Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Chiral Heterocycles from Asymmetric Cascade Palladium Catalysis

Author(s): Hélène Pellissier*

Volume 27, Issue 2, 2023

Published on: 17 April, 2023

Page: [71 - 92] Pages: 22

DOI: 10.2174/1385272827666230330084552

Price: $65

conference banner
Abstract

This review updates the field of asymmetric cascade palladium catalysis applied to the synthesis of chiral heterocycles since 2019. It illustrates how much a diversity of chiral palladium catalysts promote unprecedented asymmetric domino reactions of many types, allowing direct access to a wide variety of complex and densely functionalized chiral heterocyclic molecules.

Keywords: Palladium, heterocycles, cascade reactions, domino reactions, asymmetric metal catalysis, chirality.

« Previous
Graphical Abstract
[1]
(a) Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56(23), 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046];
(b) Nelson, D.I.; Cox, M.M. Lehninger: Principles of Biochemistry, 7th ed; W. H. Freeman: New York, 2017. ;
(c) Faisca Phillips, A.M.M.M. Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; Wiley: Hoboken, 2021, Vol. 1 and 2, .
[2]
(a) Noyori, R. Asymmetric Catalysts in Organic Synthesis; Wiley-VCH: New-York, 1994. ;
(b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 1998, Vol. I and II, .
[http://dx.doi.org/10.1002/9783527619399];
(c) Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999. ;
(d) Ojima, I. Catalytic Asymmetric Synthesis; Wiley Online Library, 2000.
[http://dx.doi.org/10.1002/0471721506];
(e) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, 2002. ;
(f) de Meijere, A.; von Zezschwitz, P.; Nüske, H.; Stulgies, B. New cascade and multiple cross-coupling reactions for the efficient construction of complex molecules. J. Organomet. Chem., 2002, 653(1-2), 129-140.
[http://dx.doi.org/10.1016/S0022-328X(02)01168-3];
(g) Beller, M.; Bolm, C. Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004. ;
(h) Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747];
(i) Ramón, D.J.; Yus, M. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath. Chem. Rev., 2006, 106(6), 2126-2208.
[http://dx.doi.org/10.1021/cr040698p] [PMID: 16771446];
(j) Pellissier, H.; Clavier, H. Cobalt-catalyzed selective hydrogenation of nitriles to secondary imines. Chem. Rev., 2014, 114, 2775-2823.
[http://dx.doi.org/10.1021/cr4004055] [PMID: 24428605];
(k) Pellissier, H. Recent advances in enantioselective vanadiumcatalyzed transformations. Coord. Chem. Rev., 2015, 284, 93-110.
[http://dx.doi.org/10.1016/j.ccr.2014.09.014];
(l) Pellissier, H. Enantioselective Silver-catalyzed transformations. Chem. Rev., 2016, 116(23), 14868-14917.
[http://dx.doi.org/10.1021/acs.chemrev.6b00639] [PMID: 27960274];
(m) Pellissier, H. Enantioselective magnesium-catalyzed transformations. Org. Biomol. Chem., 2017, 15(22), 4750-4782.
[http://dx.doi.org/10.1039/C7OB00903H] [PMID: 28513750];
(n) Pellissier, H. Recent developments in enantioselective cobalt-catalyzed transformations. Coord. Chem. Rev., 2018, 360, 122-168.
[http://dx.doi.org/10.1016/j.ccr.2018.01.013];
(o) Pellissier, H. Recent developments in enantioselective vanadium-catalyzed transformations. Coord. Chem. Rev., 2020, 418, 213395.
[http://dx.doi.org/10.1016/j.ccr.2020.213395];
(p) Pellissier, H. Enantioselective indium-catalyzed transformations. Synthesis, 2021, 53(8), 1379-1395.
[http://dx.doi.org/10.1055/a-1348-9122]
[3]
(a) Tietze, L.F.; Beifuss, U. Sequential transformations in organic chemistry: A synthetic strategy with a future. Angew. Chem. Int. Ed. Engl., 1993, 32(2), 131-163.
[http://dx.doi.org/10.1002/anie.199301313];
(b) Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746];
(c) Parsons, P.J.; Penkett, C.S.; Shell, A.J. Tandem reactions in organic synthesis: novel strategies for natural product elaboration and the development of new synthetic methodology. Chem. Rev., 1996, 96(1), 195-206.
[http://dx.doi.org/10.1021/cr950023+] [PMID: 11848750];
(d) Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349];
(e) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118];
(f) Tietze, L.F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609925];
(g) Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron, 2006, 62(10), 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041];
(h) Pellissier, H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron, 2006, 62(8), 1619-1665.
[http://dx.doi.org/10.1016/j.tet.2005.10.040];
(i) Enders, D.; Grondal, C.; Hüttl, M.R.M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed., 2007, 46(10), 1570-1581.
[http://dx.doi.org/10.1002/anie.200603129] [PMID: 17225236];
(j) Guillena, G.; Ramón, D.J.; Yus, M. Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron Asymmetry, 2007, 18(6), 693-700.
[http://dx.doi.org/10.1016/j.tetasy.2007.03.002];
(k) Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390];
(l) Orru, R.V.A.; Ruijter, E. Synthesis of Heterocycles via Multicomponent Reactions, Topics in Heterocyclic Chemistry; Springer: Berlin, 2010, Vol. I and II, . ;
(m) Pellissier, H. Recent developments in asymmetric organocatalytic domino reactions. Adv. Synth. Catal., 2012, 354(2-3), 237-294.
[http://dx.doi.org/10.1002/adsc.201100714];
(n) Clavier, H.; Pellissier, H. Recent developments in enantioselective metalcatalyzed domino reactions. Adv. Synth. Catal., 2012, 354(18), 3347-3403.
[http://dx.doi.org/10.1002/adsc.201200254];
(o) Pellissier, H. Stereocontrolled domino reactions. Chem. Rev., 2013, 113(1), 442-524.
[http://dx.doi.org/10.1021/cr300271k] [PMID: 23157479];
(p) Pellissier, H. Asymmetric Domino Reactions; Royal Society of Chemistry: Cambridge, 2013.
[http://dx.doi.org/10.1039/9781849737104];
(q) Tietze, L.F. Domino Reactions - Concepts for Efficient Organic Synthesis; Wiley-VCH: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527671304];
(r) Zhu, J.; Wang, Q.; Wang, M. Multicomponent Reactions in Organic Synthesis; Wiley: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527678174];
(s) Herrera, R.P.; Marques-Lopez, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; Wiley: Weinheim, 2015. ;
(t) Pellissier, H. Recent developments in enantioselective metalcatalyzed domino reactions. Adv. Synth. Catal., 2016, 358(14), 2194-2259.
[http://dx.doi.org/10.1002/adsc.201600462];
(u) Snyder, S.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis; Thieme Verlag: Stuttgart, 2016, Vol. 1-2, . ;
(v) Pellissier, H. Green copper catalysis in enantioselective domino reactions. Curr. Org. Chem., 2018, 22, 2670-2697.;
(w) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361(8), 1733-1755.
[http://dx.doi.org/10.1002/adsc.201801371];
(x) Pellissier, H. Asymmetric Metal Catalysis in Enantioselective Domino Reactions; Wiley: Weinheim, 2019.
[http://dx.doi.org/10.1002/9783527822539];
(y) Pellissier, H. Syntheses of natural and biologically relevant products through asymmetric metal-catalyzed domino reactions. A Review. Org. Prep. Proced. Int., 2019, 51(4), 311-344.
[http://dx.doi.org/10.1080/00304948.2019.1590681];
(z) Shu, T.; Cossy, J. Asymmetric desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metal catalysis. Chem. Soc. Rev., 2021, 50(1), 658-666.
[http://dx.doi.org/10.1039/D0CS00666A] [PMID: 33283801];
(aa) Benaglia, M.; Greco, S.J.; Westphal, R.; Venturini Filho, E.; Medici, F. Stereoselective domino reactions in the synthesis of spiro compounds. Synthesis, 2022, 54(13), 2927-2975.
[http://dx.doi.org/10.1055/a-1771-0641]
[4]
(a) Kapdi, A.R.; Maiti, D. Strategies for Palladium-Catalyzed Non-Directed and Directed C−H Bond Functionalization; Elsevier: Chennai, India, 2017. ;
(b) Wang, J.; Dong, G. Palladium/Norbornene cooperative catalysis. Chem. Rev., 2019, 119(12), 7478-7528.
[http://dx.doi.org/10.1021/acs.chemrev.9b00079] [PMID: 31021606]
[5]
(a) Poli, G.; Giambastiani, G.; Heumann, A. Palladium in organic synthesis: fundamental transformations and domino processes. Tetrahedron, 2000, 56(33), 5959-5989.
[http://dx.doi.org/10.1016/S0040-4020(00)00438-5];
(b) Suffert, J.; Blouin, S.; Blond, G.; Donnard, M.; Gulea, M. Cyclocarbopalladation as a key step in cascade reactions: recent developments. Synthesis, 2017, 49(8), 1767-1784.
[http://dx.doi.org/10.1055/s-0036-1588708];
(c) Tsukano, C. Palladium(0)-Catalyzed Benzylic Csp3–H functionalization for the concise synthesis of heterocycles and its applications. Chem. Pharm. Bull., 2017, 65(5), 409-425.
[http://dx.doi.org/10.1248/cpb.c16-00969] [PMID: 28458363];
(d) Zhang, D.; Liu, J.; Córdova, A.; Liao, W.W. Recent developments in palladium-catalyzed oxidative cascade carbocyclization. ACS Catal., 2017, 7(10), 7051-7063.
[http://dx.doi.org/10.1021/acscatal.7b02438];
(e) Mehta, V.P.; García-López, J.A. σ-Alkyl-PdII Species for remote C−H functionalization. ChemCatChem, 2017, 9(7), 1149-1156.
[http://dx.doi.org/10.1002/cctc.201601624];
(f) Garlets, Z.J.; White, D.R.; Wolfe, J.P. Recent Developments in Pd0‐catalyzed alkene‐carboheterofunctionalization reactions. Asian J. Org. Chem., 2017, 6(6), 636-653.
[http://dx.doi.org/10.1002/ajoc.201600577] [PMID: 29130026];
(g) Delayre, B.; Wang, Q.; Zhu, J. Natural product synthesis enabled by domino processes incorporating a 1,2-rearrangement step. Synthesis, 2018, 50, 700-710.
[6]
(a) Yu, J-Q.; Mei, T-S.; Kou, L.; Ma, S.; Engle, K. Heterocycle Formation via Palladium-Catalyzed C-H Functionalization. Synthesis, 2012, 44(12), 1778-1791.
[http://dx.doi.org/10.1055/s-0031-1289766] [PMID: 27397938];
(b) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Recent advances in directed C–H functionalizations using monodentate nitrogen-based directing groups. Org. Chem. Front., 2014, 1(7), 843-895.
[http://dx.doi.org/10.1039/C4QO00068D];
(c) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front., 2015, 2(9), 1107-1295.
[http://dx.doi.org/10.1039/C5QO00004A];
(d) Roudesly, F.; Oble, J.; Poli, G. Metal-catalyzed C H activation/functionalization: The fundamentals. J. Mol. Catal. Chem., 2017, 426, 275-296.
[http://dx.doi.org/10.1016/j.molcata.2016.06.020];
(e) He, J.; Wasa, M.; Chan, K.S.L.; Shao, Q.; Yu, J.Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev., 2017, 117(13), 8754-8786.
[http://dx.doi.org/10.1021/acs.chemrev.6b00622] [PMID: 28697604];
(f) Newton, C.G.; Wang, S.G.; Oliveira, C.C.; Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev., 2017, 117(13), 8908-8976.
[http://dx.doi.org/10.1021/acs.chemrev.6b00692] [PMID: 28212007];
(g) Dong, Z.; Ren, Z.; Thompson, S.J.; Xu, Y.; Dong, G. transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev., 2017, 117(13), 9333-9403.
[http://dx.doi.org/10.1021/acs.chemrev.6b00574] [PMID: 28125210];
(h) Karimov, R.R.; Hartwig, J.F. Transition-metal-catalyzed selective Functionalization of C(sp3)−H bonds in natural products. Angew. Chem. Int. Ed., 2018, 57(16), 4234-4241.
[http://dx.doi.org/10.1002/anie.201710330] [PMID: 29228463];
(i) Gensch, T.; James, M.J.; Dalton, T.; Glorius, F. Increasing catalyst efficiency in C−H activation catalysis. Angew. Chem. Int. Ed., 2018, 57(9), 2296-2306.
[http://dx.doi.org/10.1002/anie.201710377] [PMID: 29205745];
(j) Le Bras, J.; Muzart, J. C-O bonds from Pd-Catalyzed C(sp 3)-H reactions mediated by heteroatomic groups. Eur. J. Org. Chem., 2018, 2018(10), 1176-1203.
[http://dx.doi.org/10.1002/ejoc.201701446];
(k) Saint-Denis, T.G.; Zhu, R.Y.; Chen, G.; Wu, Q.F.; Yu, J.Q. Enantioselective C(sp 3)‒H bond activation by chiral transition metal catalysts. Science, 2018, 359(6377), eaao4798.
[http://dx.doi.org/10.1126/science.aao4798] [PMID: 29449462]
[7]
(a) Stille, J.K. Unexpected intermolecular Pd-catalyzed cross-coupling reaction employing heteroaromatic carboxylic acids as coupling partners. Angew. Chem. Int. Ed. Engl., 1986, 25, 508-524.
[http://dx.doi.org/10.1002/anie.198605081];
(b) Heck, R.F. Comprehensive Organic Synthesis; Trost, B.M.; Fleming, I., Eds.; Pergamon: Oxford, 1991, Vol. 4, p. 833.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00110-4];
(c) Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007];
(d) Hiyama, T. How I came across the silicon-based cross-coupling reaction. J. Organomet. Chem., 2002, 653(1-2), 58-61.
[http://dx.doi.org/10.1016/S0022-328X(02)01157-9];
(e) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross Coupling Reactions; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619535];
(f) Negishi, E-i.; Hu, Q.; Huang, Z.; Qian, M.; Wang, G. Palladium-catalyzed alkenylation by the negishi coupling. Aldrichim Acta, 2005, 38, 71-88.;
(g) Beccalli, E.M.; Broggini, G.; Martinelli, M.; Sottocornola, S. C-C, C-O, C-N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem. Rev., 2007, 107(11), 5318-5365.
[http://dx.doi.org/10.1021/cr068006f] [PMID: 17973536];
(h) Surry, D.S.; Buchwald, S.L. Biaryl phosphane ligands in palladiumcatalyzed amination. Angew. Chem. Int. Ed., 2008, 47(34), 6338-6361.
[http://dx.doi.org/10.1002/anie.200800497] [PMID: 18663711];
(i) Hartwig, J.F. Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature, 2008, 455(7211), 314-322.
[http://dx.doi.org/10.1038/nature07369] [PMID: 18800130];
(j) Denmark, S.E.; Regens, C.S. Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: Practical alternatives to boron- and tin-based methods. Acc. Chem. Res., 2008, 41(11), 1486-1499.
[http://dx.doi.org/10.1021/ar800037p] [PMID: 18681465];
(k) Johansson Seechurn, C.C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed., 2012, 51(21), 5062-5085.
[http://dx.doi.org/10.1002/anie.201107017] [PMID: 22573393];
(l) Majumdar, K.; Samanta, S.; Sinha, B. Recent developments in palladiumcatalyzed formation of five- and six-membered fused heterocycles. Synthesis, 2012, 44(6), 817-847.
[http://dx.doi.org/10.1055/s-0031-1289734];
(m) Wu, X.F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev., 2013, 113(1), 1-35.
[http://dx.doi.org/10.1021/cr300100s] [PMID: 23039127];
(n) Biajoli, A.F.P.; Schwalm, C.S.; Limberger, J.; Claudino, T.S.; Monteiro, A.L. Recent progress in the use of pd-catalyzed C-C Cross-Coupling Reactions in the Synthesis of Pharmaceutical Compounds. J. Braz. Chem. Soc., 2014, 25, 2186-2214.
[http://dx.doi.org/10.5935/0103-5053.20140255];
(o) Roy, D.; Uozumi, Y. Recent advances in palladium-catalyzed crosscoupling reactions at ppm to ppb molar catalyst loadings. Adv. Synth. Catal., 2018, 360(4), 602-625.
[http://dx.doi.org/10.1002/adsc.201700810];
(p) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A Critical Review. Chem. Rev., 2018, 118(4), 2249-2295.
[http://dx.doi.org/10.1021/acs.chemrev.7b00443] [PMID: 29460627]
[8]
Vlaar, T.; Ruijter, E.; Orru, R.V.A. Recent advances in palladium-catalyzed cascade cyclizations. Adv. Synth. Catal., 2011, 353(6), 809-841.
[http://dx.doi.org/10.1002/adsc.201000979]
[9]
Döndaş, H.A.; Retamosa, M.G.; Sansano, J.M. Recent development in palladium-catalyzed domino reactions: access to materials and biologically important carbo- and heterocycles. Organometallics, 2019, 38(9), 1828-1867.
[http://dx.doi.org/10.1021/acs.organomet.9b00110]
[10]
Liu, Y.; Oble, J.; Pradal, A.; Poli, G. Catalytic domino annulations through η3-allylpalladium chemistry: A never-ending story. Eur. J. Inor. Chem., 2020, 2020, (11-20).
[11]
Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Construction of quaternary stereocenters by palladium‐catalyzed carbopalladation‐initiated cascade reactions. Angew. Chem. Int. Ed., 2019, 58(6), 1562-1573.
[http://dx.doi.org/10.1002/anie.201806088] [PMID: 29959826]
[12]
(a) Beletskaya, I.P.; Cheprakov, A.V. The heck reaction as a sharpening stone of palladium catalysis. Chem. Rev., 2000, 100(8), 3009-3066.
[http://dx.doi.org/10.1021/cr9903048] [PMID: 11749313];
(b) Bräse, S.; Meijere, A. Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002, Vol. 1, pp. 1223-1254.
[http://dx.doi.org/10.1002/0471212466.ch49];
(c) Dounay, A.B.; Overman, L.E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev., 2003, 103(8), 2945-2964.
[http://dx.doi.org/10.1021/cr020039h] [PMID: 12914487];
(d) Mc Cartney, D.; Guiry, P.J. The asymmetric Heck and related reactions. Chem. Soc. Rev., 2011, 40(10), 5122-5150.
[http://dx.doi.org/10.1039/c1cs15101k] [PMID: 21677934];
(e) Xie, J.Q.; Liang, R.X.; Jia, Y.X. Recent advances of catalytic enantioselective heck reactions and reductive‐heck reactions. Chin. J. Chem., 2021, 39(3), 710-728.
[http://dx.doi.org/10.1002/cjoc.202000464]
[13]
Zhang, Z-M.; Xu, B.; Wu, L.; Wu, Y.; Qian, Y.; Zhou, L.; Liu, Y.; Zhang, J. Enantioselective dicarbofunctionalization of unactivated alkenes by palladium‐catalyzed tandem heck/suzuki coupling reaction. Angew. Chem. Int. Ed., 2019, 58(41), 14653-14659.
[http://dx.doi.org/10.1002/anie.201907840]
[14]
Ju, B.; Chen, S.; Kong, W. Enantioselective palladium-catalyzed diarylation of unactivated alkenes. Chem. Commun., 2019, 55(95), 14311-14314.
[http://dx.doi.org/10.1039/C9CC07036B] [PMID: 31713555]
[15]
Chen, Q.; Li, S.; Xie, X.; Guo, H.; Yang, J.; Zhang, J. Pd-catalyzed enantioselective dicarbofunctionalization of alkene to access disubstituted dihydroisoquinolinone. Org. Lett., 2021, 23(11), 4099-4103.
[http://dx.doi.org/10.1021/acs.orglett.1c00974] [PMID: 33983037]
[16]
Cheng, C.; Wan, B.; Zhou, B.; Gu, Y.; Zhang, Y. Enantioselective synthesis of quaternary 3,4-dihydroisoquinolinones via Heck carbonylation reactions: Development and application to the synthesis of Minalrestat analogues. Chem. Sci., 2019, 10(42), 9853-9858.
[http://dx.doi.org/10.1039/C9SC03406D] [PMID: 32015808]
[17]
Zhou, L.; Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang, Z.M.; Zhang, J. Enantioselective difunctionalization of alkenes by a palladium‐catalyzed heck/sonogashira sequence. Angew. Chem. Int. Ed., 2020, 59(7), 2769-2775.
[http://dx.doi.org/10.1002/anie.201913367] [PMID: 31755165]
[18]
Wang, D.C.; Cheng, P.P.; Yang, T.T.; Wu, P.P.; Qu, G.R.; Guo, H.M. Asymmetric domino heck/dearomatization reaction of β-naphthols to construct indole–terpenoid frameworks. Org. Lett., 2021, 23(20), 7865-7872.
[http://dx.doi.org/10.1021/acs.orglett.1c02881] [PMID: 34582193]
[19]
(a) Dalpozzo, R. Recent Catalytic Asymmetric Syntheses of 3,3-Disubstituted Indolin-2-ones and 2,2-Disubstituted Indolin-3-ones. Adv. Synth. Catal., 2017, 359(11), 1772-1810.
[http://dx.doi.org/10.1002/adsc.201700361];
(b) Pellissier, H. Synthesis of chiral 3-substituted 3-amino-2-oxindoles through enantioselective catalytic nucleophilic additions to isatin imines. Beilstein J. Org. Chem., 2018, 14, 1349-1369.
[http://dx.doi.org/10.3762/bjoc.14.114] [PMID: 29977400];
(c) Pellissier, H. Synthesis of chiral 3-substituted 3-amino-2-oxindoles through enantioselective catalytic domino and tandem reactions. Synthesis, 2019, 51(6), 1311-1318.
[http://dx.doi.org/10.1055/s-0037-1610350]
[20]
Hu, H.; Teng, F.; Liu, J.; Hu, W.; Luo, S.; Zhu, Q. Enantioselective synthesis of 2‐oxindole spirofused lactones and lactams by heck/carbonylative cylization sequences: method development and applications. Angew. Chem. Int. Ed., 2019, 58(27), 9225-9229.
[http://dx.doi.org/10.1002/anie.201904838] [PMID: 31074567]
[21]
Li, Y.; Zhang, H.Y.; Zhang, Y.; Han, Y.P.; Zhao, J.; Liang, Y.M. Palladium-Catalyzed Asymmetric Intramolecular Dearomative Heck Annulation of Aryl Halides to Furnish Indolines. J. Org. Chem., 2021, 86(21), 14640-14651.
[http://dx.doi.org/10.1021/acs.joc.1c01478] [PMID: 34645261]
[22]
Zhu, J.W.; Zhou, B.; Cao, Z.Y.; Liang, R.X.; Jia, Y.X. Stereoselective 1,2-dicarbofunctionalization of trisubstituted alkenes by palladium-catalyzed heck/suzuki or heck/sonogashira domino sequence. CCS Chemistry, 2021, 3(9), 2340-2349.
[http://dx.doi.org/10.31635/ccschem.020.202000506]
[23]
Liang, R.X.; Chen, J.F.; Huang, Y.Y.; Yu, Y.P.; Zhang, H.Y.; Song, Y.F.; Tsui, G.C.; Jia, Y.X. Enantioselective Pd-catalyzed dearomative reductive Heck and domino Heck–Suzuki reactions of 2-CF 3 -indoles. Chem. Commun., 2022, 58(42), 6200-6203.
[http://dx.doi.org/10.1039/D2CC01435A] [PMID: 35506738]
[24]
(a) Liang, R.X.; Wang, K.; Wu, Q.; Sheng, W.J.; Jia, Y.X. Palladium-Catalyzed Dearomative Arylvinylation Reaction of Indoles with N -Arylsulfonylhydrazones. Organometallics, 2019, 38(20), 3927-3930.
[http://dx.doi.org/10.1021/acs.organomet.9b00112];
(b) Liang, R.X.; Jia, Y.X. Aromatic π-components for enantioselective heck reactions and heck/anion-capture domino sequences. Acc. Chem. Res., 2022, 55(5), 734-745.
[http://dx.doi.org/10.1021/acs.accounts.1c00781] [PMID: 35119256]
[25]
Chen, M.; Wang, X.; Ren, Z.H.; Guan, Z.H. Palladium-catalyzed asymmetric domino heck/carbocyclization/suzuki reaction: a dearomatization of nonactivated naphthalenes. CCS Chemistry, 2021, 3(12), 69-77.
[http://dx.doi.org/10.31635/ccschem.021.202000596]
[26]
Whyte, A.; Bajohr, J.; Arora, R.; Torelli, A.; Lautens, M. Sequential Pd 0 ‐ and Pd II ‐catalyzed cyclizations: enantioselective heck and nucleopalladation reactions. Angew. Chem. Int. Ed., 2021, 60(37), 20231-20236.
[http://dx.doi.org/10.1002/anie.202106518] [PMID: 34240542]
[27]
Wu, Y.; Xu, B.; Zhao, G.; Pan, Z.; Zhang, Z.M.; Zhang, J. Palladium/XUPHOS Catalyzed enantioselective tandem heck/cacchi reaction of unactivated alkenes. Chin. J. Chem., 2021, 39(12), 3255-3260.
[http://dx.doi.org/10.1002/cjoc.202100538]
[28]
Lautens, M.; Yoon, H.; Jang, Y. Diastereoselective Pd-Catalyzed Domino Heck/Arylborylation Sequence Forming Borylated Chromans. Synthesis, 2016, 48(10), 1483-1490.
[http://dx.doi.org/10.1055/s-0035-1561567]
[29]
Shen, C.; Zeidan, N.; Wu, Q.; Breuers, C.B.J.; Liu, R.R.; Jia, Y.X.; Lautens, M. Pd-catalyzed dearomative arylborylation of indoles. Chem. Sci., 2019, 10(10), 3118-3122.
[http://dx.doi.org/10.1039/C8SC05737K]
[30]
Wu, Y.; Wu, L.; Zhang, Z.M.; Xu, B.; Liu, Y.; Zhang, J. Enantioselective difunctionalization of alkenes by a palladium-catalyzed Heck/borylation sequence. Chem. Sci., 2022, 13(7), 2021-2025.
[http://dx.doi.org/10.1039/D1SC06229H] [PMID: 35308863]
[31]
Chen, M.; Wang, X.; Yang, P.; Kou, X.; Ren, Z.H.; Guan, Z.H. Palladiumcatalyzed enantioselective heck carbonylation with a monodentate phosphoramidite ligand: Asymmetric synthesis of (+)‐Physostigmine, (+)‐Physovenine, and (+)‐Folicanthine. Angew. Chem. Int. Ed., 2020, 59(29), 12199-12205.
[http://dx.doi.org/10.1002/anie.202003288] [PMID: 32239787]
[32]
Zhang, D.; Xiong, Y.; Guo, Y.; Zhang, L.; Wang, Z.; Ding, K. Palladium-Catalyzed Enantioselective Intramolecular Heck Carbonylation Reactions: Asymmetric Synthesis of 2-Oxindole Ynones and Carboxylic Acids. Chemistry, 2021, 28(1), e202103670.
[http://dx.doi.org/10.1002/chem.202103670] [PMID: 34643304]
[33]
Hu, H.; Yu, T.; Cheng, S.; Li, J.; Gan, C.; Luo, S.; Zhu, Q. Palladiumcatalyzed tandem Heck/carbonylation/aminocarbonylation en route to chiral heterocyclic α-ketoamides. Org. Chem. Front., 2022, 9(4), 939-945.
[http://dx.doi.org/10.1039/D1QO01680F]
[34]
Hu, H.; Peng, Y.; Yu, T.; Cheng, S.; Luo, S.; Zhu, Q. Palladium-catalyzed enantioselective 7- exo -trig carbopalladation/carbonylation: cascade reactions to achieve atropisomeric dibenzo[ b, d]azepin-6-ones. Org. Lett., 2021, 23(9), 3636-3640.
[http://dx.doi.org/10.1021/acs.orglett.1c01036] [PMID: 33886342]
[35]
Li, Q.; Zhang, Y.; Zeng, Y.; Fan, Y.; Lin, A.; Yao, H. Palladium-catalyzed asymmetric dearomative carbonylation of indoles. Org. Lett., 2022, 24(16), 3033-3037.
[http://dx.doi.org/10.1021/acs.orglett.2c00962] [PMID: 35436128]
[36]
Teng, S.; Jiao, Z.; Chi, Y.R.; Zhou, J.S. Asymmetric wacker‐type oxyallenylation and azaallenylation of cyclic alkenes. Angew. Chem. Int. Ed., 2020, 59(6), 2246-2250.
[http://dx.doi.org/10.1002/anie.201911961] [PMID: 31691440]
[37]
Li, H.; Khan, I.; Li, Q.; Zhang, Y.J. Pd-catalyzed asymmetric threecomponent allenol carbopalladation and allylic cycloaddition cascade: a route to functionalized tetrahydrofurans. Org. Lett., 2022, 24(11), 2081-2086.
[http://dx.doi.org/10.1021/acs.orglett.2c00142] [PMID: 35274964]
[38]
Xu, Z.; Shen, C.; Zhang, H.; Wang, P.; Dong, K. Constructing chiral azaquaternary carbon centers by enantioselective carbonylative Heck reaction of o -iodoanilines with allenes. Org. Chem. Front., 2021, 8(6), 1163-1169.
[http://dx.doi.org/10.1039/D0QO01486A]
[39]
Hershberger, J.C. Recent advances in palladium-catalyzed oxidative cyclizations. Curr. Org. Chem., 2019, 23(9), 1019-1044.
[http://dx.doi.org/10.2174/1385272823666190429155004]
[40]
Tian, Q.; Liu, Y.; Wang, X.; Wang, X.; He, W. Pd II/Novel chiral cinchona alkaloid oxazoline-catalyzed enantioselective oxidative cyclization of aromatic alkenyl amides. Eur. J. Org. Chem., 2019, 2019(24), 3850-3855.
[http://dx.doi.org/10.1002/ejoc.201900431]
[41]
Hu, X.D.; Chen, Z.H.; Zhao, J.; Sun, R.Z.; Zhang, H.; Qi, X.; Liu, W.B. Enantioselective synthesis of α-all-carbon quaternary center-containing carbazolones via amino-palladation/desymmetrizing nitrile addition cascade. J. Am. Chem. Soc., 2021, 143(10), 3734-3740.
[http://dx.doi.org/10.1021/jacs.1c00840] [PMID: 33683109]
[42]
Zhang, H.; Li, W.; Hu, X.D.; Liu, W.B. Enantioselective synthesis of fused isocoumarins via palladium-catalyzed annulation of alkyne-tethered malononitriles. J. Org. Chem., 2021, 86(15), 10799-10811.
[http://dx.doi.org/10.1021/acs.joc.1c01026] [PMID: 34255511]
[43]
Wang, G.; Li, J.C.; Zhou, Y.G.; Ye, Z.S. Enantioselective synthesis of indole-fused bicyclo[3.2.1]octanes via palladium(ii)-catalyzed cascade reaction. Org. Lett., 2021, 23(3), 802-807.
[http://dx.doi.org/10.1021/acs.orglett.0c04030] [PMID: 33464091]
[44]
Tang, S.; Ding, S.; Li, D.; Li, L.; Zhao, H.; Chai, M.; Wang, J. Palladiumcatalysed imidoylative spirocyclization of 3-(2-isocyanoethyl)indoles. Chem. Commun., 2021, 57(81), 10576-10579.
[http://dx.doi.org/10.1039/D1CC03240B] [PMID: 34558575]
[45]
Ding, Y.; Han, Y.Q.; Wu, L.S.; Zhou, T.; Yao, Q.J.; Feng, Y.L.; Li, Y.; Kong, K.X.; Shi, B.F. Pd(II)‐catalyzed tandem enantioselective methylene c(sp3)−h alkenylation–aza‐wacker cyclization to access β ‐stereogenic γ ‐lactams. Angew. Chem. Int. Ed., 2020, 59(33), 14060-14064.
[http://dx.doi.org/10.1002/anie.202004504] [PMID: 32391972]
[46]
Wu, L.S.; Ding, Y.; Han, Y.Q.; Shi, B.F. Asymmetric synthesis of γ-lactams containing α,β-contiguous stereocenters via pd(ii)-catalyzed cascade methylene c(sp 3)–h alkenylation/aza-wacker cyclization. Org. Lett., 2021, 23(6), 2048-2051.
[http://dx.doi.org/10.1021/acs.orglett.1c00204] [PMID: 33683896]
[47]
Sun, M.; Wu, H.; Xia, X.; Chen, W.; Wang, Z.; Yang, J. Asymmetric palladium-catalyzed c–h functionalization cascade for synthesis of chiral 3,4-dihydroisoquinolones. J. Org. Chem., 2019, 84(20), 12835-12847.
[http://dx.doi.org/10.1021/acs.joc.9b01372] [PMID: 31475825]
[48]
He, Y.P.; Cao, J.; Wu, H.; Wang, Q.; Zhu, J. Catalytic enantioselective aminopalladation–heck cascade. Angew. Chem. Int. Ed., 2021, 60(13), 7093-7097.
[http://dx.doi.org/10.1002/anie.202016001] [PMID: 33369004]
[49]
He, Y.P.; Wu, H.; Wang, Q.; Zhu, J. Palladium‐Catalyzed enantioselective cacchi reaction: asymmetric synthesis of axially chiral 2,3‐disubstituted indoles. Angew. Chem. Int. Ed., 2020, 59(5), 2105-2109.
[http://dx.doi.org/10.1002/anie.201914049] [PMID: 31756260]
[50]
Li, X.; Zhao, L.; Qi, Z.; Li, X. Construction of atropisomeric 3-arylindoles via enantioselective cacchi reaction. Org. Lett., 2021, 23(15), 5901-5905.
[http://dx.doi.org/10.1021/acs.orglett.1c02012] [PMID: 34236878]
[51]
Mao, B.; Xu, Y.; Chen, Y.; Dong, J.; Zhang, J.; Gu, K.; Zheng, B.; Guo, H. Palladium-catalyzed asymmetric tandem [3+2] cycloaddition/allylation reaction of methylene-trimethylenemethane: access to chiral tricyclic dinitrogenfused heterocycles. Org. Lett., 2019, 21(12), 4424-4427.
[http://dx.doi.org/10.1021/acs.orglett.9b01064] [PMID: 31184176]
[52]
Chen, J.; Han, X.; Lu, X. Palladium(II)-catalyzed reductive cyclization of n -tosyl-tethered 1,7-enynes: enantioselective synthesis of 1,2,3,4-tetrahydroquinolines. Org. Lett., 2019, 21(20), 8153-8157.
[http://dx.doi.org/10.1021/acs.orglett.9b02412] [PMID: 31557039]
[53]
Ding, L.; Gao, R.D.; You, S.L. Palladium(0)‐catalyzed intermolecular asymmetric cascade dearomatization reaction of indoles with propargyl carbonate. Chemistry, 2019, 25(17), 4330-4334.
[http://dx.doi.org/10.1002/chem.201900425] [PMID: 30694590]
[54]
Gao, X.; Xia, M.; Yuan, C.; Zhou, L.; Sun, W.; Li, C.; Wu, B.; Zhu, D.; Zhang, C.; Zheng, B.; Wang, D.; Guo, H. Enantioselective synthesis of chiral medium-sized cyclic compounds via tandem cycloaddition/cope rearrangement strategy. ACS Catal., 2019, 9(3), 1645-1654.
[http://dx.doi.org/10.1021/acscatal.8b04590]
[55]
Zhou, H.Q.; Gu, X.W.; Zhou, X.H.; Li, L.; Ye, F.; Yin, G.W.; Xu, Z.; Xu, L.W. Enantioselective palladium-catalyzed C(sp 2)–C(sp 2) σ bond activation of cyclopropenones by merging desymmetrization and (3 + 2) spiroannulation with cyclic 1,3-diketones. Chem. Sci., 2021, 12(41), 13737-13743.
[http://dx.doi.org/10.1039/D1SC04558J] [PMID: 34760158]
[56]
Zheng, Y.; Dong, S.; Xu, K.; Liu, D.; Zhang, W. Pd-catalyzed asymmetric allylic substitution cascade of substituted 4-hydroxy-2H-pyrones with mesoallyl dicarbonates. Org. Lett., 2022, 24(19), 3440-3444.
[http://dx.doi.org/10.1021/acs.orglett.2c00937] [PMID: 35544680]
[57]
Zhang, Z.M.; Xu, B.; Wu, L.; Zhou, L.; Ji, D.; Liu, Y.; Li, Z.; Zhang, J. Palladium/XuPhos-catalyzed enantioselective carboiodination of olefintethered aryl iodides. J. Am. Chem. Soc., 2019, 141(20), 8110-8115.
[http://dx.doi.org/10.1021/jacs.9b04332] [PMID: 31070918]
[58]
Zhu, J.X.; Chen, Z.C.; Du, W.; Chen, Y.C. Asymmetric auto‐tandem palladium catalysis for 2,4‐dienyl carbonates: ligand‐controlled divergent synthesis. Angew. Chem. Int. Ed., 2022, 61(17), e202200880.
[http://dx.doi.org/10.1002/anie.202200880] [PMID: 35156289]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy