Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Heterogeneous Catalysis under Continuous Flow Conditions

Author(s): Ashu Gupta*, Radhika Gupta, Gunjan Arora, Priya Yadav and Rakesh Kumar Sharma*

Volume 27, Issue 12, 2023

Published on: 27 September, 2023

Page: [1090 - 1110] Pages: 21

DOI: 10.2174/0113852728268688230921105908

Price: $65

Abstract

Heterogeneous catalysis using continuous flow processing is one of the most demanding subjects from the viewpoint of manufacturing industrial-scale organic compounds. An amalgamation of the two areas of technology, i.e., heterogeneous catalysis and flow chemistry, has opened new avenues for green synthetic chemistry. These processes are particularly convenient in terms of short diffusion paths and improved mixing due to the sensing of high local concentration of catalytic species on solid catalytic surface when the liquid/ gaseous reagents pass through the column, ultimately resulting in quicker and more efficient reaction with increased reaction rates and higher turnover numbers. It imparts several key benefits over conventional batch systems, such as time and energy-saving methodologies, better productivity, reproducibility, economic viability, waste reduction, and ecofriendly nature. Also, it eradicates the need for any intermediate isolation, separation of catalysts, and use of excess reagents. The present review article focuses on heterogeneous catalysis under continuous flow conditions. Various key reactions, for instance, carbon-carbon bond formation, hydrogenation, condensation, and oxidation, are presented well, along with their recent developments in the manufacturing of active pharmaceutical ingredients and platform chemicals. Asymmetric catalysis has also been discussed with its applications in the synthesis of complex organic molecules. It is anticipated that the review article will proliferate significant interest in modernizing chemical syntheses through continuous flow processes.

Keywords: Continuous flow process, heterogeneous catalysts, sequential continuous flow system, condensation reactions, dehydration of sugars, hydrogenation reactions, C-C coupling reactions, asymmetric synthesis.

Graphical Abstract
[1]
Jas, G.; Kirschning, A. Continuous flow techniques in organic synthesis. Chemistry, 2003, 9(23), 5708-5723.
[http://dx.doi.org/10.1002/chem.200305212] [PMID: 14673841]
[2]
Malet-Sanz, L.; Susanne, F. Continuous flow synthesis. A pharma perspective. J. Med. Chem., 2012, 55(9), 4062-4098.
[http://dx.doi.org/10.1021/jm2006029] [PMID: 22283413]
[3]
Yoshida, J.; Nagaki, A.; Yamada, D. Continuous flow synthesis. Drug Discov. Today. Technol., 2013, 10(1), e53-e59.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.013] [PMID: 24050230]
[4]
Bogdan, A.R.; Poe, S.L.; Kubis, D.C.; Broadwater, S.J.; McQuade, D.T. The continuous-flow synthesis of Ibuprofen. Angew. Chem. Int. Ed., 2009, 48(45), 8547-8550.
[http://dx.doi.org/10.1002/anie.200903055] [PMID: 19810066]
[5]
Lévesque, F.; Seeberger, P.H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed., 2012, 51(7), 1706-1709.
[http://dx.doi.org/10.1002/anie.201107446] [PMID: 22250044]
[6]
Ötvös, S.B.; Kappe, C.O. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. Green Chem., 2021, 23(17), 6117-6138.
[http://dx.doi.org/10.1039/D1GC01615F] [PMID: 34671222]
[7]
Yoo, W.J.; Ishitani, H.; Saito, Y.; Laroche, B.; Kobayashi, S. Reworking organic synthesis for the modern age: synthetic strategies based on continuous-flow addition and condensation reactions with heterogeneous catalysts. J. Org. Chem., 2020, 85(8), 5132-5145.
[http://dx.doi.org/10.1021/acs.joc.9b03416] [PMID: 32069417]
[8]
Sharma, R.K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A. Zbořil, R.; Varma, R.S.; Antonietti, M.; Gawande, M.B. Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz., 2020, 7(2), 411-454.
[http://dx.doi.org/10.1039/C9MH00856J]
[9]
Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Yadav, P.; Sharma, R.K. Magnetically supported ionic liquids: A sustainable catalytic route for organic transformations. Mater. Horiz., 2020, 7(12), 3097-3130.
[http://dx.doi.org/10.1039/D0MH01088J]
[10]
Arora, G.; Yadav, M.; Gaur, R.; Gupta, R.; Yadav, P.; Dixit, R.; Sharma, R.K. Fabrication, functionalization and advanced applications of magnetic hollow materials in confined catalysis and environmental remediation. Nanoscale, 2021, 13(25), 10967-11003.
[http://dx.doi.org/10.1039/D1NR01010G] [PMID: 34160507]
[11]
Irfan, M.; Glasnov, T.N.; Kappe, C.O. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. ChemSusChem, 2011, 4(3), 300-316.
[http://dx.doi.org/10.1002/cssc.201000354] [PMID: 21337528]
[12]
Tanimu, A.; Jaenicke, S.; Alhooshani, K. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chem. Eng. J., 2017, 327, 792-821.
[http://dx.doi.org/10.1016/j.cej.2017.06.161]
[13]
Colella, M.; Carlucci, C.; Luisi, R. Supported catalysts for continuous flow synthesis. Accounts on Sustainable Flow Chemistry; Noël, T; Luque, R., Ed.; Springer International Publishing: Cham, 2020, pp. 29-65.
[http://dx.doi.org/10.1007/978-3-030-36572-1_2]
[14]
Ciriminna, R.; Pagliaro, M.; Luque, R. Heterogeneous catalysis under flow for the 21st century fine chemical industry. Green Energy Environ., 2021, 6(2), 161-166.
[http://dx.doi.org/10.1016/j.gee.2020.09.013]
[15]
Webb, D.; Jamison, T.F. Continuous flow multi-step organic synthesis. Chem. Sci., 2010, 1(6), 675-680.
[http://dx.doi.org/10.1039/c0sc00381f]
[16]
Jiao, J.; Nie, W.; Yu, T.; Yang, F.; Zhang, Q.; Aihemaiti, F.; Yang, T.; Liu, X.; Wang, J.; Li, P. Multi-step continuous-flow organic synthesis: Opportunities and challenges. Chemistry, 2021, 27(15), 4817-4838.
[http://dx.doi.org/10.1002/chem.202004477] [PMID: 33034923]
[17]
Bana, P.; Örkényi, R.; Lövei, K.; Lakó, Á.; Túrós, G.I.; Éles, J.; Faigl, F.; Greiner, I. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds. Bioorg. Med. Chem., 2017, 25(23), 6180-6189.
[http://dx.doi.org/10.1016/j.bmc.2016.12.046] [PMID: 28087127]
[18]
Britton, J.; Raston, C.L. Multi-step continuous-flow synthesis. Chem. Soc. Rev., 2017, 46(5), 1250-1271.
[http://dx.doi.org/10.1039/C6CS00830E] [PMID: 28106210]
[19]
Saito, Y. Synthesis of nitro-containing compounds through multistep continuous flow with heterogeneous catalysts. Multistep Continuous Flow Synthesis of Fine Chemicals with Heterogeneous Catalysts; Saito, Y., Ed.; Springer Nature Singapore: Singapore, 2023, pp. 17-46.
[http://dx.doi.org/10.1007/978-981-19-7258-4_2]
[20]
Rueping, M.; Bootwicha, T.; Baars, H.; Sugiono, E. Continuous-flow hydration–condensation reaction: Synthesis of αβ-unsaturated ketones from alkynes and aldehydes by using a heterogeneous solid acid catalyst. Beilstein J. Org. Chem., 2011, 7(1), 1680-1687.
[http://dx.doi.org/10.3762/bjoc.7.198] [PMID: 22238547]
[21]
Rana, M.; Arora, G.; Gautam, U.K. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction. Sci. Technol. Adv. Mater., 2015, 16(1), 014803.
[http://dx.doi.org/10.1088/1468-6996/16/1/014803] [PMID: 27877746]
[22]
Brzęczek-Szafran, A.; Gwóźdź M.; Kolanowska, A.; Krzywiecki, M.; Latos, P.; Chrobok, A. N-Doped carbon as a solid base catalyst for continuous flow Knoevenagel condensation. React. Chem. Eng., 2021, 6(7), 1246-1253.
[http://dx.doi.org/10.1039/D1RE00016K]
[23]
Ishitani, H.; Saito, Y.; Nakamura, Y.; Yoo, W.J.; Kobayashi, S. Knoevenagel condensation of aldehydes and ketones with alkyl nitriles catalyzed by strongly basic anion exchange resins under continuous-flow conditions. Asian J. Org. Chem., 2018, 7(10), 2061-2064.
[http://dx.doi.org/10.1002/ajoc.201800512]
[24]
Arora, P.; Arora, V.; Lamba, H.; Wadhwa, D.J. Research, importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947-2954.
[25]
Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Pharma Chem., 2017, 9(13), 141-147.
[26]
Pearce, S. The importance of heterocyclic compounds in anti-cancer drug design., Available from: https://www.ddw-online.com/the-importance-of-heterocyclic-compounds-in-anti-cancer-drug-design-1106-201708/
[27]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[28]
Kumar, H.; Saini, D.; Jain, S.; Jain, N. Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur. J. Med. Chem., 2013, 70, 248-258.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.004] [PMID: 24161702]
[29]
Poh, J.S.; Browne, D.L.; Ley, S.V. A multistep continuous flow synthesis machine for the preparation of pyrazoles via a metal-free amine-redox process. React. Chem. Eng., 2016, 1(1), 101-105.
[http://dx.doi.org/10.1039/C5RE00082C] [PMID: 27398231]
[30]
Heiland, J.J.; Warias, R.; Lotter, C.; Mauritz, L.; Fuchs, P.J.W.; Ohla, S.; Zeitler, K.; Belder, D. On-chip integration of organic synthesis and HPLC/MS analysis for monitoring stereoselective transformations at the micro-scale. Lab Chip, 2017, 17(1), 76-81.
[http://dx.doi.org/10.1039/C6LC01217E] [PMID: 27896351]
[31]
Climent, M.J.; Corma, A.; Iborra, S.; Martí, L. Solid catalysts for multistep reactions: One-pot synthesis of 2,3-dihydro-1,5-benzothiazepines with solid acid and base catalysts. ChemSusChem, 2014, 7(4), 1177-1185.
[http://dx.doi.org/10.1002/cssc.201301064] [PMID: 24616280]
[32]
Goyal, R.; Sarkar, B.; Bag, A.; Siddiqui, N.; Dumbre, D.; Lucas, N.; Bhargava, S.K.; Bordoloi, A. Studies of synergy between metal–support interfaces and selective hydrogenation of HMF to DMF in water. J. Catal., 2016, 340, 248-260.
[http://dx.doi.org/10.1016/j.jcat.2016.05.012]
[33]
Nagpure, A.S.; Venugopal, A.K.; Lucas, N.; Manikandan, M.; Thirumalaiswamy, R.; Chilukuri, S. Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran. Catal. Sci. Technol., 2015, 5(3), 1463-1472.
[http://dx.doi.org/10.1039/C4CY01376J]
[34]
Seemala, B.; Cai, C.M.; Wyman, C.E.; Christopher, P. Support induced control of surface composition in Cu–Ni/TiO2 catalysts enables high yield co-conversion of HMF and furfural to methylated furans. ACS Catal., 2017, 7(6), 4070-4082.
[http://dx.doi.org/10.1021/acscatal.7b01095]
[35]
Mitra, J.; Zhou, X.; Rauchfuss, T. Pd/C-catalyzed reactions of HMF: Decarbonylation, hydrogenation, and hydrogenolysis. Green Chem., 2015, 17(1), 307-313.
[http://dx.doi.org/10.1039/C4GC01520G]
[36]
Wang, H.; Zhu, C.; Li, D.; Liu, Q.; Tan, J.; Wang, C.; Cai, C.; Ma, L. Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran. Renew. Sustain. Energy Rev., 2019, 103, 227-247.
[http://dx.doi.org/10.1016/j.rser.2018.12.010]
[37]
Asghari, F.S.; Yoshida, H. Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: Formation of 5-hydroxymethylfurfural, levulinic, and formic acids. Ind. Eng. Chem. Res., 2007, 46(23), 7703-7710.
[http://dx.doi.org/10.1021/ie061673e]
[38]
Fachri, B.A.; Abdilla, R.M.; Bovenkamp, H.H.; Rasrendra, C.B.; Heeres, H.J. Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of d-fructose to 5-hydroxymethylfurfural and levulinic acid in water. ACS Sustain. Chem. Eng., 2015, 3(12), 3024-3034.
[http://dx.doi.org/10.1021/acssuschemeng.5b00023]
[39]
Salak Asghari, F.; Yoshida, H. Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Ind. Eng. Chem. Res., 2006, 45(7), 2163-2173.
[http://dx.doi.org/10.1021/ie051088y]
[40]
Tarabanko, V.; Chernyak, M.Y.; Nepomnyashchiy, I.; Smirnova, M.A. High temperature 5-hydroxymethylfurfural synthesis in a flow reactor. Chem. Sustainable Dev., 2006, 14(1), 49-53.
[41]
Sonsiam, C.; Kaewchada, A. pumrod, S.; Jaree, A. Synthesis of 5-hydroxymethylfurfural (5-HMF) from fructose over cation exchange resin in a continuous flow reactor. Chem. Eng. Process., 2019, 138, 65-72.
[http://dx.doi.org/10.1016/j.cep.2019.03.001]
[42]
Pyo, S.H.; Sayed, M.; Hatti-Kaul, R. Batch and continuous flow production of 5-hydroxymethylfurfural from a high concentration of fructose using an acidic ion exchange catalyst. Org. Process Res. Dev., 2019, 23(5), 952-960.
[http://dx.doi.org/10.1021/acs.oprd.9b00044]
[43]
Jeong, G.Y.; Singh, A.K.; Sharma, S.; Gyak, K.W.; Maurya, R.A.; Kim, D.P. One-flow syntheses of diverse heterocyclic furan chemicals directly from fructose via tandem transformation platform. NPG Asia Mater., 2015, 7(4), e173-e173.
[http://dx.doi.org/10.1038/am.2015.21]
[44]
Krzelj, V.; Ferrandez, D.P.; Neira D’Angelo, M.F. Sulfonated foam catalysts for the continuous dehydration of xylose to furfural in biphasic media. Catal. Today, 2021, 365, 274-281.
[http://dx.doi.org/10.1016/j.cattod.2020.12.009]
[45]
Souzanchi, S.; Nazari, L.; Rao, K.T.V.; Yuan, Z.; Tan, Z.; Xu, C.C. Development of a continuous-flow tubular reactor for synthesis of 5-hydroxymethylfurfural from fructose using heterogeneous solid acid catalysts in biphasic reaction medium. New J. Chem., 2021, 45(19), 8479-8491.
[http://dx.doi.org/10.1039/D0NJ05978A]
[46]
Souzanchi, S.; Nazari, L.; Venkateswara Rao, K.T.; Yuan, Z.; Tan, Z.; Charles Xu, C. Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor. J. Ind. Eng. Chem., 2021, 101, 214-226.
[http://dx.doi.org/10.1016/j.jiec.2021.06.010]
[47]
Chen, P.; Yamaguchi, A.; Hiyoshi, N.; Mimura, N. Efficient continuous dehydration of fructose to 5-hydroxymethylfurfural in ternary solvent system. Fuel, 2023, 334, 126632.
[http://dx.doi.org/10.1016/j.fuel.2022.126632]
[48]
Morales-Leal, F.J.; Rivera de la Rosa, J.; Lucio-Ortiz, C.J.; De Haro-Del Rio, D.A.; Solis Maldonado, C.; Wi, S.; Casabianca, L.B.; Garcia, C.D. Dehydration of fructose over thiol– and sulfonic– modified alumina in a continuous reactor for 5–HMF production: Study of catalyst stability by NMR. Appl. Catal. B, 2019, 244, 250-261.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.053]
[49]
Atanda, L.; Shrotri, A.; Mukundan, S.; Ma, Q.; Konarova, M.; Beltramini, J. Direct production of 5-hydroxymethylfurfural via catalytic conversion of simple and complex sugars over phosphated TiO2. ChemSusChem, 2015, 8(17), 2907-2916.
[http://dx.doi.org/10.1002/cssc.201500395] [PMID: 26238933]
[50]
McNeff, C.V.; Nowlan, D.T.; McNeff, L.C.; Yan, B.; Fedie, R.L. Continuous production of 5-hydroxymethylfurfural from simple and complex carbohydrates. Appl. Catal.A, 2010, 384(1), 65-69.
[51]
Aellig, C.; Scholz, D.; Dapsens, P.Y.; Mondelli, C.; Pérez-Ramírez, J. When catalyst meets reactor: Continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catal. Sci. Technol., 2015, 5(1), 142-149.
[http://dx.doi.org/10.1039/C4CY00973H]
[52]
Miyamura, H.; Tobita, F.; Suzuki, A.; Kobayashi, S. Direct synthesis of hydroquinones from quinones through sequential and continuous-flow hydrogenation-derivatization using heterogeneous Au–Pt nanoparticles as catalysts. Angew. Chem. Int. Ed., 2019, 58(27), 9220-9224.
[http://dx.doi.org/10.1002/anie.201904159] [PMID: 31050108]
[53]
Sheng, Y.; Peng, J.; Ma, L.; Zhang, Y.; Jiang, T.; Li, X. Nickel nanoparticles embedded in porous carbon-coated honeycomb ceramics: A potential monolithic catalyst for continuous hydrogenation reaction. Carbon, 2022, 197, 171-182.
[http://dx.doi.org/10.1016/j.carbon.2022.06.017]
[54]
Su, J.; Chen, J.S. Synthetic porous materials applied in hydrogenation reactions. Microporous Mesoporous Mater., 2017, 237, 246-259.
[http://dx.doi.org/10.1016/j.micromeso.2016.09.039]
[55]
Talyzin, A.V.; Luzan, S.; Anoshkin, I.V.; Nasibulin, A.G.; Jiang, H.; Kauppinen, E.I.; Mikoushkin, V.M.; Shnitov, V.V.; Marchenko, D.E.; Noréus, D. Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: Road to graphane nanoribbons. ACS Nano, 2011, 5(6), 5132-5140.
[http://dx.doi.org/10.1021/nn201224k] [PMID: 21504190]
[56]
Murugesan, K.; Senthamarai, T.; Chandrashekhar, V.G.; Natte, K.; Kamer, P.C.J.; Beller, M.; Jagadeesh, R.V. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem. Soc. Rev., 2020, 49(17), 6273-6328.
[http://dx.doi.org/10.1039/C9CS00286C] [PMID: 32729851]
[57]
Lázaro, N.; Franco, A.; Ouyang, W.; Balu, A.; Romero, A.; Luque, R.; Pineda, A. Continuous-flow hydrogenation of methyl levulinate promoted by Zr-based mesoporous materials. Catalysts, 2019, 9(2), 142.
[http://dx.doi.org/10.3390/catal9020142]
[58]
Coetzee, J.; Manyar, H.G.; Hardacre, C.; Cole-Hamilton, D.J. The first continuous flow hydrogenation of amides to amines. ChemCatChem, 2013, 5(10), 2843-2847.
[http://dx.doi.org/10.1002/cctc.201300431]
[59]
Moreno-Marrodan, C.; Liguori, F.; Barbaro, P. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes. Beilstein J. Org. Chem., 2017, 13, 734-754.
[http://dx.doi.org/10.3762/bjoc.13.73] [PMID: 28503209]
[60]
Cossar, P.J.; Hizartzidis, L.; Simone, M.I.; McCluskey, A.; Gordon, C.P. The expanding utility of continuous flow hydrogenation. Org. Biomol. Chem., 2015, 13(26), 7119-7130.
[http://dx.doi.org/10.1039/C5OB01067E] [PMID: 26073166]
[61]
Rathi, A.K.; Gawande, M.B.; Ranc, V.; Pechousek, J.; Petr, M.; Cepe, K.; Varma, R.S.; Zboril, R. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite–Pd nanocomposites. Catal. Sci. Technol., 2016, 6(1), 152-160.
[http://dx.doi.org/10.1039/C5CY00956A]
[62]
Trombettoni, V.; Ferlin, F.; Valentini, F.; Campana, F.; Silvetti, M.; Vaccaro, L. POLITAG-Pd(0) catalyzed continuous flow hydrogenation of lignin-derived phenolic compounds using sodium formate as a safe H-source. Molecular Catalysis, 2021, 509, 111613.
[http://dx.doi.org/10.1016/j.mcat.2021.111613]
[63]
Miyamura, H.; Suzuki, A.; Yasukawa, T.; Kobayashi, S. Polysilane-immobilized Rh–Pt bimetallic nanoparticles as powerful arene hydrogenation catalysts: synthesis, reactions under batch and flow conditions and reaction mechanism. J. Am. Chem. Soc., 2018, 140(36), 11325-11334.
[http://dx.doi.org/10.1021/jacs.8b06015] [PMID: 30080963]
[64]
Saito, Y.; Ishitani, H.; Ueno, M.; Kobayashi, S. Selective hydrogenation of nitriles to primary amines catalyzed by a polysilane/SiO2-supported palladium catalyst under continuous-flow conditions. ChemistryOpen, 2017, 6(2), 211-215.
[http://dx.doi.org/10.1002/open.201600166] [PMID: 28413753]
[65]
Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello, P. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments. Molecules, 2013, 18(1), 1188-1213.
[http://dx.doi.org/10.3390/molecules18011188] [PMID: 23344208]
[66]
Sharma, R.K.; Yadav, M.; Gaur, R.; Monga, Y.; Adholeya, A. Magnetically retrievable silica-based nickel nanocatalyst for suzuki–miyaura cross-coupling reaction. Catal. Sci. Technol., 2015, 5(5), 2728-2740.
[http://dx.doi.org/10.1039/C4CY01736F]
[67]
Mattiello, S.; Rooney, M.; Sanzone, A.; Brazzo, P.; Sassi, M.; Beverina, L. Suzuki–miyaura micellar cross-coupling in water, at room temperature, and under aerobic atmosphere. Org. Lett., 2017, 19(3), 654-657.
[http://dx.doi.org/10.1021/acs.orglett.6b03817] [PMID: 28121449]
[68]
Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent advances in the suzuki–miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem., 2019, 21(3), 381-405.
[http://dx.doi.org/10.1039/C8GC02860E]
[69]
Pascanu, V.; Hansen, P.R.; Bermejo Gómez, A.; Ayats, C.; Platero-Prats, A.E.; Johansson, M.J.; Pericàs, M.À.; Martín-Matute, B. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. ChemSusChem, 2015, 8(1), 123-130.
[http://dx.doi.org/10.1002/cssc.201402858] [PMID: 25421122]
[70]
Noël, T.; Buchwald, S.L. Cross-coupling in flow. Chem. Soc. Rev., 2011, 40(10), 5010-5029.
[http://dx.doi.org/10.1039/c1cs15075h] [PMID: 21826351]
[71]
Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Asymmetric carbon-carbon bond formation under continuous-flow conditions with chiral heterogeneous catalysts. Angew. Chem. Int. Ed., 2013, 52(26), 6590-6604.
[http://dx.doi.org/10.1002/anie.201210066] [PMID: 23720303]
[72]
Noël, T.; Musacchio, A.J. Suzuki-Miyaura cross-coupling of heteroaryl halides and arylboronic acids in continuous flow. Org. Lett., 2011, 13(19), 5180-5183.
[http://dx.doi.org/10.1021/ol202052q] [PMID: 21899298]
[73]
Ichitsuka, T.; Suzuki, N.; Sairenji, M.; Koumura, N.; Onozawa, S.; Sato, K.; Kobayashi, S. Readily available immobilized Pd catalysts for Suzuki-Miyaura coupling under continuous-flow conditions. ChemCatChem, 2019, 11(10), 2427-2431.
[http://dx.doi.org/10.1002/cctc.201900085]
[74]
Fortman, G.C.; Nolan, S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: A perfect union. Chem. Soc. Rev., 2011, 40(10), 5151-5169.
[http://dx.doi.org/10.1039/c1cs15088j] [PMID: 21731956]
[75]
Martínez, A.; Krinsky, J.L.; Peñafiel, I.; Castillón, S.; Loponov, K.; Lapkin, A.; Godard, C.; Claver, C. Heterogenization of Pd–NHC complexes onto a silica support and their application in Suzuki–Miyaura coupling under batch and continuous flow conditions. Catal. Sci. Technol., 2015, 5(1), 310-319.
[http://dx.doi.org/10.1039/C4CY00829D]
[76]
Ferlin, F.; Sciosci, D.; Valentini, F.; Menzio, J.; Cravotto, G.; Martina, K.; Vaccaro, L. Si-Gly-CD-PdNPs as a hybrid heterogeneous catalyst for environmentally friendly continuous flow Sonogashira cross-coupling. Green Chem., 2021, 23(18), 7210-7218.
[http://dx.doi.org/10.1039/D1GC02490F]
[77]
Vucetic, N.; Virtanen, P.; Shchukarev, A.; Salmi, T.; Mikkola, J.P. Competing commercial catalysts: Unprecedented catalyst activity and stability of Mizoroki-Heck reaction in a continuous packed bed reactor. Chem. Eng. J., 2022, 433, 134432.
[http://dx.doi.org/10.1016/j.cej.2021.134432]
[78]
Yang, G.R.; Bae, G.; Choe, J.H.; Lee, S.W.; Song, K.H. Silica-supported palladium-catalyzed Hiyama cross-coupling reactions using continuous flow system. Bull. Korean Chem. Soc., 2010, 31(1), 250-252.
[http://dx.doi.org/10.5012/bkcs.2010.31.01.250]
[79]
Tsubogo, T.; Oyamada, H.; Kobayashi, S. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts. Nature, 2015, 520(7547), 329-332.
[http://dx.doi.org/10.1038/nature14343] [PMID: 25877201]
[80]
Saito, Y.; Nishizawa, K.; Laroche, B.; Ishitani, H.; Kobayashi, S. Continuous-flow synthesis of (R)-tamsulosin utilizing sequential heterogeneous catalysis. Angew. Chem. Int. Ed., 2022, 61(13), e202115643.
[http://dx.doi.org/10.1002/anie.202115643] [PMID: 35068027]
[81]
Ötvös, S.B.; Pericàs, M.A.; Kappe, C.O. Multigram-scale flow synthesis of the chiral key intermediate of (−)-paroxetine enabled by solvent-free heterogeneous organocatalysis. Chem. Sci., 2019, 10(48), 11141-11146.
[http://dx.doi.org/10.1039/C9SC04752B] [PMID: 32206263]
[82]
Ren, Y.; Wang, M.; Yang, Q.; Zhu, J. Merging chiral diamine and Ni/SiO2 for heterogeneous asymmetric 1,4-addition reactions. ACS Catal., 2023, 13(3), 1974-1982.
[http://dx.doi.org/10.1021/acscatal.2c05889]
[83]
Yasukawa, T.; Masuda, R.; Kobayashi, S. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat. Catal., 2019, 2(12), 1088-1092.
[http://dx.doi.org/10.1038/s41929-019-0371-y]
[84]
Farina, V.; Reeves, J.T.; Senanayake, C.H.; Song, J.J. Asymmetric synthesis of active pharmaceutical ingredients. Chem. Rev., 2006, 106(7), 2734-2793.
[http://dx.doi.org/10.1021/cr040700c] [PMID: 16836298]
[85]
Ferraz, R.; Branco, L.C.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž. Ionic liquids as active pharmaceutical ingredients. ChemMedChem, 2011, 6(6), 975-985.
[http://dx.doi.org/10.1002/cmdc.201100082] [PMID: 21557480]
[86]
Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev., 2016, 20(1), 2-25.
[http://dx.doi.org/10.1021/acs.oprd.5b00325]
[87]
Kumar, V.; Bansal, V.; Madhavan, A.; Kumar, M.; Sindhu, R.; Awasthi, M.K.; Binod, P.; Saran, S. Active pharmaceutical ingredient (API) chemicals: A critical review of current biotechnological approaches. Bioengineered, 2022, 13(2), 4309-4327.
[http://dx.doi.org/10.1080/21655979.2022.2031412] [PMID: 35135435]
[88]
Alfano, A.I.; Pelliccia, S.; Rossino, G.; Chianese, O.; Summa, V.; Collina, S.; Brindisi, M. Continuous-flow technology for chemical rearrangements: A powerful tool to generate pharmaceutically relevant compounds. ACS Med. Chem. Lett., 2023, 14(3), 326-337.
[http://dx.doi.org/10.1021/acsmedchemlett.3c00010] [PMID: 36923914]
[89]
Filipponi, P.; Ostacolo, C.; Novellino, E.; Pellicciari, R.; Gioiello, A. Continuous flow synthesis of Thieno[2,3-c]isoquinolin-5(4H)-one scaffold: A valuable source of PARP-1 inhibitors. Org. Process Res. Dev., 2014, 18(11), 1345-1353.
[http://dx.doi.org/10.1021/op500074h]
[90]
Pastre, J.C.; Browne, D.L.; Ley, S.V. Flow chemistry syntheses of natural products. Chem. Soc. Rev., 2013, 42(23), 8849-8869.
[http://dx.doi.org/10.1039/c3cs60246j] [PMID: 23999700]
[91]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[92]
Harvey, A. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[93]
Tanaka, K.; Motomatsu, S.; Koyama, K.; Tanaka, S.; Fukase, K. Large-scale synthesis of immunoactivating natural product, pristane, by continuous microfluidic dehydration as the key step. Org. Lett., 2007, 9(2), 299-302.
[http://dx.doi.org/10.1021/ol062777o] [PMID: 17217289]
[94]
Zhang, J.; Gong, C.; Zeng, X.; Xie, J. Continuous flow chemistry: New strategies for preparative inorganic chemistry. Coord. Chem. Rev., 2016, 324, 39-53.
[http://dx.doi.org/10.1016/j.ccr.2016.06.011]
[95]
Sui, J.; Yan, J.; Liu, D.; Wang, K.; Luo, G. Continuous synthesis of nanocrystals via flow chemistry technology. Small, 2020, 16(15), 1902828.
[http://dx.doi.org/10.1002/smll.201902828] [PMID: 31755221]
[96]
Długosz, O.; Banach, M. Inorganic nanoparticle synthesis in flow reactors: Applications and future directions. React. Chem. Eng., 2020, 5(9), 1619-1641.
[http://dx.doi.org/10.1039/D0RE00188K]
[97]
Gimeno-Fabra, M.; Munn, A.S.; Stevens, L.A.; Drage, T.C.; Grant, D.M.; Kashtiban, R.J.; Sloan, J.; Lester, E.; Walton, R.I. Instant MOFs: Continuous synthesis of metal–organic frameworks by rapid solvent mixing. Chem. Commun., 2012, 48(86), 10642-10644.
[http://dx.doi.org/10.1039/c2cc34493a] [PMID: 23000779]
[98]
Rubio-Martinez, M.; Batten, M.P.; Polyzos, A.; Carey, K.C.; Mardel, J.I.; Lim, K.S.; Hill, M.R. Versatile, high quality and scalable continuous flow production of metal-organic frameworks. Sci. Rep., 2014, 4(1), 5443.
[http://dx.doi.org/10.1038/srep05443] [PMID: 24962145]
[99]
Lee, C.X.; Pedrick, E.A.; Leadbeater, N.E. Preparation of arene chromium tricarbonyl complexes using continuous-flow processing: (η6-C6H5CH3)Cr(CO)3 as an example. J. Flow Chem., 2012, 2(4), 115-117.
[http://dx.doi.org/10.1556/JFC-D-12-00018]
[100]
Gutierrez, A.C.; Jamison, T.F. Scalable and robust synthesis of CpRu(MeCN)3PF6 via continuous flow photochemistry. J. Flow Chem., 2012, 1(1), 24-27.
[http://dx.doi.org/10.1556/jfchem.2011.00004]
[101]
Huang, K.; Fu, T.; Gao, W.; Zhao, Y.; Roohani, Y.; Leskovec, J.; Coley, C.W.; Xiao, C.; Sun, J.; Zitnik, M. Artificial intelligence foundation for therapeutic science. Nat. Chem. Biol., 2022, 18(10), 1033-1036.
[http://dx.doi.org/10.1038/s41589-022-01131-2] [PMID: 36131149]
[102]
Peplow, M. Organic synthesis: The robo-chemist. Nature, 2014, 512(7512), 20-22.
[http://dx.doi.org/10.1038/512020a] [PMID: 25100466]
[103]
Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov., 2018, 17(2), 97-113.
[http://dx.doi.org/10.1038/nrd.2017.232] [PMID: 29242609]
[104]
Tabor, D.P.; Roch, L.M.; Saikin, S.K.; Kreisbeck, C.; Sheberla, D.; Montoya, J.H.; Dwaraknath, S.; Aykol, M.; Ortiz, C.; Tribukait, H.; Amador-Bedolla, C.; Brabec, C.J.; Maruyama, B.; Persson, K.A.; Aspuru-Guzik, A. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater., 2018, 3(5), 5-20.
[http://dx.doi.org/10.1038/s41578-018-0005-z]
[105]
Coley, C. W.; Thomas, D. A.; Lummiss, J. A. M.; Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.; Rogers, L.; Gao, H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti, J. S.; Green, W. H.; Hart, A. J.; Jamison, T. F.; Jensen, K. F. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science, 2019, 365(6435), eaax1566.
[http://dx.doi.org/10.1126/science.aax1566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy