthesis, biological evaluation, and metabolic stability study. Drug Dev. Res., 2022, 83(8), 1739-1757.
[48]
Dos Santos, F. A.; Pereira, M. C.; de Oliveira, T. B.; Mendonça, F. J. B., Junior; de Lima, M. D. C. A.; Pitta, M. G. D. R. Anticancer Drugs, 2018, 29(2), 157-166.
[49]
Wickham, A.M.; Islam, M.M.; Mondal, D.; Phopase, J.; Sadhu, V.; Tamás, É.; Polisetti, N.; Richter-Dahlfors, A.; Liedberg, B.; Griffith, M. Polycaprolactone–thiophene‐conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(7), 1553-1561.
[50]
Vinh, N.B.; Devine, S.M.; Munoz, L.; Ryan, R.M.; Wang, B.H.; Krum, H.; Chalmers, D.K.; Simpson, J.S.; Scammells, P.J. Design, Synthesis, and Biological Evaluation of Tetra‐Substituted Thiophenes as Inhibitors of p38α MAPK. ChemistryOpen, 2015, 4(1), 56-64.
[51]
Sibbald, B. Rofecoxib (Vioxx) voluntarily withdrawn from market. CMAJ, 2004, 171(9), 1027-1028.
[http://dx.doi.org/10.1503/cmaj.1041606] [PMID: 15505253]
[52]
Sun, S.X.; Lee, K.Y.; Bertram, C.T.; Goldstein, J.L. Withdrawal of COX-2 selective inhibitors rofecoxib and valdecoxib: Impact on NSAID and gastroprotective drug prescribing and utilization. Curr. Med. Res. Opin., 2007, 23(8), 1859-1866.
[http://dx.doi.org/10.1185/030079907X210561] [PMID: 17605893]
[53]
Ramesh, B.; Rao, B.S. Synthesis, spectral studies and anti-inflammatory activity of 2-acetyl thiophene. E-J. Chem., 2010, 7(2), 433-436.
[http://dx.doi.org/10.1155/2010/404715]
[54]
Ganapathi, M. A facile synthesis & characterization of biologically active halogen substituted 1-Acetyl -3,5-diphenyl pyrazole derivatives. SOJ Mater. Sci. Eng. Symbiosis., 2015, 3(3), 145-158.
[55]
Choudhary, A.N.; Juyal, V. Synthesis of chalcone and their derivatives as antimicrobial agents. Int. J. Pharm. Pharm. Sci., 2011, 3(3), 125-128.
[56]
Ingle, A.V.; Doshi, A.G.; Raut, A.W.; Kadu, N.S. Synthesis of 3, 5-disubstituted pyrazoles and their derivatives. Orient. J. Chem., 2011, 27(4), 1691.
[57]
Sharshira, E.M.; Hamada, N.M.M. Synthesis and antimicrobial evaluation of some pyrazole derivatives. Molecules, 2012, 17(5), 4962-4971.
[http://dx.doi.org/10.3390/molecules17054962] [PMID: 22547318]
[58]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med., 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[59]
Eddy, N.B.; Leimbach, D. Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J. Pharmacol. Exp. Ther., 1953, 107(3), 385-393.
[PMID: 13035677]
[60]
Umar, A.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods. SN Applied Sciences, 2020, 2(5), 815.
[http://dx.doi.org/10.1007/s42452-020-2620-8]
[61]
Monga, J.; Ghosh, N.S.; Mujwar, S.; Rani, I. In silico studies of some newly designed benzimidazolethiazolidinone based antagonists of human estrogen receptor. India Drugs, 2023, 60(8), 15-30.
[http://dx.doi.org/10.53879/id.60.08.14087]
[62]
Rani, I.; Goyal, A.; Sharma, M. Computational design of phosphatidylinositol 3-kinase inhibitors. Assay Drug Dev. Technol., 2022, 20(7), 317-337.
[http://dx.doi.org/10.1089/adt.2022.057] [PMID: 36269231]
[63]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1pii of original article: s0169-409x(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997) 3-25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[64]
Kumar, M.; Rani, I.; Mujwar, S.; Narang, R.; Devgun, M.; Khokra, S. In-Silico design, synthesis, and pharmacological evaluation of oxadiazole-based selective cyclo-oxygenase-2 inhibitors. Assay Drug Dev. Technol., 2023, 21(4), 166-179.
[http://dx.doi.org/10.1089/adt.2022.090] [PMID: 37318837]
[65]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[66]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[67]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[68]
Desai Optimized synthesis of novel pyrazole based thiazole derivatives and their antimicrobial evaluation. International Letters of Chemistry. Physics and Astronomy, 2016, 66, 109-118.
[http://dx.doi.org/10.56431/p-i63g13]
[69]
Özdemir, Z.; Kandilci, H.B. Gümüşel, B.; Çalış Ü.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 373-379.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.006] [PMID: 17069933]
[70]
Saravanan, G.; Alagarsamy, V.; Prakash, C.R.; Kumar, P.D.; Selvam, T.P. Synthesis of novel thiazole derivatives as analgesic agents. Asian Journal of Pharmaceutical Research, 2011, 1(4), 134-138.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy