Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Ultrasound-assisted Synthesis of Nitrogen and Oxygen Containing Heterocycles

Author(s): Simranpreet K. Wahan, Gaurav Bhargava and Pooja A. Chawla*

Volume 27, Issue 12, 2023

Published on: 17 October, 2023

Page: [1010 - 1019] Pages: 10

DOI: 10.2174/1385272827666230911130127

Price: $65

Abstract

Ultrasound is well explored in the preparation of several heterocycles as it is an eco-friendly, safer and cheaper technique compared to the previous conventional synthetic approach. Ultrasonication offers a great deal of interest for chemists as it not only lowers the reaction time but also markedly reduces the use of hazardous chemicals and enhances the purity of synthesized compounds. Since the application of ultrasound waves acts as a nonpolluting energy source, therefore, it is an area of great importance in the field of green and sustainable chemistry. Also, nitrogen and oxygen-based pharmaceuticals have been found to be a beneficial tool for modifying solubility, lipophilicity, polarity and other important pharmacokinetic parameters which aid in optimizing ADMET characteristics of drug candidates. Further, nitrogen and oxygen-containing compounds have been reported to exhibit antibacterial, antiviral, anti-inflammatory, anticancer, analgesic, antihyperglycemic action etc. Therefore, the review focues to coveron covering the latest applications of ultrasonication in the preparation of oxygen and nitrogen nitrogencontaining heterocycles holding immense importance in therapeutically active molecules, which will aid new researchers in their ongoingnd future research.

Keywords: Heterocycles, sonochemistry, green chemistry, eco-friendly, mild conditions, ADMET.

Next »
Graphical Abstract
[1]
Lu, L.H.; Zhou, S.J.; Sun, M.; Chen, J.L.; Xia, W.; Yu, X.; Xu, X.; He, W.M. Metal-and solvent-free ultrasonic multicomponent synthesis of (Z)-β-iodo vinylthiocyanates. ACS Sustain. Chem. Eng., 2019, 7(1), 1574-1579.
[http://dx.doi.org/10.1021/acssuschemeng.8b05344]
[2]
Kamble, O.; Chatterjee, R.; Dandela, R.; Shinde, S. Ultrasonic energy for construction of bioactive heterocycles. Tetrahedron, 2022, 120, 132893.
[http://dx.doi.org/10.1016/j.tet.2022.132893]
[3]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[4]
Gharat, N.N.; Rathod, V.K. Extraction of ferulic acid from rice bran using NADES‐ultrasound‐assisted extraction: Kinetics and optimization. J. Food Process Eng., 2022, 64(21), e14158.
[5]
Crum, L.A. Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrason. Sonochem., 1995, 2(2), S147-S152.
[http://dx.doi.org/10.1016/1350-4177(95)00018-2]
[6]
Singh, V.; Kaur, K.P.; Khurana, A.; Kad, G.L. Ultrasound: A boon in the synthesis of organic compounds. Resonance, 1998, 3(9), 56-60.
[http://dx.doi.org/10.1007/BF02836081]
[7]
Avvaru, B.; Pandit, A.B. Experimental investigation of cavitational bubble dynamics under multi-frequency system. Ultrason. Sonochem., 2008, 15(4), 578-589.
[http://dx.doi.org/10.1016/j.ultsonch.2007.06.012] [PMID: 17703983]
[8]
Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S- heterocycles. Synth. Commun., 2018, 48(14), 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
[9]
Kaur, N. Synthesis of five-membered heterocycles containing nitrogen heteroatom under ultrasonic irradiation. Mini Rev. Org. Chem., 2019, 16(5), 481-503.
[http://dx.doi.org/10.2174/1570193X15666180709144028]
[10]
Pagadala, R.; Kasi, V.; Shabalala, N.G.; Jonnalagadda, S.B. Ultrasound-assisted multicomponent synthesis of heterocycles in water - A review. Arab. J. Chem., 2022, 15(1), 103544.
[http://dx.doi.org/10.1016/j.arabjc.2021.103544]
[11]
Mohammadi Ziarani, G. kheilkordi, Z.; Gholamzadeh, P. Ultrasound-assisted synthesis of heterocyclic compounds. Mol. Divers., 2020, 24(3), 771-820.
[http://dx.doi.org/10.1007/s11030-019-09964-1] [PMID: 31165431]
[12]
Nogueira, T.C.M.; de Souza, M.V.N. Green synthesis of five- and six-membered N-heterocycles by ultrasonic irradiation in aqueous media. Curr. Green Chem., 2021, 8(2), 99-126.
[http://dx.doi.org/10.2174/2213346108666210423120316]
[13]
Devi, M.; Singh, R.; Sindhu, J.; Kumar, A.; Lal, S.; Kumar, R.; Hussain, K.; Sachdeva, M.; Singh, D.; Kumar, P. Sonochemical protocols for heterocyclic synthesis: A representative review. Top. Curr. Chem., 2022, 380(2), 14.
[http://dx.doi.org/10.1007/s41061-022-00369-7] [PMID: 35149908]
[14]
Pagadala, R.; Maddila, S.; Jonnalagadda, S.B. Eco-efficient ultrasonic responsive synthesis of pyrimidines/pyridines. Ultrason. Sonochem., 2014, 21(2), 472-477.
[http://dx.doi.org/10.1016/j.ultsonch.2013.08.024] [PMID: 24063995]
[15]
Shabir, G.; Shafique, I.; Saeed, A. Ultrasound assisted synthesis of 5–7 membered heterocyclic rings in organic molecules. J. Heterocycl. Chem., 2022, 59(10), 1669-1702.
[http://dx.doi.org/10.1002/jhet.4527]
[16]
Cella, R.; Stefani, H.A. Ultrasonic reactions. In: Green Techniques for Organic Synthesis and Medicinal Chemistry; Wiley, 2018, pp. 343-371.
[17]
Mosslemin, M.H.; Nateghi, M.R. Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason. Sonochem., 2010, 17(1), 162-167.
[http://dx.doi.org/10.1016/j.ultsonch.2009.07.002] [PMID: 19679502]
[18]
Currell, D.L.; Zechmeister, L. On the ultrasonic cleavage of some aromatic and heterocyclic rings. J. Am. Chem. Soc., 1958, 80(1), 205-208.
[http://dx.doi.org/10.1021/ja01534a051]
[19]
Patil, R.; Bhoir, P.; Deshpande, P.; Wattamwar, T.; Shirude, M.; Chaskar, P. Relevance of sonochemistry or ultrasound (US) as a proficient means for the synthesis of fused heterocycles. Ultrason. Sonochem., 2013, 20(6), 1327-1336.
[http://dx.doi.org/10.1016/j.ultsonch.2013.04.002] [PMID: 23669313]
[20]
Shaban, I.M.; Al-Ajely, M.S. Synthesis of some heterocyclic compounds derived from furfural using ultrasonic waves. J. Sci. Tech. Res., 2019, 22(1), 16293-16299.
[21]
Sharma, A.; Priya, A.; Kaur, M.; Singh, A.; Kaur, G.; Banerjee, B. Ultrasound-assisted synthesis of bioactive S-heterocycles. Synth. Commun., 2021, 51(21), 3209-3236.
[http://dx.doi.org/10.1080/00397911.2021.1970775]
[22]
Mantu, D.; Moldoveanu, C.; Nicolescu, A.; Deleanu, C.; Mangalagiu, I.I. A facile synthesis of pyridazinone derivatives under ultrasonic irradiation. Ultrason. Sonochem., 2009, 16(4), 452-454.
[http://dx.doi.org/10.1016/j.ultsonch.2008.11.012] [PMID: 19121972]
[23]
Mohammed, F.F.; Hagar, M.; Parveen, S.; Alnoman, R.B.; Ahmed, H.A.; Ashry, E.S.H.E.; Rasheed, H.A. 2-(alkylthio)-3-(naphthalen-1-yl) quinazolin-4 (3 H)-ones: Ultrasonic synthesis, DFT and molecular docking aspects. Polycycl. Aromat. Compd., 2022, 42(7), 4034-4048.
[http://dx.doi.org/10.1080/10406638.2021.1878245]
[24]
Dos Santos, B.D.C.F.; Forero, J.S.B.; de Carvalho, E.M.; Jones, J., Jr; Da Silva, F.M. A solvent less synthesis of 2-aminothiophenes via the Gewald reaction under ultrasonic conditions. Heterocyclic. Lett, 2012, 2, 31-36.
[25]
Mardjan, M.I.D.; Hariadi, M.F.; Putri, I.M.; Musyarrofah, N.A.; Salimah, M. Priatmoko; Purwono, B.; Commeiras, L. Ultrasonic-assisted-synthesis of isoindolin-1-one derivatives. RSC Advances, 2022, 12(29), 19016-19021.
[http://dx.doi.org/10.1039/D2RA02720H] [PMID: 35873335]
[26]
Sun, W.L.; Li, Y.P.; Liu, C.J.; Li, H.L. Application of ultrasonic irradiation in synthesis of novel bis-heterocyclic aroylthioureas. Chinese J. Appl. Chem., 2009, 26(08), 894.
[27]
Gouvêa, D.P.; Bareño, V.D.O.; Bosenbecker, J.; Drawanz, B.B.; Neuenfeldt, P.D.; Siqueira, G.M.; Cunico, W. Ultrasonics promoted synthesis of thiazolidinones from 2-aminopyridine and 2-picolilamine. Ultrason. Sonochem., 2012, 19(6), 1127-1131.
[http://dx.doi.org/10.1016/j.ultsonch.2012.03.004] [PMID: 22483740]
[28]
Shvekhgeimer, G.A. Use of ultrasound in heterocyclic chemistry. review. Chem. Heterocycl. Compd., 1994, 30(6), 633-660.
[http://dx.doi.org/10.1007/BF01166304]
[29]
Hussein, E.M.; Khairou, K.S. Sonochemistry: Synthesis of bioactive heterocycles. Rev. J. Chem., 2014, 4(3), 221-251.
[http://dx.doi.org/10.1134/S2079978014030030]
[30]
Neuenfeldt, P.D.; Duval, A.R.; Drawanz, B.B.; Rosales, P.F.; Gomes, C.R.B.; Pereira, C.M.P.; Cunico, W. Efficient sonochemical synthesis of thiazolidinones from piperonilamine. Ultrason. Sonochem., 2011, 18(1), 65-67.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.008] [PMID: 20724206]
[31]
Machado, I.V.; dos Santos, J.R.N.; Januario, M.A.P.; Corrêa, A.G. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrason. Sonochem., 2021, 78, 105704.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105704] [PMID: 34454180]
[32]
Dabiri, M.; Tisseh, Z.N.; Bahramnejad, M.; Bazgir, A. Sonochemical multi-component synthesis of spirooxindoles. Ultrason. Sonochem., 2011, 18(5), 1153-1159.
[http://dx.doi.org/10.1016/j.ultsonch.2010.12.004] [PMID: 21216172]
[33]
Pacheco, D.J.; Prent, L.; Trilleras, J.; Quiroga, J. Facile sonochemical synthesis of novel pyrazolyne derivates at ambient conditions. Ultrason. Sonochem., 2013, 20(4), 1033-1036.
[http://dx.doi.org/10.1016/j.ultsonch.2012.11.018] [PMID: 23298744]
[34]
Schiel, M.A.; Chopa, A.B.; Silbestri, G.F.; Alvarez, M.B.; Lista, A.G.; Domini, C.E. s Use of ultrasound in the synthesis of heterocycles of medicinal interest. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, , 2015; pp. 571-601.
[http://dx.doi.org/10.1016/B978-0-12-800070-0.00021-9]
[35]
Schiel, M.A.; Silbestri, G.F.; Alvarez, M.B.; Domini, C.E. Ultrasound-promoted metal-catalyzed synthesis of heterocyclic compounds of medicinal interest. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, 2021, pp. 461-496.
[http://dx.doi.org/10.1016/B978-0-12-820586-0.00002-9]
[36]
Nishanth Rao, R.; Jena, S.; Mukherjee, M.; Maiti, B.; Chanda, K. Green synthesis of biologically active heterocycles of medicinal importance: A review. Environ. Chem. Lett., 2021, 19(4), 3315-3358.
[http://dx.doi.org/10.1007/s10311-021-01232-9]
[37]
Tagliapietra, S.; Gaudino, E.C.; Cravotto, G. The use of power ultrasound for organic synthesis in green chemistry. In: Power ultrasonics; Woodhead Publishing, 2015, pp. 997-1022.
[http://dx.doi.org/10.1016/B978-1-78242-028-6.00033-8]
[38]
Draye, M.; Kardos, N. Advances in green organic sonochemistry. In: Sonochemistry; Springer: Cham, 2017, pp. 29-57.
[39]
Borah, B.; Chowhan, L.R. Ultrasound-assisted transition-metal-free catalysis: A sustainable route towards the synthesis of bioactive heterocycles. RSC Advances, 2022, 12(22), 14022-14051.
[http://dx.doi.org/10.1039/D2RA02063G] [PMID: 35558846]
[40]
Mohamed, M. Sonochemistry (applications of ultrasound in chemical synthesis and reactions): A review part I. Al-Azhar. J. Pharm. Sci., 2016, 53(1), 108-122.
[http://dx.doi.org/10.21608/ajps.2016.6890]
[41]
Lupacchini, M.; Mascitti, A.; Giachi, G.; Tonucci, L.; d’Alessandro, N.; Martinez, J.; Colacino, E. Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 2017, 73(6), 609-653.
[http://dx.doi.org/10.1016/j.tet.2016.12.014]
[42]
Gaudino, E.C.; Tagliapietra, S.; Mantegna, S.; Cravotto, G. Mechanochemical and sonochemical heterocyclizations. Chem. Heterocycl. Compd., 2016, 52(11), 856-865.
[http://dx.doi.org/10.1007/s10593-017-1979-y]
[43]
Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Applications of ultrasound in organic synthesis-a green approach. Curr. Org. Chem., 2013, 17(16), 1790-1828.
[http://dx.doi.org/10.2174/13852728113179990018]
[44]
Zarnegar, Z.; Safari, J.; Borjian-borujeni, M. Ultrasound-mediated synthesis of 2, 4, 6-triaryl-pyridines using MgAl2O4 nanostructures. Chem. Heterocycl. Compd., 2015, 50(12), 1683-1691.
[http://dx.doi.org/10.1007/s10593-015-1638-0]
[45]
Kumar Reddy, D.N.; Chandrasekhar, K.B.; Siva Ganesh, Y.S.; Reddy, G.R.; Kumar, J.P.; Kapavarapu, R.K.; Pal, M. FeF3-catalyzed MCR in PEG-400: Ultrasound assisted synthesis of N-substituted 2-aminopyridines. RSC Advances, 2016, 6(71), 67212-67217.
[http://dx.doi.org/10.1039/C6RA14228A]
[46]
Mollakarimi Dastjerdi, N.; Ghanbari, M. Ultrasound-promoted green approach for the synthesis of multisubstituted pyridines using stable and reusable SBA-15@ADMPT/H5PW10V2O40 nanocatalyst at room temperature. Green Chem. Lett. Rev., 2020, 13(3), 192-205.
[http://dx.doi.org/10.1080/17518253.2020.1797183]
[47]
Kurva, M.; Gámez-Montaño, R. Ultrasound assisted green one pot synthesis of bound type bis-heterocyclic furan-2-yl imidazo [1, 2-a] Pyridines via GBBR. Proceedings, 2019, 9(1), 46.
[48]
Kurva, M.; Pharande, S.G.; Quezada-Soto, A.; Gámez-Montaño, R. Ultrasound assisted green synthesis of bound type bis-heterocyclic carbazolyl imidazo[1,2-a]pyridines via Groebke-Blackburn-Bienayme reaction. Tetrahedron Lett., 2018, 59(16), 1596-1599.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.031]
[49]
Vieira, B.M.; Padilha, N.; Nascimento, N.M.; Perin, G.; Alves, D.; Schumacher, R.F.; Lenardão, E.J. Ultrasound-assisted synthesis of imidazo[1,2-a]pyridines and sequential one-pot preparation of 3-selanyl-imidazo[1,2-a]pyridine derivatives. ARKIVOC, 2019, 2019(2), 6-23.
[http://dx.doi.org/10.24820/ark.5550190.p010.972]
[50]
Nitulescu, G.M.; Matei, L.; Aldea, I.M.; Draghici, C.; Olaru, O.T.; Bleotu, C. Ultrasound-assisted synthesis and anticancer evaluation of new pyrazole derivatives as cell cycle inhibitors. Arab. J. Chem., 2019, 12(6), 816-824.
[http://dx.doi.org/10.1016/j.arabjc.2015.12.006]
[51]
Dofe, V.S.; Sarkate, A.P.; Shaikh, Z.M.; Gill, C.H. Ultrasound-mediated synthesis of novel 1,2,3-triazole-based pyrazole and pyrimidine derivatives as antimicrobial agents. J. Heterocycl. Chem., 2017, 54(6), 3195-3201.
[http://dx.doi.org/10.1002/jhet.2935]
[52]
Dofe, V.S.; Sarkate, A.P.; Lokwani, D.K.; Kathwate, S.H.; Gill, C.H. Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1,2,3-triazoles. Res. Chem. Intermed., 2017, 43(1), 15-28.
[http://dx.doi.org/10.1007/s11164-016-2602-z]
[53]
Gui, Q.W.; Teng, F.; Ying, S.N.; Liu, Y.; Guo, T.; Tang, J.X.; Chen, J.Y.; Cao, Z.; He, W.M. Ultrasound-assisted tandem synthesis of tri- and tetra-substituted pyrrole-2-carbonitriles from alkenes, TMSCN and N,N-disubstituted formamides. Chin. Chem. Lett., 2020, 31(12), 3241-3244.
[http://dx.doi.org/10.1016/j.cclet.2020.07.017]
[54]
Li, Y.H.; Wang, L.; Wang, Z.; Yuan, S.; Wu, S.; Wang, S.F. Ultrasound-assisted synthesis of novel pyrrole dihydropyrimidinones in lactic acid. ChemistrySelect, 2016, 1(21), 6855-6858.
[http://dx.doi.org/10.1002/slct.201601438]
[55]
Godugu, K.; Yadala, V.D.S.; Pinjari, M.K.M.; Gundala, T.R.; Sanapareddy, L.R.; Nallagondu, C.G.R. Natural dolomitic limestone-catalyzed synthesis of benzimidazoles, dihydropyrimidinones, and highly substituted pyridines under ultrasound irradiation. Beilstein J. Org. Chem., 2020, 16(1), 1881-1900.
[http://dx.doi.org/10.3762/bjoc.16.156] [PMID: 32802206]
[56]
Akocak, S. Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. Onepot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects, 2017, 11, 25-31.
[http://dx.doi.org/10.1016/j.nanoso.2017.06.002]
[57]
Eshtehardian, B.; Rouhani, M.; Mirjafary, Z. Green protocol for synthesis of MgFe2O4 nanoparticles and study of their activity as an efficient catalyst for the synthesis of chromene and pyran derivatives under ultrasound irradiation. J. Indian Chem. Soc., 2020, 17(2), 469-481.
[58]
Chavan, P.; Pansare, D.; Shelke, R.; Shejul, S.; Bhoir, P. Ultrasound-assisted synthesis and biological significance of substituted 4H-chromene-3-carbonitrile using greenery approaches. Curr. Chem. Lett., 2021, 10(1), 43-52.
[http://dx.doi.org/10.5267/j.ccl.2020.7.003]
[59]
Khare, S.P.; Deshmukh, T.R.; Sangshetti, J.N.; Krishna, V.S.; Sriram, D.; Khedkar, V.M.; Shingate, B.B. Design, synthesis and molecular docking studies of novel triazole‐chromene conjugates as antitubercular, antioxidant and antifungal agents. ChemistrySelect, 2018, 3(46), 13113-13122.
[http://dx.doi.org/10.1002/slct.201801859]
[60]
Manake, A.P.; Patil, S.R.; Patil, A.A. An ultrasound and microwave assisted benign synthesis of 2-amino-4-aryl-7-hydroxy-4h-chromene-3-carbonitriles over harsh conventional method. AIP Conf. Proc., 2019, 2100(1), 020093.
[61]
Shabalala, N.G.; Kerru, N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Catalyst-free synthesis of novel isopropyl 2-amino-7,7-dimethyl-4-(aryl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate derivatives in aqueous ethanol under ultrasound irradiation. Chem. Data Collect., 2020, 26, 100365.
[http://dx.doi.org/10.1016/j.cdc.2020.100365]
[62]
Akbarzadeh, Z.; Safaei-Ghomi, J. Ultrasound assisted eco-friendly synthesis of 3-cinnamoyl coumarins using N,N′-(1,2-phenylene)bis(2-amino-benzamide) dichloro cobalt immobilized on mesoporous Al-SBA-15 as a new and recyclable catalyst. Green Chem. Lett. Rev., 2020, 13(2), 141-154.
[http://dx.doi.org/10.1080/17518253.2020.1737250]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy