Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

β-cyclodextrin Mediated Green Synthesis of Bioactive Heterocycles

Author(s): Yogesh Ashok Tayade, Yogesh Baburav Wagh and Dipak Sharadrao Dalal*

Volume 27, Issue 12, 2023

Published on: 27 September, 2023

Page: [1036 - 1052] Pages: 17

DOI: 10.2174/1385272827666230911115818

Price: $65

Abstract

In this review, we report β-cyclodextrin catalyzed green transformations of biologically active heterocycles. β-Cyclodextrin is a seminatural product, water-soluble, highly efficient, and biodegradable catalyst. β-Cyclodextrin is a versatile catalyst and promotes a variety of multicomponent transformations, biomimetic reactions, C-C bond formation, and synthesis of some biologically active natural products. It has been applicable to attain some name reactions, deprotection of THP/MOM/Ac/Ts ethers, oxidative cleavage of epoxides, oxidative dehydrogenation of alcohol, regioselective cyclization of chalcone epoxides and 2’-aminochalcones. The catalyst is useful to carry out diastereoselective reactions, and it also plays a very important role in phase transfer catalysts.

Keywords: β-cyclodextrin, green transformations, biodegradable, heterocycles, biomimetic, multicomponent reactions.

Graphical Abstract
[1]
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 1998, 98(5), 1743-1754.
[http://dx.doi.org/10.1021/cr970022c] [PMID: 11848947]
[2]
Szeitli, J. Cyclodextrin Technology; Klwner Acadamic publications.: Dordracht, 1988.
[http://dx.doi.org/10.1007/978-94-015-7797-7]
[3]
Li, S.; Purdy, W.C. Cyclodextrins and their applications in analytical chemistry. Chem. Rev., 1992, 92(6), 1457-1470.
[http://dx.doi.org/10.1021/cr00014a009]
[4]
(a) Bender, M.L.; Komiyama, M. Cyclodextrin Chemistry; Springer: New York, 1978.
[http://dx.doi.org/10.1007/978-3-642-66842-5];
(b) Takahashi, K. Organic reactions mediated by cyclodextrins. Chem. Rev., 1998, 98(5), 2013-2034.
[http://dx.doi.org/10.1021/cr9700235] [PMID: 11848957]
[5]
(a) Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev., 1998, 98(5), 2045-2076.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959];
(b) Ji, H-B.; Shi, D-P.; Shao, M.; Li, Z.; Wang, L-F. Transition metal-free and substrate-selective oxidation of alcohols using water as an only solvent in the presence of β-cyclodextrin. Tetrahedron Lett., 2005, 46(14), 2517-2520.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.178]
[6]
Surendra, K.; Krishnaveni, N.S.; Rao, K.R. A new and efficient method for the synthesis of thiiranes from oxirane-β-cyclodextrin complexes and thiourea in water. Tetrahedron Lett., 2004, 45(34), 6523-6526.
[http://dx.doi.org/10.1016/j.tetlet.2004.06.111]
[7]
Page, M.I. The Chemistry of Enzyme Action; Elsevier, 1983.
[8]
(a) Iglesias, E. Cyclodextrins as enzyme models in nitrosation and in acid-base-catalyzed reactions of alkyl nitrites. J. Am. Chem. Soc., 1998, 120(50), 13057-13069.
[http://dx.doi.org/10.1021/ja9827696];
(b) Yuan, D.Q.; Lu, J.; Atsumi, M.; Izuka, A.; Kai, M.; Fujita, K. The first successful investigation into a cyclodextrin-based enzyme model as an efficient catalyst for luminol chemiluminescent reaction. Chem. Commun., 2002, (7), 730-731.
[http://dx.doi.org/10.1039/b111018g] [PMID: 12119695]
[9]
Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev., 2006, 106(3), 767-781.
[http://dx.doi.org/10.1021/cr050576c] [PMID: 16522008]
[10]
(a) Bhosale, S.V.; Bhosale, S.V. β-cyclodextrine as a catalyst in organic synthesis. Mini Rev. Org. Chem., 2007, 4, 143-157.
[http://dx.doi.org/10.2174/157019307780599298];
(b) Breslow, R.; Dong, S.D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev., 1998, 98(5), 1997-2012.
[http://dx.doi.org/10.1021/cr970011j] [PMID: 11848956]
[11]
Banerjee, B.; Priya, A.; Sharma, A.; Kaur, G.; Kaur, M. Sulfonated β-cyclodextrins: Efficient supramolecular organocatalysts for diverse organic transformations. Phys. Sci. Rev., 2022, 7(4-5), 539-565.
[http://dx.doi.org/10.1515/psr-2021-0080]
[12]
Tayade, Y.A.; Dalal, D.S. β-Cyclodextrin-based heterogeneous catalysts in aqueous medium. In: Aqueous Mediated Heterogeneous Catalysis; De Gruyter: Germany, 2022.
[13]
Dalal, D.S.; Patil, D.R.; Tayade, Y.A. β-cyclodextrin: A green and efficient supramolecular catalyst for organic transformations. Chem. Rec., 2018, 18(11), 1560-1582.
[http://dx.doi.org/10.1002/tcr.201800016] [PMID: 29855139]
[14]
Tayade, Y.A.; Patil, D.R.; Wagh, Y.B.; Jangle, A.D.; Dalal, D.S. An efficient synthesis of 3-indolyl-3-hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones catalyzed by sulfonated β-CD as a supramolecular catalyst in water. Tetrahedron Lett., 2015, 56(5), 666-673.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.012] [PMID: 32287446]
[15]
Dalal, K.S.; Tayade, Y.A.; Wagh, Y.B.; Dalal, D.S.; Chaudhari, B.L. Lipase-mediated multicomponent synthesis of 1H-Pyrazolo[1,2-b] phthalazine-5,10-dione derivatives in a binary solvent medium. Biotechnol. Appl. Biochem., 2021, 69(5), 2017-2027.
[PMID: 34622994]
[16]
Dalal, K.S.; Wagh, Y.B.; Tayade, Y.A.; Dalal, D.S.; Chaudhari, B.L. Hen egg white lysozyme catalyzed efficient synthesis of 3-indolyl-3-hydroxy oxindole in aqueous ethanol. Catal. Lett., 2018, 148(11), 3335-3341.
[http://dx.doi.org/10.1007/s10562-018-2551-9]
[17]
Padvi, S.A.; Dalal, D.S. Task-specific ionic liquids as a green catalysts and solvents for organic synthesis. Curr. Green Chem., 2020, 7(1), 105-119.
[http://dx.doi.org/10.2174/2213346107666200115153051]
[18]
Wagh, Y.B.; Kuwar, A.S.; Patil, D.R.; Tayade, Y.A.; Jangale, A.D.; Terdale, S.S.; Trivedi, D.R.; Gallucci, J.; Dalal, D.S. Highly efficient regioselective synthesis of 2-imino-4-oxothiazolidin-5-ylidene acetates via a substitution-dependent cyclization sequence under catalyst-free conditions at ambient temperature. Ind. Eng. Chem. Res., 2015, 54(40), 9675-9682.
[http://dx.doi.org/10.1021/acs.iecr.5b01746]
[19]
(a) Tejedor, D.; García-Tellado, F. Chemo-differentiating ABB′ multicomponent reactions. Privileged building blocks. Chem. Soc. Rev., 2007, 36(3), 484-491.
[http://dx.doi.org/10.1039/B608164A] [PMID: 17325787];
(b) Ramón, D.J.; Yus, M. Asymmetric Multicomponent Reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349];
(c) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[20]
Wan, J.P.; Gan, S.F.; Sun, G.L.; Pan, Y.J. Novel regioselectivity: Three-component cascade synthesis of unsymmetrical 1,4- and 1,2-dihydropyridines. J. Org. Chem., 2009, 74(7), 2862-2865.
[http://dx.doi.org/10.1021/jo900068z] [PMID: 19256480]
[21]
(a) Wender, P.A.; Handy, S.T.; Wright, D.L. Chem. Ind., 1997, 765.;
(b) Trost, B.M. Atom economy-a challenge for organic synthesis: Homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl., 1995, 34(3), 259-281.
[http://dx.doi.org/10.1002/anie.199502591]
[22]
Mabire, D.; Coupa, S.; Adelinet, C.; Poncelet, A.; Simonnet, Y.; Venet, M.; Wouters, R.; Lesage, A.S.J.; Beijsterveldt, L.V.; Bischoff, F. Synthesis, structure-activity relationship, and receptor pharmacology of a new series of quinoline derivatives acting as selective, noncompetitive mGlu1 antagonists. J. Med. Chem., 2005, 48(6), 2134-2153.
[http://dx.doi.org/10.1021/jm049499o] [PMID: 15771457]
[23]
Sekar, M.; Prasad, K.J. Synthesis of some novel 2-oxo-pyrano (2, 3-b)-and 2-oxo-pyrido (2, 3-b) quinoline derivatives as potential antimalarial, diuretic, clastogenic and antimicrobial agents. J. Chem. Technol. Biotechnol., 1998, 2(1), 50-54.
[24]
McLaughlin, M.J.; Hsung, R.P. Total syntheses of pyranoquinoline alkaloids: Simulenoline, huajiaosimuline, and (+/-)-7-demethoxyzanthodioline. J. Org. Chem., 2001, 66(3), 1049-1053.
[http://dx.doi.org/10.1021/jo001368h] [PMID: 11430073]
[25]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano[3, 2-c] quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[26]
Cairns, H.; Cox, D.; Gould, K.J.; Ingall, A.H.; Suschitzky, J.L. New antiallergic pyrano[3,2-g]quinoline-2,8-dicarboxylic acids with potential for the topical treatment of asthma. J. Med. Chem., 1985, 28(12), 1832-1842.
[http://dx.doi.org/10.1021/jm00150a014] [PMID: 2999403]
[27]
Watpade, R.; Bholay, A.; Toche, R. Synthesis of new pyrano-fused quinolines as antibacterial and antimicrobial agents. J. Heterocycl. Chem., 2017, 54(6), 3434-3439.
[http://dx.doi.org/10.1002/jhet.2966]
[28]
El-Agrody, A.M.; Khattab, E.S.A.E.H.; Fouda, A.M.; Al-Ghamdi, A.M. Synthesis and antitumor activities of certain novel 2-amino-9-(4-halostyryl)-4H-pyrano[3,2-h]quinoline derivatives. Med. Chem. Res., 2012, 21(12), 4200-4213.
[http://dx.doi.org/10.1007/s00044-011-9965-x]
[29]
Marco-Contelles, J.; León, R.; López, M.G.; García, A.G.; Villarroya, M. Synthesis and biological evaluation of new 4H-pyrano[2,3-b]quinoline derivatives that block acetylcholinesterase and cell calcium signals, and cause neuroprotection against calcium overload and free radicals. Eur. J. Med. Chem., 2006, 41(12), 1464-1469.
[http://dx.doi.org/10.1016/j.ejmech.2006.06.016] [PMID: 17030484]
[30]
Hafez, A.A.A.; Nahas, N.M. Synthesis and antifungal testing of some new tricyclic heterocyclic quinolines. Heterocycl. Commun., 2005, 11(6), 495-504.
[http://dx.doi.org/10.1515/HC.2005.11.6.495]
[31]
Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 2003, 20(5), 476-493.
[http://dx.doi.org/10.1039/b208140g] [PMID: 14620843]
[32]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[33]
Kumar, G.S.; Zeller, M.; Frasso, M.A.; Prasad, K.J.R. InCl3 promoted synthesis of pyrano[3,2-h]quinolines via microwave irradiation. J. Heterocycl. Chem., 2015, 52(3), 926-930.
[http://dx.doi.org/10.1002/jhet.2067]
[34]
Magedov, I.V.; Manpadi, M.; Ogasawara, M.A.; Dhawan, A.S.; Rogelj, S. Van slambrouck, S.; Steelant, W.F.A.; Evdokimov, N.M.; Uglinskii, P.Y.; Elias, E.M.; Knee, E.J.; Tongwa, P.; Antipin, M.Y.; Kornienko, A. Structural simplification of bioactive natural products with multicomponent synthesis. 2. antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones. J. Med. Chem., 2008, 51(8), 2561-2570.
[http://dx.doi.org/10.1021/jm701499n] [PMID: 18361483]
[35]
Wang, X.; Zeng, Z.; Shi, D.; Wei, X.; Zong, Z. One-step synthesis of 2-Amino-3-cyano-4- aryl-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-one Derivatives Using KF–Al2O3 as Catalyst. Synth. Commun., 2004, 34(16), 3021-3027.
[http://dx.doi.org/10.1081/SCC-200026662]
[36]
Goudar, M.; Jayadevappa, H.; Sudhakara, A.; Mahadevan, K. Imino Diels-Alder reactions: Efficient synthesis of pyrano and furanoquinolines catalyzed by antimony (III) sulfate. Lett. Org. Chem., 2008, 5(8), 628-632.
[http://dx.doi.org/10.2174/157017808786857462]
[37]
Ibrahim, M.A.; Hassanin, H.M.; Gabr, Y.A.A.; Alnamer, Y.A.S. Novel heterocyclic derivatives of pyrano[3,2-c]quinolinone from 3-(1-ethy1-4-hydroxy-2-oxo-2(1H)-quinolin-3-yl)-3-oxopropanoic acid. Eur. J. Chem., 2010, 1(3), 195-199.
[http://dx.doi.org/10.5155/eurjchem.1.3.195-199.91]
[38]
Romdhane, A.; Ben Jannet, H. Synthesis of new pyran and pyranoquinoline derivatives. Arab. J. Chem., 2017, 10, S3128-S3134.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.002]
[39]
Ma, Y.; Qian, C.; Xie, M.; Sun, J. Lanthanide chloride catalyzed imino diels-alder reaction. One-pot synthesis of pyrano[3,2-c]- and Furo[3,2-quinolines. J. Org. Chem., 1999, 64(17), 6462-6467.
[http://dx.doi.org/10.1021/jo982220p]
[40]
Jadhav, C.K. Nipate, A. S.; Chate, A. V.; Gill, C. H. β-Cyclodextrin: An efficient supramolecular catalyst for the synthesis of pyranoquinolines derivatives under ultrasonic irradiation in water. Polycycl. Aromat. Compd., 2021, 42(7), 4224-4239.
[41]
Chate, A.V.; Kulkarni, A.S.; Jadhav, C.K.; Nipte, A.S.; Bondle, G.M. Multicomponent reactions and supramolecular catalyst: A perfect synergy for eco-compatible synthesis of pyrido[2,3-d]pyrimidines in water. J. Heterocycl. Chem., 2020, 57(5), 2184-2193.
[http://dx.doi.org/10.1002/jhet.3938]
[42]
Kitamura, N.; Onishi, A. Pyrimidopyrimidine derivatives, processes for producing them, pharmaceutical compositions containing them and their use as anti-allergic agents. Chem. Abstr. EP0163599A2, 1984, 104.
[43]
Furuya, S.; Ohtaki, T. Pyridopyrimidine derivatives, their production and use. Chem. Abstr. EP0608565A1, 1994.
[44]
Heber, D.; Heers, C.; Ravens, U. Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido[2,3-d]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity. Pharmazie, 1993, 48(7), 537-541.
[PMID: 7692456]
[45]
Coates, W. J. Pyrimidopyrimidine derivatives. Chem. Abstr. EP0351058A1, 1990.
[46]
Sakuma, Y.; Hasegawa, M.; Kataoka, K.; Hoshina, K.; Yamazaki, N.; Kadota, T.; Yamaguchi, H. PCT Int. Appl. WO9105785, 1991.
[47]
Broom, A.D.; Shim, J.L.; Anderson, G.L. Pyrido[2,3-d]pyrimidines. IV. Synthetic studies leading to various oxopyrido[2,3-d]pyrimidines. J. Org. Chem., 1976, 41(7), 1095-1099.
[http://dx.doi.org/10.1021/jo00869a003] [PMID: 1255289]
[48]
Sadeghi, B.; Bouslik, M.; Shishehbore, M.R. Nano-sawdust-OSO3H as a new, cheap and effective nanocatalyst for one-pot synthesis of pyrano[2,3-d]pyrimidines. J. Indian Chem. Soc., 2015, 12(10), 1801-1808.
[http://dx.doi.org/10.1007/s13738-015-0655-3]
[49]
Khazaei, A.; Nik, H.A.A.; Moosavi-Zare, A.R. Water mediated domino knoevenagel-michael-cyclocondensation reaction of malononitrile, various aldehydes and barbituric acid derivatives using boric acid aqueous solution system compared with nano-titania sulfuric acid. J. Chin. Chem. Soc., 2015, 62(8), 675-679.
[http://dx.doi.org/10.1002/jccs.201500115]
[50]
Sabour, B.; Peyrovi, M.H.; Hajimohammadi, M. Al-HMS-20 catalyzed synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res. Chem. Intermed., 2015, 41(3), 1343-1350.
[http://dx.doi.org/10.1007/s11164-013-1277-y]
[51]
Zolfigol, M.A.; Ayazi-Nasrabadi, R.; Baghery, S. The first urea-based ionic liquid-stabilized magnetic nanoparticles: An efficient catalyst for the synthesis of bis(indolyl)methanes and pyrano[2,3-d]pyrimidinone derivatives. Appl. Organomet. Chem., 2016, 30(5), 273-281.
[http://dx.doi.org/10.1002/aoc.3428]
[52]
Azarifar, D.; Nejat-Yami, R.; Sameri, F.; Akrami, Z. Ultrasonic-promoted one-pot synthesis of 4H-chromenes, pyrano[2,3-d]pyrimidines, and 4H-pyrano[2,3-c]pyrazoles. Lett. Org. Chem., 2012, 9(6), 435-439.
[http://dx.doi.org/10.2174/157017812801322435]
[53]
Maleki, A.; Niksefat, M.; Rahimi, J.; Taheri-Ledari, R. Multicomponent synthesis of pyrano[2,3-d]pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles. Mater. Today Chem., 2019, 13, 110-120.
[http://dx.doi.org/10.1016/j.mtchem.2019.05.001]
[54]
Mohamadpour, F. Synthesis of pyran-annulated heterocyclic systems catalyzed by theophylline as a green and bio-based catalyst. Polycycl. Aromat. Compd., 2021, 41(1), 160-172.
[http://dx.doi.org/10.1080/10406638.2019.1575246]
[55]
Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28(6), 517-520.
[http://dx.doi.org/10.1016/0223-5234(93)90020-F]
[56]
Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones(1). Bioorg. Med. Chem. Lett., 1993, 3(2), 225-230.
[http://dx.doi.org/10.1016/S0960-894X(01)80881-7]
[57]
Mitra, A.K.; Misra, S.K.; Patra, A. New synthesis of 3-alkyl coumarins. Synth. Commun., 1980, 10(12), 915-919.
[http://dx.doi.org/10.1080/00397918008061851]
[58]
Kumar, S.; Giri, R.; Mishra, S.C.; Machwe, M.K. Photophysical characteristics of the laser dye 7-dimethylamino cyclopenta[c]coumarin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1995, 51(9), 1459-1467.
[http://dx.doi.org/10.1016/0584-8539(95)01407-L]
[59]
Sun, W.C.; Gee, K.R.; Haugland, R.P. Synthesis of novel fluorinated coumarins: Excellent UV-light excitable fluorescent dyes. Bioorg. Med. Chem. Lett., 1998, 8(22), 3107-3110.
[http://dx.doi.org/10.1016/S0960-894X(98)00578-2] [PMID: 9873685]
[60]
Kamat, S.R.; Mane, A.H.; Patil, A.D.; Lohar, T.R.; Salunkhe, R.S. Synthesis of xanthene and coumarin derivatives in water by using β-cyclodextrin. Res. Chem. Intermed., 2021, 47(3), 911-924.
[http://dx.doi.org/10.1007/s11164-020-04308-3]
[61]
Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappalà, M.; Puja, G.; Baraldi, M.; De Micheli, C. Synthesis and anticonvulsant activity of novel and potent 6,7-methylenedioxyphthalazin-1(2H)-ones. J. Med. Chem., 2000, 43(15), 2851-2859.
[http://dx.doi.org/10.1021/jm001002x] [PMID: 10956193]
[62]
Nomoto, Y.; Obase, H.; Takai, H.; Teranishi, M.; Nakamura, J.; Kubo, K. Studies on cardiotonic agents. II. Synthesis of novel phthalazine and 1,2,3-benzotriazine derivatives. Chem. Pharm. Bull., 1990, 38(8), 2179-2183.
[http://dx.doi.org/10.1248/cpb.38.2179] [PMID: 2279280]
[63]
Watanabe, N.; Kabasawa, Y.; Takase, Y.; Matsukura, M.; Miyazaki, K.; Ishihara, H.; Kodama, K.; Adachi, H. 4-Benzylamino-1-chloro-6-substituted phthalazines: Synthesis and inhibitory activity toward phosphodiesterase 5. J. Med. Chem., 1998, 41(18), 3367-3372.
[http://dx.doi.org/10.1021/jm970815r] [PMID: 9719589]
[64]
Nipate, A.S. Jadhav, C.K.; Chate, A.V.; Taur, K.S.; Gill, C.H. β-Cyclodextrin catalyzed access to fused 1,8-dihydroimidazo[2,3-b]indoles via one-pot multicomponent cascade in aqueous ethanol: Supramolecular approach toward sustainability. J. Heterocycl. Chem., 2020, 57(2), 820-829.
[http://dx.doi.org/10.1002/jhet.3828]
[65]
Reddy, S.S. Reddy, M.V.K.; Reddy, P.V. β-Cyclodextrin in Water: As an efficient green protocol for the synthesis of Pyrimido[4,5-b]quinoline-diones. ChemistrySelect, 2018, 3(16), 4283-4288.
[http://dx.doi.org/10.1002/slct.201800208]
[66]
Ansari, M.D.; Sagir, H.; Yadav, V.B.; Yadav, N.; Siddiqui, I.R. Synthesis of benzo[b]furan derivatives via S8-Nano particles/β-cyclodextrin: An environmentally friendly approach. ChemistrySelect, 2018, 3(19), 5326-5329.
[http://dx.doi.org/10.1002/slct.201800589]
[67]
Matsuda, H.; Shimoda, H.; Yoshikawa, M. Structure-Requirements of isocoumarins, phthalides, and stilbenes from hydrangeae dulcis folium for inhibitory activity on histamine release from rat peritoneal mast cells. Bioorg. Med. Chem., 1999, 7(7), 1445-1450.
[http://dx.doi.org/10.1016/S0968-0896(99)00058-9] [PMID: 10465418]
[68]
Yoshikawa, M.; Harada, E.; Naitoh, Y.; Inoue, K.; Matsuda, H.; Shimoda, H.; Yamahara, J.; Murakami, N. Development of bioactive functions in hydrangeae dulcis folium. III. On the antiallergic and antimicrobial principles of hydrangeae dulcis folium. (1). Thunberginols A, B, and F. Chem. Pharm. Bull., 1994, 42(11), 2225-2230.
[http://dx.doi.org/10.1248/cpb.42.2225] [PMID: 7532114]
[69]
Matsuda, H.; Shimoda, H.; Yamahara, J.; Yoshikawa, M. Immunomodulatory activity of thunberginol a and related compounds isolated from hydrangeae dulcis folium on splenocyte proliferation activated by mitogens. Bioorg. Med. Chem. Lett., 1998, 8(3), 215-220.
[http://dx.doi.org/10.1016/S0960-894X(97)10221-9] [PMID: 9871657]
[70]
Nozawa, K.; Yamada, M.; Tsuda, Y.; Kawai, K.; Nakajima, S. Antifungal activity of oosponol, oospolactone, phyllodulcin, hydrangenol, and some other related compounds. Chem. Pharm. Bull., 1981, 29(9), 2689-2691.
[http://dx.doi.org/10.1248/cpb.29.2689] [PMID: 7349286]
[71]
Lee, J.H.; Park, Y.J.; Kim, H.S.; Hong, Y.S.; Kim, K.W.; Lee, J.J. Anti-angiogenic activities of novel isocoumarins, AGI-7 and sescandelin. J. Antibiot., 2001, 54(5), 463-466.
[http://dx.doi.org/10.7164/antibiotics.54.463] [PMID: 11480892]
[72]
Whyte, A.C.; Gloer, J.B.; Scott, J.A.; Malloch, D. Cercophorins A-C: Novel antifungal and cytotoxic metabolites from the coprophilous fungus Cercophora areolata. J. Nat. Prod., 1996, 59(8), 765-769.
[http://dx.doi.org/10.1021/np9603232] [PMID: 8792624]
[73]
Furuta, T.; Fukuyama, Y.; Asakawa, Y. Polygonolide, an isocoumarin from Polygonum hydropiper possessing anti-inflammatory activity. Phytochemistry, 1986, 25(2), 517-520.
[http://dx.doi.org/10.1016/S0031-9422(00)85513-2]
[74]
Kumar, A.; Rai, P.; Yadav, V.B.; Siddiqui, I.R. Oligosaccharide assisted approach: An efficient and facile access to isochromeno [4,3-b] indoles derivatives in the presence of beta cyclodextrin. Catal. Lett., 2019, 149(1), 190-195.
[http://dx.doi.org/10.1007/s10562-018-2592-0]
[75]
Bartlett, P.A.; Spear, K.L.; Jacobsen, N.E. A thioamide substrate of carboxypeptidase A. Biochemistry, 1982, 21(7), 1608-1611.
[http://dx.doi.org/10.1021/bi00536a022] [PMID: 7082637]
[76]
Bond, M.D.; Holmquist, B.; Vallee, B.L. Thioamide substrate probes of metal-substrate interactions in carboxypeptidase a catalysis. J. Inorg. Biochem., 1986, 28(2-3), 97-105.
[http://dx.doi.org/10.1016/0162-0134(86)80074-5] [PMID: 3806099]
[77]
Yu, K.L.; Torri, A.F.; Luo, G.; Cianci, C.; Grant-Young, K.; Danetz, S.; Tiley, L.; Krystal, M.; Meanwell, N.A. Structure-activity relationships for a series of thiobenzamide influenza fusion inhibitors derived from 1,3,3-Trimethyl-5-hydroxy-cyclohexylmethylamine. Bioorg. Med. Chem. Lett., 2002, 12(23), 3379-3382.
[http://dx.doi.org/10.1016/S0960-894X(02)00761-8] [PMID: 12419365]
[78]
Lincke, T.; Behnken, S.; Ishida, K.; Roth, M.; Hertweck, C. Closthioamide: An unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. Int. Ed., 2010, 49(11), 2011-2013.
[http://dx.doi.org/10.1002/anie.200906114] [PMID: 20157900]
[79]
Angehrn, P.; Goetschi, E.; Gmuender, H.; Hebeisen, P.; Hennig, M.; Kuhn, B.; Luebbers, T.; Reindl, P.; Ricklin, F.; Schmitt-Hoffmann, A. A new DNA gyrase inhibitor subclass of the cyclothialidine family based on a bicyclic dilactam-lactone scaffold. Synthesis and antibacterial properties. J. Med. Chem., 2011, 54(7), 2207-2224.
[http://dx.doi.org/10.1021/jm1014023] [PMID: 21388139]
[80]
Bach, A.; Eildal, J.N.N.; Stuhr-Hansen, N.; Deeskamp, R.; Gottschalk, M.; Pedersen, S.W.; Kristensen, A.S.; Strømgaard, K. Cell-permeable and plasma-stable peptidomimetic inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction. J. Med. Chem., 2011, 54(5), 1333-1346.
[http://dx.doi.org/10.1021/jm1013924] [PMID: 21322614]
[81]
Zbruyev, O.I.; Stiasni, N.; Kappe, C.O. Preparation of thioamide building blocks via microwave-promoted three-component kindler reactions. J. Comb. Chem., 2003, 5(2), 145-148.
[http://dx.doi.org/10.1021/cc0200538] [PMID: 12625704]
[82]
Wang, X.; Ji, M.; Lim, S.; Jang, H.Y. Thiol as a synthon for preparing thiocarbonyl: Aerobic oxidation of thiols for the synthesis of thioamides. J. Org. Chem., 2014, 79(15), 7256-7260.
[http://dx.doi.org/10.1021/jo501378v] [PMID: 24993111]
[83]
Nguyen, T.B.; Ermolenko, L.; Al-Mourabit, A. Efficient and selective multicomponent oxidative coupling of two different aliphatic primary amines into thioamides by elemental sulfur. Org. Lett., 2012, 14(16), 4274-4277.
[http://dx.doi.org/10.1021/ol3020368] [PMID: 22862830]
[84]
Nguyen, T.B.; Tran, M.Q.; Ermolenko, L.; Al-Mourabit, A. Three-component reaction between alkynes, elemental sulfur, and aliphatic amines: A general, straightforward, and atom economical approach to thioamides. Org. Lett., 2014, 16(1), 310-313.
[http://dx.doi.org/10.1021/ol403345e] [PMID: 24308719]
[85]
Boys, M.L.; Downs, V.L. Preparation of primary thioamides from nitriles using sodium hydrogen sulfide and diethylamine hydrochloride. Synth. Commun., 2006, 36(3), 295-298.
[http://dx.doi.org/10.1080/00397910500377099]
[86]
Tayade, Y.A.; Jangale, A.D.; Dalal, D.S. Simple and highly efficient synthesis of thioamide derivatives using β-cyclodextrin as supramolecular catalyst in water. ChemistrySelect, 2018, 3(31), 8895-8900.
[http://dx.doi.org/10.1002/slct.201801553]
[87]
Chebanov, V.A.; Muravyova, E.A.; Desenko, S.M.; Musatov, V.I.; Knyazeva, I.V.; Shishkina, S.V.; Shishkin, O.V.; Kappe, C.O. Microwave-assisted three-component synthesis of 7-Aryl-2-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5- a]-pyrimidine-6-carboxamides and their selective reduction. J. Comb. Chem., 2006, 8(3), 427-434.
[http://dx.doi.org/10.1021/cc060021a] [PMID: 16677013]
[88]
Dondoni, A.; Massi, A.; Sabbatini, S.; Bertolasi, V. Three-component Biginelli cyclocondensation reaction using C-glycosylated substrates. Preparation of a collection of dihydropyrimidinone glycoconjugates and the synthesis of C-glycosylated monastrol analogues. J. Org. Chem., 2002, 67(20), 6979-6994.
[http://dx.doi.org/10.1021/jo0202076] [PMID: 12353991]
[89]
Liu, J.; Li, J.; Zhang, L.; Song, L.; Zhang, M.; Cao, W.; Zhu, S.; Deng, H.; Shao, M. Facile one-pot three-component reaction to synthesize trifluoromethylated cyclopenta[b]pyran derivatives and their further transformation. Tetrahedron Lett., 2012, 53(19), 2469-2472.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.023]
[90]
Kim, J.S.; Rhee, H.K.; Park, H.J.; Lee, S.K.; Lee, C.O.; Park Choo, H.Y. Synthesis of 1-/2-substituted-[1,2,3]triazolo[4,5-g]phthalazine-4,9-diones and evaluation of their cytotoxicity and topoisomerase II inhibition. Bioorg. Med. Chem., 2008, 16(8), 4545-4550.
[http://dx.doi.org/10.1016/j.bmc.2008.02.049] [PMID: 18321715]
[91]
El-Sakka, S.; Soliman, A.H.; Imam, A. Synthesis, antimicrobial activity and electron impact of mass spectra of Phthalazine-1,4-dione derivatives. Afinidad, 2009, 66, 540.
[92]
Ryu, C.K.; Park, R.E.; Ma, M.Y.; Nho, J.H. Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones. Bioorg. Med. Chem. Lett., 2007, 17(9), 2577-2580.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.003] [PMID: 17320386]
[93]
Tayade, Y.A. Dalal, D.S. β-Cyclodextrin as a supramolecular catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives in water. Catal. Lett., 2017, 147(6), 1411-1421.
[http://dx.doi.org/10.1007/s10562-017-2032-6]
[94]
Chate, A.V. Bhadke, P.K.; Khande, M.A.; Sangshetti, J.N.; Gill, C.H. β -Cyclodextrin as a supramolecular catalyst for the synthesis of 2 H -indazolo[2,1-b]phthalazine-trione derivatives in water and their antimicrobial activities. Chin. Chem. Lett., 2017, 28(7), 1577-1582.
[http://dx.doi.org/10.1016/j.cclet.2017.03.007]
[95]
Ghorad, A. Mahalle, S.; Khillare, L.D.; Sangshetti, J.N.; Bhosle, M.R. β-Cyclodextrin as a biomimetic catalyst for the efficient synthesis of 4-oxo-pyrido[1, 2-a] pyrimidine-3-carbonitrile in aqueous medium. Catal. Lett., 2017, 147(3), 640-648.
[http://dx.doi.org/10.1007/s10562-017-1983-y]
[96]
Kuo, S.C.; Huang, L.J.; Nakamura, H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J. Med. Chem., 1984, 27(4), 539-544.
[http://dx.doi.org/10.1021/jm00370a020] [PMID: 6708056]
[97]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci., 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[98]
Zaki, M.E.A.; Soliman, H.A.; Hiekal, O.A.; Rashad, A.E. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z. Naturforsch. C J. Biosci., 2006, 61(1-2), 1-5.
[http://dx.doi.org/10.1515/znc-2006-1-201] [PMID: 16610208]
[99]
Foloppe, N.; Fisher, L.M.; Howes, R.; Potter, A.; Robertson, A.G.S.; Surgenor, A.E. Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg. Med. Chem., 2006, 14(14), 4792-4802.
[http://dx.doi.org/10.1016/j.bmc.2006.03.021] [PMID: 16574416]
[100]
Abdel-Rahman, A.H.; Keshk, E.M.; Hanna, M.A.; El-Bady, S.M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem., 2004, 12(9), 2483-2488.
[http://dx.doi.org/10.1016/j.bmc.2003.10.063] [PMID: 15080944]
[101]
Kumar, A.; Gupta, G.; Srivastava, S.; Bishnoi, A.K.; Saxena, R.; Kant, R.; Khanna, R.S.; Maulik, P.R.; Dwivedi, A. Novel diastereoselective synthesis of spiropyrrolidine-oxindole derivatives as anti-breast cancer agents. RSC Adv., 2013, 3(14), 4731-4735.
[http://dx.doi.org/10.1039/c3ra21595d]
[102]
Tayade, Y.A. Padvi, S.A.; Wagh, Y.B.; Dalal, D.S. β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] in aqueous medium. Tetrahedron Lett., 2015, 56(19), 2441-2447.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.084]
[103]
Patil, D.R.; Ingole, P.G.; Singh, K.; Dalal, D.S. Inclusion complex of Isatoic anhydride with β-cyclodextrin and supramolecular one-pot synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in aqueous media. J. Incl. Phenom. Macrocycl. Chem., 2013, 76(3-4), 327-332.
[http://dx.doi.org/10.1007/s10847-012-0203-z]
[104]
Ramesh, K.; Karnakar, K.; Satish, G.; Harsha Vardhan Reddy, K.; Nageswar, Y.V.D. Tandem supramolecular synthesis of substituted 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of β-cyclodextrin in water. Tetrahedron Lett., 2012, 53(45), 6095-6099.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.141]
[105]
Rai, P. Srivastava, M.; Yadav, S.; Singh, J.; Singh, J. β-Cyclodextrin: A biomimetic catalyst used for the synthesis of 4H-chromene-3-carbonitrile and Tetrahydro-1H-xanthen-1-one derivatives. Catal. Lett., 2015, 145(12), 2020-2028.
[http://dx.doi.org/10.1007/s10562-015-1588-2]
[106]
Reddy, G.R. Reddy, T.R.; Chary, R.G.; Joseph, S.C.; Mukherjee, S.; Pal, M. β-Cyclodextrin mediated MCR in water: Synthesis of dihydroisoindolo[2,1-a]quinazoline-5,11-dione derivatives under microwave irradiation. Tetrahedron Lett., 2013, 54(49), 6744-6746.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.138]
[107]
Hayakawa, Y.; Kawakami, K.; Seto, H.; Furihata, K. Structure of a new antibiotic, roseophilin. Tetrahedron Lett., 1992, 33(19), 2701-2704.
[http://dx.doi.org/10.1016/S0040-4039(00)79061-7]
[108]
Trofimov, B.A.; Sobenina, L.N.; Demenev, A.P.; Mikhaleva, A.I. C-vinylpyrroles as pyrrole building blocks. Chem. Rev., 2004, 104(5), 2481-2506.
[http://dx.doi.org/10.1021/cr020100i] [PMID: 15137797]
[109]
Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. Platinum-and acid-catalyzed enyne metathesis reactions: Mechanistic studies and applications to the syntheses of streptorubin B and metacycloprodigiosin. J. Am. Chem. Soc., 1998, 120(33), 8305-8314.
[http://dx.doi.org/10.1021/ja981183g]
[110]
Ramesh, K.; Karnakar, K.; Satish, G.; Nageswar, Y.V.D. Novel and efficient supramolecular synthesis of pyrroles in the presence of β-cyclodextrin in water. Chin. Chem. Lett., 2012, 23(12), 1331-1334.
[http://dx.doi.org/10.1016/j.cclet.2012.11.005]
[111]
Konkala, K. Chowrasia, R.; Manjari, P.S.; Domingues, N.L.C.; Katla, R. β-Cyclodextrin as a recyclable catalyst: Aqueous phase one-pot four-component synthesis of polyfunctionalized pyrroles. RSC Advances, 2016, 6(49), 43339-43344.
[http://dx.doi.org/10.1039/C6RA08335H]
[112]
Baran, P.S.; Richter, J.M. Enantioselective total syntheses of welwitindolinone A and fischerindoles I and G. J. Am. Chem. Soc., 2005, 127(44), 15394-15396.
[http://dx.doi.org/10.1021/ja056171r] [PMID: 16262402]
[113]
Chang, M.Y.; Pai, C.L.; Kung, Y.H. Synthesis of (±)-coerulescine and a formal synthesis of (±)-horsfiline. Tetrahedron Lett., 2005, 46(49), 8463-8465.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.015]
[114]
Hilton, S.T.; Ho, T.C.T.; Pljevaljcic, G.; Jones, K. A new route to spirooxindoles. Org. Lett., 2000, 2(17), 2639-2641.
[http://dx.doi.org/10.1021/ol0061642] [PMID: 10990416]
[115]
Edmondson, S.; Danishefsky, S.J.; Sepp-Lorenzino, L.; Rosen, N. Total synthesis F spitotryprosatin A, leading to the discovery of some biological promising analogues. J. Am. Chem. Soc., 1999, 121(10), 2147-2155.
[http://dx.doi.org/10.1021/ja983788i]
[116]
Zaveri, N.T.; Jiang, F.; Olsen, C.M.; Deschamps, J.R.; Parrish, D.; Polgar, W.; Toll, L. A novel series of piperidin-4-yl-1,3-dihydroindol-2-ones as agonist and antagonist ligands at the nociceptin receptor. J. Med. Chem., 2004, 47(12), 2973-2976.
[http://dx.doi.org/10.1021/jm034249d] [PMID: 15163178]
[117]
Gallagher, G., Jr; Lavanchy, P.G.; Wilson, J.W.; Hieble, J.P.; DeMarinis, R.M.; DeMarinis, R.M. 4-[2-(Di-n-propylamino)ethyl]-2(3H)-indolone: A prejunctional dopamine receptor agonist. J. Med. Chem., 1985, 28(10), 1533-1536.
[http://dx.doi.org/10.1021/jm00148a028] [PMID: 4045928]
[118]
Sridhar, R.; Srinivas, B.; Madhav, B.; Reddy, V.P.; Nageswar, Y.V.D.; Rao, K.R. Multi-component supramolecular synthesis of spirooxindoles catalyzed by β-cyclodextrin in water. Can. J. Chem., 2009, 87(12), 1704-1707.
[http://dx.doi.org/10.1139/V09-137]
[119]
Girault, S.; Grellier, P.; Berecibar, A.; Maes, L.; Mouray, E.; Lemière, P.; Debreu, M.A.; Davioud-Charvet, E.; Sergheraert, C. Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): Influence of the linker. J. Med. Chem., 2000, 43(14), 2646-2654.
[http://dx.doi.org/10.1021/jm990946n] [PMID: 10893302]
[120]
Mikata, Y.; Yokoyama, M.; Mogami, K.; Kato, M.; Okura, I.; Chikira, M.; Yano, S. Intercalator-linked cisplatin: Synthesis and antitumor activity of cis-dichloroplatinum(II) complexes connected to acridine and phenylquinolines by one methylene chain. Inorg. Chim. Acta, 1998, 279(1), 51-57.
[http://dx.doi.org/10.1016/S0020-1693(98)00035-8]
[121]
Gamage, S.A.; Spicer, J.A.; Atwell, G.J.; Finlay, G.J.; Baguley, B.C.; Denny, W.A. Structure-activity relationships for substituted bis(acridine-4-carboxamides): A new class of anticancer agents. J. Med. Chem., 1999, 42(13), 2383-2393.
[http://dx.doi.org/10.1021/jm980687m] [PMID: 10395479]
[122]
Wainwright, M. Acridine--a neglected antibacterial chromophore. J. Antimicrob. Chemother., 2001, 47(1), 1-13.
[http://dx.doi.org/10.1093/jac/47.1.1] [PMID: 11152426]
[123]
Antonini, I.; Polucci, P.; Kelland, L.R.; Menta, E.; Pescalli, N.; Martelli, S. 2,3-Dihydro-1H,7H-pyrimido[5,6,1-de]acridine-1,3,7-trione derivatives, a class of cytotoxic agents active on multidrug-resistant cell lines: Synthesis, biological evaluation, and structure-activity relationships. J. Med. Chem., 1999, 42(14), 2535-2541.
[http://dx.doi.org/10.1021/jm9805586] [PMID: 10411474]
[124]
Gallo, S.; Atifi, S.; Mahamoud, A.; Santelli-Rouvier, C.; Wolfárt, K.; Molnar, J.; Barbe, J. Synthesis of aza mono, bi and tricyclic compounds.Evaluation of their anti MDR activity. Eur. J. Med. Chem., 2003, 38(1), 19-26.
[http://dx.doi.org/10.1016/S0223-5234(02)01422-8] [PMID: 12593913]
[125]
Ngadi, L.; Galy, A.M.; Galy, J.P.; Barbe, J.; Crémieux, A.; Chevalier, J.; Sharples, D. Some new 1-nitro acridine derivatives as antimicrobial agents. Eur. J. Med. Chem., 1990, 25(1), 67-70.
[http://dx.doi.org/10.1016/0223-5234(90)90166-Z]
[126]
Bossert, F.; Vater, W. 1,4-Dihydropyridines-A basis for developing new drugs. Med. Res. Rev., 1989, 9(3), 291-324.
[http://dx.doi.org/10.1002/med.2610090304] [PMID: 2666803]
[127]
Berkan, Ö. Saraç, B.; Şimşek, R.; Yıldırım, Ş.; Sarıoğlu, Y.; Şafak, C. Vasorelaxing properties of some phenylacridine type potassium channel openers in isolated rabbit thoracic arteries. Eur. J. Med. Chem., 2002, 37(6), 519-523.
[http://dx.doi.org/10.1016/S0223-5234(02)01374-0] [PMID: 12204478]
[128]
Chate, A.V.; Rathod, U.B.; Kshirsagar, J.S.; Gaikwad, P.A.; Mane, K.D.; Mahajan, P.S.; Nikam, M.D.; Gill, C.H. Ultrasound assisted multicomponent reactions: A green method for the synthesis of N-substituted 1,8-dioxo-decahydroacridines using β-cyclodextrin as a supramolecular reusable catalyst in water. Chin. J. Catal., 2016, 37(1), 146-152.
[http://dx.doi.org/10.1016/S1872-2067(15)61005-1]
[129]
Waterson, A.G.; Stevens, K.L.; Reno, M.J.; Zhang, Y.M.; Boros, E.E.; Bouvier, F.; Rastagar, A.; Uehling, D.E.; Dickerson, S.H.; Reep, B.; McDonald, O.B.; Wood, E.R.; Rusnak, D.W.; Alligood, K.J.; Rudolph, S.K. Alkynyl pyrimidines as dual EGFR/ErbB2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(9), 2419-2422.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.111] [PMID: 16483772]
[130]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents. Bioorg. Med. Chem., 2005, 13(15), 4645-4650.
[http://dx.doi.org/10.1016/j.bmc.2005.04.061] [PMID: 15896965]
[131]
Rakhi, C.; Ramesh, K.; Darbem, M.P.; Branquinho, T.A.; de Oliveira, A.R.; Manjari, P.S.; Domingues, N.L.C. Novel multi-component syntheses of pyrimidines using β-CD in aqueous medium. Tetrahedron Lett., 2016, 57(15), 1656-1660.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.106]
[132]
Robinson, C.P.; Robinson, K.A.; Castañer, J. Azimilide hydrochloride. Class III antiarrhythmic agent. Drugs Future, 1997, 22(6), 601-607.
[http://dx.doi.org/10.1358/dof.1997.022.06.410775]
[133]
Schwarz, M.K.; Tumelty, D.; Gallop, M.A. Solid-phase synthesis of 3,5-disubstituted-2,3-dihydro-1,5-benzothiazepin-4(5H)-ones. J. Org. Chem., 1999, 64(7), 2219-2231.
[http://dx.doi.org/10.1021/jo981567p]
[134]
Castro, A.; Abasolo, M.I.; Gil, C.; Segarra, V.; Martinez, A. CoMFA of benzyl derivatives of 2,1,3-benzo and benzothieno[3,2-a]thiadiazine 2,2-dioxides: Clues for the design of phosphodiesterase 7 inhibitors. Eur. J. Med. Chem., 2001, 36(4), 333-338.
[http://dx.doi.org/10.1016/S0223-5234(01)01227-2] [PMID: 11461758]
[135]
Yamamoto, T.; Hori, M.; Watanabe, I.; Harada, K.; Ikeda, S.; Ohtaka, H. Quantitative structure-activity relationship study of N-(3-oxo-3,4-dihydro-2H-benzo[1,4]thiazine-6-carbonyl)guanidines as potent Na/H exchange inhibitors. Chem. Pharm. Bull., 2000, 48(6), 843-849.
[http://dx.doi.org/10.1248/cpb.48.843] [PMID: 10866146]
[136]
Yamamoto, T.; Watanabe, I.; Harada, K.; Ikeda, S. Benzo[1,4]thiazine derivatives and drugs comprising the same. WO1998013357A1, 1998.
[137]
Dudley, D.A.; Narasimhan, L.S.; Rapundalo, S.T.; Downing, D.M.; Edmunds, J.J.; Berryman, K.A. Benzoxazinoes/benzothiazinones as serine protease inhibitors. Chem. Abstr. US6509335B1, 1999.
[138]
Sankou, F.; Katai, H.; Horiuchi, Y.; Kamikawa, Y. Benzotiazine-3-one derivative. Chem. Abstr. JP2002128769A, 2002.
[139]
Sagir, H.; Rahila, R.; Rai, P.; Singh, P.K.; Siddiqui, I.R. ZnO nanoparticle–β-cyclodextrin: A recyclable heterogeneous catalyst for the synthesis of 3-aryl-4H-benzo[1,4]thiazin-2-amine in water. New J. Chem., 2016, 40(8), 6819-6824.
[http://dx.doi.org/10.1039/C5NJ03273C]
[140]
Wang, S.; Milne, G.W.A.; Yan, X.; Posey, I.J.; Nicklaus, M.C.; Graham, L.; Rice, W.G. Discovery of novel, non-peptide HIV-1 protease inhibitors by pharmacophore searching. J. Med. Chem., 1996, 39(10), 2047-2054.
[http://dx.doi.org/10.1021/jm950874+] [PMID: 8642563]
[141]
Veverka, M. Synthesis of some biologically active derivatives of 2-hydroxymethyl-5-hydroxy-4H-pyran-4-one. 2. Synthesis and biological properties of S-substituted-2-thiomethyl-5-O-acyl derivatives. Chem. Pap., 1992, 46(3), 206-210.
[142]
Wolf, P.A.; Westveer, W.M. The antimicrobial activity of several substituted pyrones. Arch. Biochem., 1950, 28(2), 201-206.
[PMID: 14777585]
[143]
Uher, M.; Konecny, V.; Rajniakova, O. Synthesis of 5-hydroxy-2-hydroxymethyl-4H-pyran-4-one derivatives with pesticide activity. Chem. Pap., 1994, 48, 282-284.
[144]
Koba, Y.; Feroza, B.; Fujio, Y.; Ueda, S. Preparation of Koji from corn hulls for alcoholic fermentation without cooking. J. Ferment. Technol., 1986, 64(2), 175-178.
[http://dx.doi.org/10.1016/0385-6380(86)90013-0]
[145]
Noh, J.M.; Kwak, S.Y.; Kim, D.H.; Lee, Y.S. Kojic acid-tripeptide amide as a new tyrosinase inhibitor. Biopolymers, 2007, 88(2), 300-307.
[http://dx.doi.org/10.1002/bip.20670] [PMID: 17211869]
[146]
Kataev, E.A.; Ramana Reddy, M.; Niranjan Reddy, G.; Reddy, V.H.; Suresh Reddy, C.; Subba Reddy, B.V. Supramolecular catalysis by β-cyclodextrin for the synthesis of kojic acid derivatives in water. New J. Chem., 2016, 40(2), 1693-1697.
[http://dx.doi.org/10.1039/C5NJ01902H]
[147]
Joshi, K.C.; Jain, S.K.; Jain, A.K. Fluorine containing bio-active heterocycles: Synthesis and biological activity of some fluorine containing triazino[5,6-b]indoles. Curr. Sci., 1982, 51(7), 346-348.
[148]
Omar, A.M.M.E.; Eshba, N.H.; Aboushleib, H.M. Synthesis, 13 C-NMR characterization and antimicrobial properties of a novel series of 3-(N-substituted thiocarbamoyl)hydrazino-1,2,4-triazino-[5,6-b]indole derivatives. J. Heterocycl. Chem., 1986, 23(6), 1731-1735.
[http://dx.doi.org/10.1002/jhet.5570230626]
[149]
Holla, B.S.; Udupa, K.V. Synthesis and antibacterial activity of nitrofurfuraldehyde as-triazino[5,6-b]indol-3-ylhydrazones. J. Indian Chem. Soc., 1988, 65(7), 524-525.
[150]
Abdel-Latif, F.F.; Shaker, R.M.; Mahgoub, S.A.; Badr, M.Z.A. Cyclization reactions of 3-hydrazino[1,2,4]triazino[5,6-b]indole. J. Heterocycl. Chem., 1989, 26(3), 769-772.
[http://dx.doi.org/10.1002/jhet.5570260348]
[151]
Shaban, M.A.E.; Nasr, A.Z.; Morgaan, A.E.A. Sterically controlled regiospecific heterocyclization of 3-hydrazino-5-methyl-1,2,4-triazino[5,6-b]indole to 10-methyl-1,2,4-triazolo[4′3′2,3]1,2,4-triazino[5,6-b]indoles. Farmaco, 1999, 54(11-12), 800-809.
[http://dx.doi.org/10.1016/S0014-827X(99)00107-X] [PMID: 10668182]
[152]
Kaminsky, D. Method for producing Antihypertensive activity. US3752891A, 1973.
[153]
Monge, A.; Palop, J.A.; Ramirez, C.; Fernandez-Alvarez, E. Nuevos antiagregantes con acción antihipertensiva. Nuevos Derivados de 1,2,4-Tnazino(5,6)-b)Indolyl compuestos relacionados. Lat. Am. J. Pharm., 1987, 6(3), 157-162.
[154]
Monge, A.; Palop, J.; Ramirez, C.; Font, M.; Fernandez-Alvarez, E. New 5H-1,2,4-triazino[5,6-b]indole and aminoindole derivatives. Synthesis and studies as inhibitors of blood platelet aggregation, anti-hypertensive agents and thromboxane synthetase inhibitors. Eur. J. Med. Chem., 1991, 26(2), 179-188.
[http://dx.doi.org/10.1016/0223-5234(91)90027-K]
[155]
Tomchin, A.B.; Ignateva, M.A.; Masyuta, G. Semicarbazones and thiosemicarbazones of heterocyclic series. 16. problem concerned with pharmacological activity of 1, 3, 4-triazacarbazol derivatives. Chem. Pharmaceut. J., 1972, 6(3), 23.
[156]
Ramesh, K.; Narayana Murthy, S.; Karnakar, K.; Nageswar, Y.V.D. A facile, aqueous phase green synthetic protocol for the synthesis of 5,9b-dihydro-1H-[1,2,4]triazino[5,6-b]indole-3-ols/5,9b-dihydro-1H-[1,2,4]triazino[5,6-b]ind-ole-3-thiols. Tetrahedron Lett., 2011, 52(37), 4734-4737.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.098]
[157]
Sekiguchi, A.; Nishina, A.; Kimura, H.; Fukumoto, R.; Kanoh, K.; Ishihara, H.; Koketsu, M. Superoxide anion-scavenging effect of 2-amino-1,3-selenazoles. Chem. Pharm. Bull., 2005, 53(11), 1439-1442.
[http://dx.doi.org/10.1248/cpb.53.1439] [PMID: 16272727]
[158]
Lewis, J.R.; Lewis, J.R.; Lewis, J.R. Miscellaneous alkaloids: Amaryllidaceae, Sceletium, muscarine, imidazole, oxazole, peptide and other miscellaneous alkaloids. Nat. Prod. Rep., 1999, 16(3), 389-416.
[http://dx.doi.org/10.1039/a802500b]
[159]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.C.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[160]
Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: A novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33(1), 311-317.
[http://dx.doi.org/10.1021/jm00163a051] [PMID: 1967314]
[161]
Haviv, F.; Ratajczyk, J.D.; DeNet, R.W.; Kerdesky, F.A.; Walters, R.L.; Schmidt, S.P.; Holms, J.H.; Young, P.R.; Carter, G.W. 3-[1-(2-Benzoxazolyl)hydrazino]propanenitrile derivatives: Inhibitors of immune complex induced inflammation. J. Med. Chem., 1988, 31(9), 1719-1728.
[http://dx.doi.org/10.1021/jm00117a010] [PMID: 2970549]
[162]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N. -(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[163]
Tsuji, K.; Ishikawa, H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. Bioorg. Med. Chem. Lett., 1994, 4(13), 1601-1606.
[http://dx.doi.org/10.1016/S0960-894X(01)80574-6]
[164]
Bell, F.W.; Cantrell, A.S.; Hoegberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Noréen, R. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38(25), 4929-4936.
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[165]
Madhav, B.; Narayana Murthy, S.; Anil Kumar, B.S.P.; Ramesh, K.; Nageswar, Y.V.D. A tandem one-pot aqueous phase synthesis of thiazoles/selenazoles. Tetrahedron Lett., 2012, 53(30), 3835-3838.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.097]
[166]
Giannousis, P.P.; Bartlett, P.A. Phosphorus amino acid analogs as inhibitors of leucine aminopeptidase. J. Med. Chem., 1987, 30(9), 1603-1609.
[http://dx.doi.org/10.1021/jm00392a014] [PMID: 3625708]
[167]
Atherton, F.R.; Hassall, C.H.; Lambert, R.W. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. J. Med. Chem., 1986, 29(1), 29-40.
[http://dx.doi.org/10.1021/jm00151a005] [PMID: 3510298]
[168]
Allen, M.C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J.M. Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J. Med. Chem., 1989, 32(7), 1652-1661.
[http://dx.doi.org/10.1021/jm00127a041] [PMID: 2661820]
[169]
Hassall, C.H. Alafosfalin (Ro 03-7008, Alaphosphin). In: Modes and Mechanisms of Microbial Growth Inhibitors; Springer: Berlin, Heidelberg, 1983; pp. 1-11.
[170]
Kukhar, V.P.; Hudson, H.R. In Aminophosphonic and Aminophosphinic Acids; John Wiley & Sons: Chichester, 2000.
[171]
Kaboudin, B. Sorbiun, M. β-Cyclodextrin as an efficient catalyst for the one-pot synthesis of 1-aminophosphonic esters in water. Tetrahedron Lett., 2007, 48(51), 9015-9017.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.082]
[172]
Zhang, Q.; Huang, Y.Z.; Yang, J.H.; Ma, B.W.; Qu, G.R.; Guo, H.M. Synthesis of 9-oxiranyl-9H-purine derivatives in β-cyclodextrin cavity. Tetrahedron Lett., 2014, 55(6), 1203-1206.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.117]
[173]
Burke, D.E.; le Quesne, P.W. Biomimetic synthesis of the bis-indole alkaloid villalstonine. J. Chem. Soc. Chem. Commun., 1972, 11(11), 678.
[http://dx.doi.org/10.1039/c39720000678]
[174]
Breslow, R. Centenary Lecture. Biomimetic chemistry. Chem. Soc. Rev., 1972, 1(4), 553-580.
[http://dx.doi.org/10.1039/cs9720100553]
[175]
Leete, E. Biomimetic synthesis of nicotine. J. Chem. Soc. Chem. Commun., 1972, 19(19), 1091a.
[http://dx.doi.org/10.1039/c3972001091a]
[176]
Breslow, R. Biomimetic chemistry: Biology as an inspiration. J. Biol. Chem., 2009, 284(3), 1337-1342.
[http://dx.doi.org/10.1074/jbc.X800011200] [PMID: 18784073]
[177]
He, Q.; Cui, Y.; Li, J. Molecular assembly and application of biomimetic microcapsules. Chem. Soc. Rev., 2009, 38(8), 2292-2303.
[http://dx.doi.org/10.1039/b816475b] [PMID: 19623351]
[178]
Nicolaou, K.C.; Montagnon, T.; Snyder, S.A. Tandem reactions, cascade sequences, and biomimetic strategies in total synthesis. Chem. Commun., 2003, 5(5), 551-564.
[http://dx.doi.org/10.1039/b209440c] [PMID: 12669826]
[179]
Liu, L.; Zhou, W.; Chruma, J.; Breslow, R. Transamination reactions with multiple turnovers catalyzed by hydrophobic pyridoxamine cofactors in the presence of polyethylenimine polymers. J. Am. Chem. Soc., 2004, 126(26), 8136-8137.
[http://dx.doi.org/10.1021/ja048671a] [PMID: 15225053]
[180]
Watkins, W.M.; Spencer, H.C.; Kariuki, D.M.; Sixsmith, D.G.; Boriga, D.A.; Kipingor, T.; Koech, D.K. Effectiveness of amodiaquine as treatment for chloroquine-resistant Plasmodium falciparum infections in Kenya. Lancet, 1984, 323(8373), 357-359.
[http://dx.doi.org/10.1016/S0140-6736(84)90410-0] [PMID: 6141423]
[181]
Delarue, S.; Girault, S.; Dali Ali, F.; Maes, L.; Grellier, P.; Sergheraert, C. “One-pot” synthesis and antimalarial activity of formamidine derivatives of 4-anilinoquinoline. Chem. Pharm. Bull., 2001, 49(8), 933-937.
[http://dx.doi.org/10.1248/cpb.49.933] [PMID: 11515580]
[182]
Clement, B. Reduction of N-hydroxylated compounds: Amidoximes (N-hydroxyamidines) as pro-drugs of amidines. Drug Metab. Rev., 2002, 34(3), 565-579.
[http://dx.doi.org/10.1081/DMR-120005643] [PMID: 12214667]
[183]
Patil, D.R.; Dalal, D.S. Biomimetic approach for the synthesis of N,N′-diarylsubstituted formamidines catalyzed by β-cyclodextrin in water. Chin. Chem. Lett., 2012, 23(10), 1125-1128.
[http://dx.doi.org/10.1016/j.cclet.2012.08.003]
[184]
Londhe, B.S.; Pratap, U.R.; Mali, J.R.; Mane, R.A. Synthesis of 2-arylbenzothiazoles catalyzed by biomimetic catalyst, β-cyclodextrin. Bull. Korean Chem. Soc., 2010, 31(8), 2329-2332.
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2329]
[185]
Londhe, B.S.; Padwal, S.L.; Bhosale, M.R.; Mane, R.A. Novel synthesis of 1,4-benzothiazines in water accelerated by β-cyclodextrin. J. Indian Chem. Soc., 2016, 13(3), 443-447.
[http://dx.doi.org/10.1007/s13738-015-0752-3]
[186]
Narayana Murthy, S.; Madhav, B.; Vijay Kumar, A.; Rama Rao, K.; Nageswar, Y.V.D. Facile and efficient synthesis of 3,4,5-substituted furan-2(5H)-ones by using β-cyclodextrin as reusable catalyst. Tetrahedron, 2009, 65(27), 5251-5256.
[http://dx.doi.org/10.1016/j.tet.2009.04.081]
[187]
Kokkirala, S. Sabbavarapu, N.M.; Yadavalli, V.D.N. β-cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water. Eur. J. Chem., 2011, 2(2), 272-275.
[http://dx.doi.org/10.5155/eurjchem.2.2.272-275.359]
[188]
Martínez-Viturro, C.M.; Domínguez, D. Synthesis of the antitumoural agent batracylin and related isoindolo[1,2-b]quinazolin-12(10H)-ones. Tetrahedron Lett., 2007, 48(6), 1023-1026.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.168]
[189]
Dzierzbicka, K.; Trzonkowski, P.; Sewerynek, P.; Myśliwski, A. Synthesis and cytotoxic activity of conjugates of muramyl and normuramyl dipeptides with batracylin derivatives. J. Med. Chem., 2003, 46(6), 978-986.
[http://dx.doi.org/10.1021/jm021067v] [PMID: 12620074]
[190]
Yu, S.T.; Chen, T.M.; Tseng, S.Y.; Chen, Y.H. Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochem. Biophys. Res. Commun., 2007, 358(1), 79-84.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.107] [PMID: 17482571]
[191]
Takase, Y.; Saeki, T.; Watanabe, N.; Adachi, H.; Souda, S.; Saito, I. Cyclic GMP phosphodiesterase inhibitors. 2. Requirement of 6-substitution of quinazoline derivatives for potent and selective inhibitory activity. J. Med. Chem., 1994, 37(13), 2106-2111.
[http://dx.doi.org/10.1021/jm00039a024] [PMID: 8027992]
[192]
Mitscher, L.A.; Baker, W. Tuberculosis: A search for novel therapy starting with natural products. Med. Res. Rev., 1998, 18(6), 363-374.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199811)18:6<363:AID-MED1>3.0.CO;2-I] [PMID: 9828037]
[193]
Bhattacharjee, A.; Skanchy, D.J.; Jennings, B.; Hudson, T.H.; Brendle, J.J.; Werbovetz, K.A. Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures. Bioorg. Med. Chem., 2002, 10(6), 1979-1989.
[http://dx.doi.org/10.1016/S0968-0896(02)00013-5] [PMID: 11937358]
[194]
Baker, W.R.; Mitscher, L.A. Indolo [2,1-biquinazoline-6,12-dione antibacterial compounds and methods of use thereof. Patent US5441955A, 1995.
[195]
Kumar, A. Tripathi, V.D.; Kumar, P. β-cyclodextrin catalysed synthesis of tryptanthrin in water. Green Chem., 2011, 13(1), 51-54.
[http://dx.doi.org/10.1039/C0GC00523A]
[196]
Bossert, F.; Meyer, H.; Wehinger, E. 4-Aryldihydropyridines, a new class of highly active calcium antagonists. Angew. Chem. Int. Ed. Engl., 1981, 20(9), 762-769.
[http://dx.doi.org/10.1002/anie.198107621]
[197]
Loev, B.; Goodman, M.M.; Snader, K.M.; Tedeschi, R.; Macko, E. Hantzsch-type dihydropyridine hypotensive agents. J. Med. Chem., 1974, 17(9), 956-965.
[http://dx.doi.org/10.1021/jm00255a010] [PMID: 4859592]
[198]
Cosconati, S.; Marinelli, L.; Lavecchia, A.; Novellino, E. Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: Model construction and docking calculations. J. Med. Chem., 2007, 50(7), 1504-1513.
[http://dx.doi.org/10.1021/jm061245a] [PMID: 17335186]
[199]
Sridhar, R.; Perumal, P.T. A new protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid: Synthesis of novel 4-(3-carboxyl-1H-pyrazol-4-yl)-1,4-dihydropyridines. Tetrahedron, 2005, 61(9), 2465-2470.
[http://dx.doi.org/10.1016/j.tet.2005.01.008]
[200]
Moseley, J.D. Alternative esters in the synthesis of ZD0947. Tetrahedron Lett., 2005, 46(18), 3179-3181.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.057]
[201]
Patil, D.R.; Dalal, D.S. One-Pot, Solvent free synthesis of Hantzsch 1,4-Dihydropyridines using β-cyclodextrin as a supramolecular catalyst. Lett. Org. Chem., 2011, 8(7), 477-483.
[http://dx.doi.org/10.2174/157017811796504891]
[202]
Croig, D.; Trost, B.M.; Fleming, I.; Ley, S.V. Comprehensive Organic Synthesis; Pergamon Press: Oxford, United Kingdom, , 1991; p. 7, pp. 689-702.
[203]
Gregory, B.J.; Moodie, R.B.; Schofield, K. Kinetics and mechanism of the Beckmann rearrangement of acetophenone oximes in sulphuric acid. J. Chem. Soc. B, 1970, 2, 338-346.
[http://dx.doi.org/10.1039/j29700000338]
[204]
Guy, A.; Guetté, J-P.; Lang, G. Utilization of polyphosphoric acid in the presence of a co-solvent. Synthesis, 1980, 1980(3), 222-223.
[http://dx.doi.org/10.1055/s-1980-28974]
[205]
Eaton, P.E.; Carlson, G.R.; Lee, J.T. Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. J. Org. Chem., 1973, 38(23), 4071-4073.
[http://dx.doi.org/10.1021/jo00987a028]
[206]
Patil, D.; Dalal, D. SOCl2/β-cyclodextrin: A new and efficient catalytic system for Beckmann rearrangement and dehydration of aldoximes under aqueous condition. Synth. Commun., 2013, 43(1), 118-128.
[http://dx.doi.org/10.1080/00397911.2011.592747]
[207]
Ragno, R.; Marshall, G.R.; Di Santo, R.; Costi, R.; Massa, S.; Rompei, R.; Artico, M. Antimycobacterial pyrroles: Synthesis, anti-Mycobacterium tuberculosis activity and QSAR studies. Bioorg. Med. Chem., 2000, 8(6), 1423-1432.
[http://dx.doi.org/10.1016/S0968-0896(00)00061-4] [PMID: 10896119]
[208]
Pacorel, B.; Leung, S.C.; Stachulski, A.V.; Davies, J.; Vivas, L.; Lander, H.; Ward, S.A.; Kaiser, M.; Brun, R.; O’Neill, P.M. Modular synthesis and in vitro and in vivo antimalarial assessment of C-10 pyrrole mannich base derivatives of artemisinin. J. Med. Chem., 2010, 53(2), 633-640.
[http://dx.doi.org/10.1021/jm901216v] [PMID: 19957999]
[209]
Watanabe, T.; Umezawa, Y.; Takahashi, Y.; Akamatsu, Y. Novel pyrrole- and 1,2,3-triazole-based 2,3-oxidosqualene cyclase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(19), 5807-5810.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.131] [PMID: 20728352]
[210]
Duan, F.J.; Ding, J.C.; Deng, H.J.; Chen, D.B.; Chen, J.X.; Liu, M.C.; Wu, H.Y. An approach to the Paal-Knorr pyrroles synthesis in the presence of β-cyclodextrin in aqueous media. Chin. Chem. Lett., 2013, 24(9), 793-796.
[http://dx.doi.org/10.1016/j.cclet.2013.05.012]
[211]
Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K. The direct and enantioselective, one-pot, three-component, cross-mannich reaction of aldehydes. Angew. Chem. Int. Ed., 2003, 42(31), 3677-3680.
[http://dx.doi.org/10.1002/anie.200351813] [PMID: 12916046]
[212]
Denmark, S.; Nicaise, O.J-C. Comprehensive Asymmetric Catalysis; Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999, p. 93.
[213]
Arend, M.; Westermann, B.; Risch, N. Modern variants of the Mannich reaction. Angew. Chem. Int. Ed., 1998, 37(8), 1044-1070.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1044:AID-ANIE1044>3.0.CO;2-E] [PMID: 29711029]
[214]
Pitchumani, K. Sukumari, S.; Azath, I. β-cyclodextrin-mediated acetic acid catalyzed diastereoselective mannich reaction in water. Synlett, 2012, 23(16), 2328-2332.
[http://dx.doi.org/10.1055/s-0032-1317156]
[215]
Biginelli, P. Ueber aldehyduramide des acetessigäthers. Ber. Dtsch. Chem. Ges., 1891, 24(1), 1317-1319.
[http://dx.doi.org/10.1002/cber.189102401228]
[216]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[217]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type - a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[218]
Kappe, C.O.; Shishkin, O.V.; Uray, G.; Verdino, P. X-ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 2000, 56(13), 1859-1862.
[http://dx.doi.org/10.1016/S0040-4020(00)00116-2]
[219]
Atwal, K.S.; Rovnyak, G.C.; Kimball, S.D.; Floyd, D.M.; Moreland, S.; Swanson, B.N.; Gougoutas, J.Z.; Schwartz, J.; Smillie, K.M.; Malley, M.F. Dihydropyrimidine calcium channel blockers. II. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J. Med. Chem., 1990, 33(9), 2629-2635.
[http://dx.doi.org/10.1021/jm00171a044] [PMID: 2391701]
[220]
Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222]
[221]
Liberto, N.A.; de Paiva Silva, S.; de Fátima, Â.; Fernandes, S.A. β-Cyclodextrin-assisted synthesis of Biginelli adducts under solvent-free conditions. Tetrahedron, 2013, 69(38), 8245-8249.
[http://dx.doi.org/10.1016/j.tet.2013.07.024]
[222]
Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford University Press, 2008.
[223]
Wexler, R.R.; Greenlee, W.J.; Irvin, J.D.; Goldberg, M.R.; Prendergast, K.; Smith, R.D.; Timmermans, P.B.M.W.M. Nonpeptide angiotensin II receptor antagonists: The next generation in antihypertensive therapy. J. Med. Chem., 1996, 39(3), 625-656.
[http://dx.doi.org/10.1021/jm9504722] [PMID: 8576904]
[224]
Schmidt, B.; Schieffer, B. Angiotensin II AT1 receptor antagonists. Clinical implications of active metabolites. J. Med. Chem., 2003, 46(12), 2261-2270.
[http://dx.doi.org/10.1021/jm0204237] [PMID: 12773029]
[225]
Patil, D.R. Wagh, Y.B.; Ingole, P.G.; Singh, K.; Dalal, D.S. β-cyclodextrin-mediated highly efficient [2+3] cycloaddition reactions for the synthesis of 5-substituted 1H-tetrazoles. New J. Chem., 2013, 37(10), 3261-3266.
[http://dx.doi.org/10.1039/c3nj00569k]
[226]
Song, J.; Zhang, Z.; Han, B.; Hu, S.; Li, W.; Xie, Y. Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin. Green Chem., 2008, 10(12), 1337-1341.
[http://dx.doi.org/10.1039/b815105a]
[227]
Bandini, M.; Umani-Ronchi, A.; Melloni, A.; Tommasi, S. A journey across recent advances in catalytic and stereoselective alkylation of indoles. Synlett, 2005, 2005(8), 1199-1222.
[http://dx.doi.org/10.1055/s-2005-865210]
[228]
Bandini, M.; Fagioli, M.; Umani-Ronchi, A. Solid acid-catalysed michael-type conjugate addition of indoles to electron-poor C-C bonds: Towards high atom economical semicontinuous processes. Adv. Synth. Catal., 2004, 346(5), 545-548.
[http://dx.doi.org/10.1002/adsc.200303213]
[229]
Harada, H.; Hirokawa, Y.; Suzuki, K.; Hiyama, Y.; Oue, M.; Kawashima, H.; Kato, H.; Yoshida, N.; Furutani, Y.; Kato, S. Discovery of a novel and potent human and rat β3-adrenergic receptor agonist, [3-[(2R)-[[(2R)-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1H-indol-7-yloxy]acetic acid. Chem. Pharm. Bull., 2005, 53(2), 184-198.
[http://dx.doi.org/10.1248/cpb.53.184] [PMID: 15684518]
[230]
Noland, W.E.; Christensen, G.M.; Sauer, G.L.; Dutton, G.G.S. The reaction of nitroolefins with indole. J. Am. Chem. Soc., 1955, 77(2), 456-457.
[http://dx.doi.org/10.1021/ja01607a070]
[231]
Sundberg, R.J. The Chemistry of Indoles; Academic: NewYork, 1996.
[232]
Garden, S.J.; Torres, J.; Ferreira, A.A.; Silva, R.B.; Pinto, A.C. A modified Sandmeyer methodology and the synthesis of (±)-convolutamydine A. Tetrahedron Lett., 1997, 38(9), 1501-1504.
[http://dx.doi.org/10.1016/S0040-4039(97)00140-8]
[233]
Pajouhesh, H.; Parson, R.; Popp, F.D. Potential anticonvulsants VI: Condensation of isatins with cyclohexanone and other cyclic ketones. J. Pharm. Sci., 1983, 72(3), 318-321.
[http://dx.doi.org/10.1002/jps.2600720330] [PMID: 6842387]
[234]
Garrido, F.; Ibanez, J.; Gonalons, E.; Giraldez, A. Synthesis and laxative properties of some derivative esters of 3, 3-bis-(4-hydroxyphenyl)-2-indolinone. Eur. J. Med. Chem., 1975, 10, 143-146.
[235]
Tokunaga, T.; Hume, W.E.; Nagamine, J.; Kawamura, T.; Taiji, M.; Nagata, R. Structure–activity relationships of the oxindole growth hormone secretagogues. Bioorg. Med. Chem. Lett., 2005, 15(7), 1789-1792.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.042] [PMID: 15780607]
[236]
Yong, S.R.; Ung, A.T.; Pyne, S.G.; Skelton, B.W.; White, A.H. Synthesis of novel 3′-spirocyclic-oxindole derivatives and assessment of their cytostatic activities. Tetrahedron, 2007, 63(25), 5579-5586.
[http://dx.doi.org/10.1016/j.tet.2007.04.028]
[237]
Kumar, V.P.; Reddy, V.P.; Sridhar, R.; Srinivas, B.; Narender, M.; Rao, K.R. Supramolecular synthesis of 3-indolyl-3-hydroxy oxindoles under neutral conditions in water. J. Org. Chem., 2008, 73(4), 1646-1648.
[http://dx.doi.org/10.1021/jo702496s] [PMID: 18211093]
[238]
Kumar, V.P.; Sridhar, R.; Srinivas, B.; Narender, M.; Rao, K.R. Friedel–Crafts alkylation of indoles with nitroolefins in the presence of β-cyclodextrin in water under neutral conditions. Can. J. Chem., 2008, 86(9), 907-911.
[http://dx.doi.org/10.1139/v08-118]
[239]
Shin, J.A.; Lim, Y.G.; Lee, K.H. Copper-catalyzed azide-alkyne cycloaddition reaction in water using cyclodextrin as a phase transfer catalyst. J. Org. Chem., 2012, 77(8), 4117-4122.
[http://dx.doi.org/10.1021/jo3000095] [PMID: 22448725]
[240]
Karnakar, K.; Ramesh, K.; Narayana Murthy, S.; Venkata Durga Nageswar, Y. Stereoselective synthesis of (Z)- and (E)-Allyl Aryl sulfides and selenides from Baylis-Hillman acetates under neutral conditions using β-cyclodextrin in water. Helv. Chim. Acta, 2013, 96(12), 2276-2281.
[http://dx.doi.org/10.1002/hlca.201300067]
[241]
Xue, C.; Palaniappan, K.; Arumugam, G.; Hackney, S.A.; Liu, J.; Liu, H. Sonogashira reactions catalyzed by water-soluble, β-cyclodextrin-capped palladium nanoparticles. Catal. Lett., 2007, 116(3-4), 94-100.
[http://dx.doi.org/10.1007/s10562-007-9108-7]
[242]
Davies, H.M.L.; Du Bois, J.; Yu, J.Q. C-H Functionalization in organic synthesis. Chem. Soc. Rev., 2011, 40(4), 1855-1856.
[http://dx.doi.org/10.1039/c1cs90010b] [PMID: 21390392]
[243]
McMurray, L.; O’Hara, F.; Gaunt, M.J. Recent developments in natural product synthesis using metal-catalysed C-H bond functionalisation. Chem. Soc. Rev., 2011, 40(4), 1885-1898.
[http://dx.doi.org/10.1039/c1cs15013h] [PMID: 21390391]
[244]
Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem., 2006, 4(12), 2337-2347.
[http://dx.doi.org/10.1039/b602413k] [PMID: 16763676]
[245]
Kumar, A. Dutt Shukla, R. β-Cyclodextrin catalysed C–C bond formation via C(sp3)–H functionalization of 2-methyl azaarenes with diones in aqueous medium. Green Chem., 2015, 17(2), 848-851.
[http://dx.doi.org/10.1039/C4GC02287D]
[246]
Kumar, S. Konduru, N.K.; Verma, N.; Ahmed, N. β-cyclodextrin in water: Highly versatile and green approach for biomimetic regioselective ring opening of chalcone epoxides with nitrogen heterocycles. Synth. Commun., 2015, 45(22), 2555-2566.
[http://dx.doi.org/10.1080/00397911.2015.1093142]
[247]
Rauf, A.; Sharma, S.; Gangal, S. Microwave assisted efficient one-pot synthesis of 3,5,6-trisubstituted-1,2,4-triazines from fatty acid hydrazides under solvent-free conditions and their antimicrobial activity. ARKIVOC, 2007, 2007(16), 137-147.
[http://dx.doi.org/10.3998/ark.5550190.0008.g15]
[248]
Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Adv., 2020, 10(24), 14170-14197.
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[249]
Avvadukkam, J.; Badiadka, N.; Kunhanna, S.B.; Kumar, M.S. A facile synthesis of pyrano[2,3-d:6,5-d ′]dipyrimidines via microwave-assisted M ulticomponent reactions catalyzed by β-cyclodextrin. J. Heterocycl. Chem., 2021, 58(3), 724-736.
[http://dx.doi.org/10.1002/jhet.4207]
[250]
Datta, K.; Mitra, B.; Sharma, B.S.; Ghosh, P. One-pot three-component solvent-free tandem annulations for synthesis of tetrazolo[1,2-a]pyrimidine and [1,2,4]triazolo[1,5-a]pyrimidine. ChemistrySelect, 2022, 7(7), e202103602.
[http://dx.doi.org/10.1002/slct.202103602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy