Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

An Update on Recently Developed Analytical and Bio-analytical Methods for Some Anticancer Drugs

Author(s): Joyson Paul, Karanvir Singh, Sumit Pannu, Rohit Pal, Shah Alam Khan, Bhupinder Kumar* and Md Jawaid Akhtar*

Volume 19, Issue 2, 2023

Published on: 26 December, 2022

Page: [117 - 135] Pages: 19

DOI: 10.2174/1573412919666221123110420

Price: $65

Abstract

According to the WHO’s data for 2018, the global cancer burden was estimated to have risen to 18.1 million new cases and which alone accounted for 9.6 million deaths. Cancer is a group of diseases known as tumors that often spreads throughout the body, and may cause harm to multiple organs in the body. The global pharmaceutical spending is around 19% of the R&D cost annually to discover new and potent therapeutic agents. The major problems associated with currently available anticancer drugs are drug resistance and their side effects. They are the most widely explored groups of drugs either using instrumental or bioanalytical methods. In this review, we have compiled and reviewed the analytical and bio-analytical methods of some anticancer drugs developed by different authors. The review also briefly discusses the broad categories of cytotoxic drugs and targeted-based anticancer drugs. The analytical and bioanalytical methods of cytotoxic drugs such as alkylating agents, antimetabolites, hormones, and targetedbased drugs reported earlier and in recent research, articles are discussed in detail. These analytical methods are prerequisites for both the pharmaceutical industry and academics for their impurities profiling and qualitative as well as quantitative estimation. The accuracy, precision, LOD, and LOQ studies by UV-HPLC, LC-MS, and fluorometry HPLC are discussed. Some of the advanced methods developed, in the case of ifosfamide using Au/Pd@rGO@p(L-Cys) and the production of vincristine by endophytic fungi, are also included. This will further embolden the efforts of different researchers working in this field and ease the challenges they face through the analytical development of these drugs.

Keywords: Bio-analysis, analytical methodologies, anticancer drugs, HPLC, UV, neoplasms.

Next »
Graphical Abstract
[1]
Tülüce, Y; Masseh, HD; Koyuncu, İ; Kiliç, A; Durgun, M; Özkol, H Novel fluorine boron hybrid complex as potential antiproliferative drugs on colorectal cancer cell line. Anticancer Agents Med Chem, 2019, 19(5), 627-37.
[2]
Tülüce, Y.; Lak, P.T.A.; Koyuncu, İ.; Kılıç, A.; Durgun, M.; Özkol, H. The apoptotic, cytotoxic and genotoxic effect of novel binuclear boron-fluoride complex on endometrial cancer. Biometals, 2017, 30(6), 933-944.
[PMID: 29052084]
[3]
Skupin-Mrugalska, P. Liposome-Based Drug Delivery for Lung Cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; Elsevier, 2019, pp. 123-160.
[4]
Manica, M.; Oskooei, A.; Born, J.; Subramanian, V.; Sáez-Rodríguez, J.; Rodríguez Martínez, Ma. Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders. Mol. Pharm., 2019.
[5]
Tay-Teo, K; Ilbawi, A; Hill, SR Comparison of sales income and research and development costs for FDA-approved cancer drugs sold by originator drug companies. JAMA network open, 2019, 2(1), e186875.
[6]
Avendaño, C.; Menendez, J.C. Medicinal chemistry of anticancer drugs; Elsevier, 2015.
[7]
Dunnill, C.J.; Al-Tameemi, W.; Collett, A.; Haslam, I.S.; Georgopoulos, N.T. A Clinical and Biological Guide for Understanding Chemotherapy-Induced Alopecia and Its Prevention. Oncologist, 2018, 23(1), 84-96.
[PMID: 28951499]
[8]
Mostoufi-Moab, S.; Seidel, K.; Leisenring, W.M.; Armstrong, G.T.; Oeffinger, K.C.; Stovall, M.; Meacham, L.R.; Green, D.M.; Weathers, R.; Ginsberg, J.P.; Robison, L.L.; Sklar, C.A. Endocrine abnormalities in aging survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. J. Clin. Oncol., 2016, 34(27), 3240-3247.
[PMID: 27382091]
[9]
Kilic, A.; Koyuncu, I.; Durgun, M.; Ozaslan, I.; Kaya, I.H.; Gönel, A. Synthesis and characterization of the hemi-salen ligands and their triboron complexes: Spectroscopy and examination of anticancer properties. Chem. Biodivers., 2018, 15(1), e1700428.
[PMID: 29032600]
[10]
Shedden, K.; Rosania, G.R. Exploratory chemoinformatic analysis of cell type-selective anticancer drug targeting. Mol. Pharm., 2004, 1(4), 267-280.
[PMID: 15981586]
[11]
Farha, M.; Masson, E.; Tomkinson, H.; Mugundu, G. Food effect study design with oral drugs: Lessons learned from recently approved drugs in oncology. J. Clin. Pharmacol., 2019, 59(4), 463-471.
[PMID: 30536979]
[12]
Deng, J.; Brar, S.S.; Lesko, L.J. To take or not to take with meals? Unraveling issues related to food effects labeling for oral antineoplastic drugs. Clin. Pharmacol. Drug Dev., 2018, 7(5), 455-464.
[PMID: 29197167]
[13]
Singh, B.N.; Malhotra, B.K. Effects of food on the clinical pharmacokinetics of anticancer agents: Underlying mechanisms and implications for oral chemotherapy. Clin. Pharmacokinet., 2004, 43(15), 1127-1156.
[PMID: 15568891]
[14]
Segal, E; Flood, M; Mancini, R; Whiteman, R; Friedt, G; Kramer, A. Oral Chemotherapy food and drug interactions: A comprehensive review of the literature. J Oncol Pract., 2014, 10(4), e255-68.
[15]
Yu, G.; Wu, D-N.; Yu, Y.; Li, G-F.; Zhou, H-H. Impact of dosage timing on the bioavailability of oral anticancer medications: Is pre-prandial dosing equivalent to post-prandial dosing. J. Oncol. Pharm. Pract., 2019, 25(2), 404-408.
[PMID: 29343152]
[16]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[PMID: 20593091]
[17]
Cai, L.; Qin, X.; Xu, Z.; Song, Y.; Jiang, H.; Wu, Y.; Ruan, H.; Chen, J. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega, 2019, 4(7), 12036-12042.
[PMID: 31460316]
[18]
Liu, L.; Ye, Q.; Lu, M.; Lo, Y-C.; Hsu, Y-H.; Wei, M-C.; Chen, Y.H.; Lo, S.C.; Wang, S.J.; Bain, D.J.; Ho, C. A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs. Sci. Rep., 2015, 5(1), 10881.
[PMID: 26039249]
[19]
Al-Jorani, K.; Rüther, A.; Martin, M.; Haputhanthri, R.; Deacon, G.B.; Li, H.L.; Wood, B.R. The Application of ATR-FTIR Spectroscopy and the Reversible DNA Conformation as a Sensor to Test the Effectiveness of Platinum(II) Anticancer Drugs. Sensors (Basel), 2018, 18(12), 4297.
[PMID: 30563229]
[20]
Fennema, E.; Rivron, N.; Rouwkema, J.; van Blitterswijk, C.; de Boer, J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol., 2013, 31(2), 108-115.
[PMID: 23336996]
[21]
Brandšteterová, E.; Kelner, M.; Mc Morris, T.; Wang, W.; Bangell, R. HPLC analysis of novel anti-cancer agents-illudins and their analogs. J. Liq. Chromatogr. Relat. Technol., 1993, 16(1), 115-125.
[22]
Ayyash, M.A.; Ewadh, M.J.; Mohammed, N.J. Qualitative and quantitative determination of anti-cancer drug (vincristine) in Catharanthus roseus by High Performance Liquid Chromatography and qualitative identification using other Molecular Spectra Instruments. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(4), 1903-1912.
[23]
Cazes, J. Encyclopedia of chromatography; CRC press, 2009.
[24]
Eswaraiah, G.; Peele, K.A.; Krupanidhi, S.; Indira, M.; Kumar, R.B.; Venkateswarulu, T. GC–MS analysis for compound identification in leaf extract of Lumnitzera racemosa and evaluation of its in vitro anticancer effect against MCF7 and HeLa cell lines. J. King Saud Univ. Sci., 2020, 32(1), 780-783.
[25]
Lê, L; Berge, M; Tfayli, A; Prognon, P; Caudron, E Discriminative and quantitative analysis of antineoplastic taxane drugs using a handheld Raman spectrometer. BioMed research international, 2018, 2018.
[26]
Su, K-Y.; Lee, W-L. Fourier transform infrared spectroscopy as a cancer screening and diagnostic tool: A review and prospects. Cancers (Basel), 2020, 12(1), 115.
[PMID: 31906324]
[27]
Gasper, R.; Dewelle, J.; Kiss, R.; Mijatovic, T.; Goormaghtigh, E. IR spectroscopy as a new tool for evidencing antitumor drug signatures. Biochim. Biophys. Acta, 2009, 1788(6), 1263-1270.
[PMID: 19250921]
[28]
Selinger, K.; Fung, E.N.; Bryan, P. Bioanalytical method validation and bioanalysis in regulated settings. Specification of Drug Substances and Products; Elsevier, 2014, pp. 325-363.
[29]
Pandey, S.; Pandey, P.; Tiwari, G.; Tiwari, R. Bioanalysis in drug discovery and development. Pharm. Methods, 2010, 1(1), 14-24.
[PMID: 23781412]
[30]
Chatwal, G.R.; Anand, S.K. Instrumental Methods of Chemical Analysis:(for Hons. and Post-graduate Students of Indian and Foreign Universities); Himalaya publishing house, 1979.
[31]
Voedisch, B.; Thie, H. Size exclusion chromatography. Antibody Engineering; Springer, 2010, pp. 607-612.
[32]
Brachet, G.; Bruno, C.; Boulay, D.; Tournamille, J.F.; Gyan, E.; Viaud-Massuard, M.C.; Respaud, R. An ion-pairing, reversed-phase liquid chromatography method to assess the cross-contamination of cancer chemotherapy infusions prepared in a dual-operator aseptic isolator. Drug Test. Anal., 2016, 8(9), 985-990.
[PMID: 26480955]
[33]
Gilar, M.; Fountain, K.J.; Budman, Y.; Neue, U.D.; Yardley, K.R.; Rainville, P.D.; Russell, R.J., II; Gebler, J.C. Ion-pair reversed-phase high-performance liquid chromatography analysis of oligonucleotides: Retention prediction. J. Chromatogr. A, 2002, 958(1-2), 167-182.
[PMID: 12134814]
[34]
Ali, I.; Haque, A.; Wani, W.A.; Saleem, K.; Al Za’abi, M. Analyses of anticancer drugs by capillary electrophoresis: A review. Biomed. Chromatogr., 2013, 27(10), 1296-1311.
[PMID: 23843248]
[35]
Liebich, H.M.; Lehmann, R.; Di Stefano, C.; Häring, H.U.; Kim, J.H.; Kim, K.R. Analysis of traditional Chinese anticancer drugs by capillary electrophoresis. J. Chromatogr. A, 1998, 795(2), 388-393.
[PMID: 9528107]
[36]
Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11(5)(Suppl. 5), 87.
[PMID: 28984210]
[37]
Olivier, T; Haslam, A; Prasad, V. Anticancer drugs approved by the US food and drug administration from 2009 to 2020 according to their mechanism of action. JAMA network open, 2021, 4(12), e2138793.
[38]
Masui, K.; Gini, B.; Wykosky, J.; Zanca, C.; Mischel, P.S.; Furnari, F.B.; Cavenee, W.K. A tale of two approaches: Complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis, 2013, 34(4), 725-738.
[PMID: 23455378]
[39]
Winkler, G.C.; Barle, E.L.; Galati, G.; Kluwe, W.M. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. Regul. Toxicol. Pharmacol., 2014, 70(1), 46-53.
[PMID: 24956585]
[40]
Farmer, P. Cancer Chemotherapy I: Design and mechanism of action of cytotoxic drugs. The Molecular Basis of Cancer; Springer, 1985, pp. 259-285.
[41]
Blagosklonny, M.V. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle, 2004, 3(8), 1035-1042.
[PMID: 15254418]
[42]
Bardal, SK; Waechter, JE; Martin, DS Applied pharmacology; Elsevier Health Sciences, 2011.
[43]
Swift, L.H.; Golsteyn, R.M. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int. J. Mol. Sci., 2014, 15(3), 3403-3431.
[PMID: 24573252]
[44]
Gerson, S.L. Alkylating and Platinating Agents. Current Cancer Therapeutics; Springer, 2001, pp. 1-36.
[45]
Tripathi, K. Essentials of medical pharmacology, 2013.
[46]
Beitz, C.; Bertsch, T.; Hannak, D.; Schrammel, W.; Einberger, C.; Wehling, M. Compatibility of plastics with cytotoxic drug solutions-comparison of polyethylene with other container materials. Int. J. Pharm., 1999, 185(1), 113-121.
[PMID: 10425371]
[47]
Benvenuto, J.A.; Anderson, R.W.; Kerkof, K.; Smith, R.G.; Loo, T.L. Stability and compatibility of antitumor agents in glass and plastic containers. Am. J. Hosp. Pharm., 1981, 38(12), 1914-1918.
[PMID: 7325172]
[48]
Prasanth, M.; Siddiraju, S. Stability indicating HPLC method for the determination of Dacarbazine in pharmaceutical dosage form. Int. J. Pharm., 2014, 4(3), 5-12.
[49]
Bahrpeyma, S.; Hemmateenejad, B.; Javidnia, K. Photo-degradation study of dacarbazine by spectrophotometric–chemometrics and HPLC methods. J. Indian Chem. Soc., 2016, 13(2), 221-229.
[50]
Shetty, B.V.; Schowen, R.L.; Slavik, M.; Riley, C.M. Degradation of dacarbazine in aqueous solution. J. Pharm. Biomed. Anal., 1992, 10(9), 675-683.
[PMID: 1286132]
[51]
El Aatmani, M.; Poujol, S.; Astre, C.; Malosse, F.; Pinguet, F. Stability of dacarbazine in amber glass vials and polyvinyl chloride bags. Am. J. Health Syst. Pharm., 2002, 59(14), 1351-1356.
[PMID: 12132562]
[52]
Horton, J.K.; Stevens, M.F. A new light on the photo-decomposition of the antitumour drug DTIC. J. Pharm. Pharmacol., 1981, 33(12), 808-811.
[PMID: 6121862]
[53]
Haque, A.; Stewart, J.T. Isocratic determination of dacarbazine and related impurities 2-azahypoxanthine and 5-amino-imidazole-4-carboxamide by HPLC on an avidin protein column. J. Liq. Chromatogr. Relat. Technol., 1999, 22(6), 933-943.
[54]
Fiore, D.; Jackson, A.J.; Didolkar, M.S.; Dandu, V.R. Simultaneous determination of dacarbazine, its photolytic degradation product, 2-azahypoxanthine, and the metabolite 5-aminoimidazole-4-carboxamide in plasma and urine by high-pressure liquid chromatography. Antimicrob. Agents Chemother., 1985, 27(6), 977-979.
[PMID: 4026274]
[55]
Safgren, S.L.; Reid, J.M.; Rios, R.; Ames, M.M. Validated high-performance liquid chromatographic assay for simultaneous determination of dacarbazine and the plasma metabolites 5-(3-hydroxymethyl-3-methyl-1-triazeno)imidazole-4-carboxamide and 5-(3-methyl-1-triazeno)imidazole-4-carboxamide. J. Chromatogr. B Biomed. Sci. Appl., 2001, 754(1), 91-96.
[PMID: 11318431]
[56]
ZUBAIR MALIK, M.; Ahmad, M.; Muahammad, S. Rapid and simultaneous determination of adriamycin, bleomycin, vinblastine and dacarbazine in plasma of Hodgkin’s lymphoma patients by a reversed phase HPLC method. J. Chil. Chem. Soc., 2013, 58(2), 1674-1677.
[57]
Ibrahim, M.; Temerk, Y.; Ibrahim, H. Fabrication of a new biosensor based on a Sn doped ceria nanoparticle modified glassy carbon paste electrode for the selective determination of the anticancer drug dacarbazine in pharmaceuticals. RSC Advances, 2017, 7(51), 32357-32366.
[58]
Guetens, G.; De Boeck, G.; Wood, M.; Maes, R.A.; Eggermont, A.A.; Highley, M.S.; van Oosterom, A.T.; de Bruijn, E.A.; Tjaden, U.R. Hyphenated techniques in anticancer drug monitoring. I. Capillary gas chromatography-mass spectrometry. J. Chromatogr. A, 2002, 976(1-2), 229-238.
[PMID: 12462614]
[59]
Rewaria, S.; Swamy, B.M.V. Analytical method development & validation for assay method of busulfan injection by RP-HPLC method. Int. J. Pharm. Res. Scholars, 2013, 2(2), 20-26. [IJPRS].
[60]
Sridhar, J.V.S.; Andrews, B.S.A.; Uppala, Lav kumar; Abbaraju, V. D N kumar New – RP-HPLC method for development and validation of busulfan assay in liquid formulation. Pramana Research Journal., 2019, 9(4), 563-573.
[61]
Navarro Moreno, M.A.; Moreno Galvez, A.; Moreno Galvez, L. An HPLC method for the determination of busulfan in biologicalsamples. Anal. Chem., 2011, 10(2), 149152.
[62]
Lin, H.; Goodin, S.; Strair, R.K.; DiPaola, R.S.; Gounder, M.K. Comparison of LC-MS Assay and HPLC Assay of Busulfan in Clinical Pharmacokinetics Studies; ISRN Analytical Chemistry, 2012.
[63]
Hara, S; Tsuchie, M; Tsujioka, R High-performance liquid chromatographic quantification of busulfan in human serum after fluorescence derivatization by 2-naphthalenethiol. Anal. Sci., 2000, 16(3), 287-291.
[64]
Pang, S.; Zheng, N.; Felix, C.A.; Scavuzzo, J.; Boston, R.; Blair, I.A. Simultaneous determination of etoposide and its catechol metabolite in the plasma of pediatric patients by liquid chromatography/tandem mass spectrometry. J. Mass Spectrom., 2001, 36(7), 771-781.
[PMID: 11473400]
[65]
Xu, J.; Zhou, Y.; Zhang, J.; Chen, Y.; Zhuang, R.; Liu, T.; Cai, W. High incidence of severe neutropenia after gemcitabine-based chemotherapy in Chinese cancer patients with CDA 79A>C mutation. Clin. Chim. Acta, 2012, 413(15-16), 1284-1287.
[PMID: 22546611]
[66]
Zhou, J.; Gao, S.; Zhang, F.; Jiang, B.; Zhan, Q.; Cai, F.; Li, J.; Chen, W. Liquid chromatography-tandem mass spectrometry method for simultaneous determination of seven commonly used anticancer drugs in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 906, 1-8.
[PMID: 22959676]
[67]
Ragozina, N.Y.; Pütz, M.; Heissler, S.; Faubel, W.; Pyell, U. Quantification of etoposide and etoposide phosphate in human plasma by micellar electrokinetic chromatography and near-field thermal lens detection. Anal. Chem., 2004, 76(13), 3804-3809.
[PMID: 15228358]
[68]
Bali Prasad, B.; Kumar, A.; Singh, R. Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosens. Bioelectron., 2017, 94, 1-9.
[PMID: 28237900]
[69]
Juveriya Fatima Siddiqui* IR. UV Visible Spectrophotometric Method Development and Validation for the Estimation of Ifosfamide in Bulk Drug and Pharmaceutical Dosage Form. Int. J. Pharm. Sci. Rev. Res., 2019, 2019(1), 102-105.
[70]
Larson, R.R.; Khazaeli, M.B.; Dillon, H.K. Development of an HPLC method for simultaneous analysis of five antineoplastic agents. Appl. Occup. Environ. Hyg., 2003, 18(2), 109-119.
[PMID: 12519685]
[71]
Anilanmert, B; Sertler, S; Cavus, F; Cengiz, S Validated method for occupational cyclophosphamide monitoring using LC-MS/MS and a Poroshell 120 column. 2015.
[72]
Torres, L-M.; Rivera-Espinosa, L.; Chávez-Pacheco, J.L.; Navas, C.F.; Demetrio, J.A.; Alemón-Medina, R.; Trujillo, F.; Pérez, M.; Zapata, M.M.; Cárdenas, R.; Salinas, C.; Aquino, A.; Velázquez-Cruz, R.; Castillejos, M.D. A new method to quantify ifosfamide blood levels using dried blood spots and UPLC-MS/MS in paediatric patients with embryonic solid tumours. PLoS One, 2015, 10(11), e0143421.
[PMID: 26600181]
[73]
Hatamluyi, B.; Lorestani, F.; Es’haghi, Z. Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, Ifosfamide and Etoposide. Biosens. Bioelectron., 2018, 120, 22-29.
[PMID: 30144642]
[74]
Nguyen, H.V.; Richtera, L.; Moulick, A.; Xhaxhiu, K.; Kudr, J.; Cernei, N.; Polanska, H.; Heger, Z.; Masarik, M.; Kopel, P.; Stiborova, M.; Eckschlager, T.; Adam, V.; Kizek, R. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode. Analyst (Lond.), 2016, 141(9), 2665-2675.
[PMID: 26882954]
[75]
Al-Ghobashy, M.A.; Hassan, S.A.; Abdelaziz, D.H.; Elhosseiny, N.M.; Sabry, N.A.; Attia, A.S.; El-Sayed, M.H. Development and validation of LC-MS/MS assay for the simultaneous determination of methotrexate, 6-mercaptopurine and its active metabolite 6-thioguanine in plasma of children with acute lymphoblastic leukemia: Correlation with genetic polymorphism. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1038, 88-94.
[PMID: 27802917]
[76]
Somasekhar, V. Optimization and validation of an RP-HPLC method for the estimation of 6-mercaptopurine in bulk and pharmaceutical formulations. Braz. J. Pharm. Sci., 2014, 50(4), 793-797.
[77]
Supandi Supandi, S. Simultaneous analysis of 6-mercaptopurine, 6-methylmercaptopurine, and 6-thioguanosine-5’-monophosphate in dried blood spot using ultra performance liquid chromatography tandem mass spectrometry. Indones. J. Chem. Indochem., 2018, 18(3)
[78]
Hawwa, A.F.; Millership, J.S.; Collier, P.S.; McElnay, J.C. Development and validation of an HPLC method for the rapid and simultaneous determination of 6-mercaptopurine and four of its metabolites in plasma and red blood cells. J. Pharm. Biomed. Anal., 2009, 49(2), 401-409.
[PMID: 19095392]
[79]
Naik, K.M.; Nandibewoor, S.T. RP-HPLC Method for the Estimation of 6-Mercaptopurine in spiked human plasma and pharmaceutical formulations. J. Anal. Chem., 2013, 68(12), 1085-1088.
[80]
Roy, M.; Mohite, M.; Shah, S. Development and validation of RP-HPLC method for the determination of methotrexate in bulk and pharmaceutical tablet dosage form. Eur. J. Pharm. Med. Res., 2016, 3, 355-358.
[81]
Sartori, T.; Seigi Murakami, F.; Pinheiro Cruz, A.; Machado de Campos, A. Development and validation of a fast RP-HPLC method for determination of methotrexate entrapment efficiency in polymeric nanocapsules. J. Chromatogr. Sci., 2008, 46(6), 505-509.
[PMID: 18647471]
[82]
Nagulu, M.; Kiran, V.U.; Reddy, Y.N.; Krishna, D.R. Development and validation of rapid and sensitive HPLC method for the determination of methotrexate in human serum. Stamford Journal of Pharmaceutical Sciences., 2009, 2(1), 8-13.
[83]
Ertugrul, S.; Sertoglu, E.; Ozgurtas, T. Development and Validation of High Performance Liquid Chromatography Method for Quantitation of Methotrexate in Plasma. Ann Chromatogr Sep Tech., 2018, 4(1), 1035.
[84]
Šalamoun, J.; Macka, M.; Nechvátal, M.; Matoušek, M.; Knesel, L. Identification of products formed during UV irradiation of tamoxifen and their use for fluorescence detection in high-performance liquid chromatography. J. Chromatogr. A, 1990, 514(2), 179-187.
[PMID: 2258394]
[85]
Girault, J.; Istin, B.; Fourtillan, J.B. Quantitative measurement of 4-hydroxy tamoxifen in human plasma and mammary tumours by combined gas chromatography/negative chemical ionization mass spectrometry. Biol. Mass Spectrom., 1993, 22(7), 395-402.
[PMID: 8357855]
[86]
Mihailescu, R.; Aboul-Enein, H.Y.; Efstatide, M.D. Identification of tamoxifen and metabolites in human male urine by GC/MS. Biomed. Chromatogr., 2000, 14(3), 180-183.
[PMID: 10850622]
[87]
Sandhu, P.S.; Beg, S.; Katare, O.P.; Singh, B. QbD-driven development and validation of a HPLC method for estimation of tamoxifen citrate with improved performance. J. Chromatogr. Sci., 2016, 54(8), 1373-1384.
[PMID: 27226463]
[88]
Mangla, B.; Beg, S.; Alam, O.; Ahsan, W.; Haque, A.; Patel, K.S. Systematic development and validation of RP-HPLC method for simultaneous estimation of tamoxifen and sulphoraphane with specific application for nanolipidic formulations. Arab. J. Chem., 2020, 13(11), 7909-7920.
[89]
Singh, S.P.; Wahajuddin,; Ali, M.M.; Kohli, K.; Jain, G.K. Liquid chromatography-mass spectrometry method for the quantification of tamoxifen and its metabolite 4-hydroxytamoxifen in rat plasma: Application to interaction study with biochanin A (an isoflavone). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(27), 2845-2851.
[PMID: 21890435]
[90]
Santana, Davi; Braga, Rossana Maria Carvalho; Strattmman, Ruth; Albuquerque, Miracy Muniz; Bedor, Danilo César Galindo; Leal, Leila; da Silva, José Alexsandro Reversed phase HPLC determination of tamoxifen in dog plasma and its pharmaco-kinetics after a single oral dose administration. Quim. Nova, 2008, 31(1), 47-52.
[91]
Heath, D.D.; Flat, S.W.; Wu, A.H.; Pruitt, M.A.; Rock, C.L. Evaluation of tamoxifen and metabolites by LC-MS/MS and HPLC methods. Br. J. Biomed. Sci., 2014, 71(1), 33-39.
[PMID: 24693573]
[92]
Almomen, A.; Maher, H.M.; Alzoman, N.Z.; Shehata, S.M.; Al-Taweel, S.M.; Alanazi, A.A. Development and validation of UPLC-MS/MS method for studying the pharmacokinetic interaction of dasabuvir and tamoxifen, 4-hydroxytamoxifen in Wistar rats. Sci. Rep., 2020, 10(1), 3521.
[PMID: 32103133]
[93]
Drooger, J.C.; Jager, A.; Lam, M-H.; den Boer, M.D.; Sleijfer, S.; Mathijssen, R.H.; de Bruijn, P. Development and validation of an UPLC-MS/MS method for the quantification of tamoxifen and its main metabolites in human scalp hair. J. Pharm. Biomed. Anal., 2015, 114, 416-425.
[PMID: 26119504]
[94]
Khan, N.; Abdelhamid, H.N.; Yan, J-Y.; Chung, F-T.; Wu, H-F. Detection of flutamide in pharmaceutical dosage using higher electrospray ionization mass spectrometry (ESI-MS) tandem mass coupled with Soxhlet apparatus. Anal. Chem. Res., 2015, 3, 89-97.
[95]
Hammam, E.; El-Desoky, H.; El-Baradie, K.; Beltagi, A. Three validated stripping voltammetric procedures for determination of the anti-prostate cancer drug flutamide in tablets and human serum at a mercury electrode. Can. J. Chem., 2004, 82(9), 1386-1392.
[96]
Smith, A.A.; Manavalan, R.; Kannan, K.; Rajendiran, N. Spectrofluorimetric determination of flutamide in pharmaceutical preaparations. Orient. J. Chem., 2008, 24(1), 189.
[97]
Abdelwahab, N.S.; Elshemy, H.A.H.; Farid, N.F. Determination of flutamide and two major metabolites using HPLC-DAD and HPTLC methods. Chem. Cent. J., 2018, 12(1), 4.
[PMID: 29372342]
[98]
Filip, M; Coman, V; Avram, V; Coman, I. HPLC monitoring of flutamide drug used in the prostate cancer treatment. Therapy, 2007, 1, 3.
[99]
Abid, K. Simultaneous determination of vincristine and vinblastine in vinca rosea leaves by high performance thin layer chromatography. Int. J. Drug Dev. Res, 2013, 5(3), 341-8.
[100]
Gupta, M.M.; Singh, D.V.; Tripathi, A.K.; Pandey, R.; Verma, R.K.; Singh, S.; Shasany, A.K.; Khanuja, S.P. Simultaneous determination of vincristine, vinblastine, catharanthine, and vindoline in leaves of catharanthus roseus by high-performance liquid chromatography. J. Chromatogr. Sci., 2005, 43(9), 450-453.
[PMID: 16212789]
[101]
Ramawat, K.G.; Mérillon, J-M. Natural products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes; Springer, 2013.
[102]
Madsen, M.L.; Due, H.; Ejskjær, N.; Jensen, P.; Madsen, J.; Dybkær, K. Aspects of vincristine-induced neuropathy in hematologic malignancies: A systematic review. Cancer Chemother. Pharmacol., 2019, 84(3), 471-485.
[PMID: 31214762]
[103]
Kornienko, A.; Evidente, A.; Vurro, M.; Mathieu, V.; Cimmino, A.; Evidente, M.; van Otterlo, W.A.; Dasari, R.; Lefranc, F.; Kiss, R. Toward a cancer drug of fungal origin. Med. Res. Rev., 2015, 35(5), 937-967.
[PMID: 25850821]
[104]
Kumar, A.; Patil, D.; Rajamohanan, P.; Ahmad, A. Isolation, purification and characterization of from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One, 2013, 8(9), e71805.
[PMID: 24066024]
[105]
Eze, P.M.; Nnanna, J.C.; Okezie, U.; Buzugbe, H.S.; Abba, C.C.; Chukwunwejim, C.R. Screening of metabolites from endophytic fungi of some Nigerian medicinal plants for antimicrobial activities. EuroBiotech Journal., 2019, 3(1), 10-18.
[106]
Cismowski, MJ Tyrosine kinase inhibitors 2007.
[107]
Davis, P.J.; Mousa, S.A. Tyrosine Kinase Inhibitors and Angiogenesis. Anti-Angiogenesis Strategies in Cancer Therapeutics; Elsevier, 2017, pp. 125-131.
[108]
Carofiglio, F.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Nicolotti, O.; Denora, N.; Stefanachi, A.; Leonetti, F. Bcr-Abl Tyrosine Kinase Inhibitors in the Treatment of Pediatric CML. Int. J. Mol. Sci., 2020, 21(12), 4469.
[PMID: 32586039]
[109]
Pophali, P.A.; Patnaik, M.M. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J., 2016, 22(1), 40-50.
[PMID: 26841016]
[110]
Miura, M.; Takahashi, N. Routine therapeutic drug monitoring of tyrosine kinase inhibitors by HPLC-UV or LC-MS/MS methods. Drug Metab. Pharmacokinet., 2016, 31(1), 12-20.
[PMID: 26732608]
[111]
Götze, L.; Hegele, A.; Metzelder, S.K.; Renz, H.; Nockher, W.A. Development and clinical application of a LC-MS/MS method for simultaneous determination of various tyrosine kinase inhibitors in human plasma. Clin. Chim. Acta, 2012, 413(1-2), 143-149.
[PMID: 21945732]
[112]
Kuna, A.K.; Seru, G.; Radha, G.V. Analytical method development and validation for the estimation of imatinib mesylate and its dimer impurity in pharmaceutical formulation by reverse-phase high-performance liquid chromatography. International Conference on Harmonization (ICH) guidelines, 2018.
[113]
Raja, A.M. Anusha. S, David Banji, Rao. KNV, Selva Kuamar. D. Analytical method development and validation of anticancer drugs (imatinib and cabacitabine) by RP-HPLC method. Asian Journal of Research in Chemistry and Pharmaceutical Sciences., 2015, 3(2)
[114]
Ajith Kumar, P; Smith, A. Development of analytical method for imatinib mesylate by ultraviolet spectroscopy. Development, 2020, 13(1)
[115]
Shah, P.; Shah, N.; Shah, R. Method development and validation of a stability indicating RP-HPLC method for assay determination of imatinib in imatinib mesylate tablets dosage form. Int. J. Pharm. Sci. Res., 2015, 6(10), 4453.
[116]
Alhazmi, H.A.; Moraya, D.A.; Alahdal, E.; Kariri, M.; Al Bratty, M.; Rehman, Z. Ultrafast monolithic HPLC method for simultaneous quantification of the anticancer agents, imatinib and sorafenib: Application to tablet dosage forms. Trop. J. Pharm. Res., 2018, 17(6), 1127-1134.
[117]
Bende, G.; Kollipara, S.; Movva, S.; Moorthy, G.; Saha, R. Validation of an HPLC method for determination of imatinib mesylate in rat serum and its application in a pharmacokinetic study. J. Chromatogr. Sci., 2010, 48(5), 334-341.
[PMID: 20515524]
[118]
Zhang, Y.; Qiang, S.; Yu, Z.; Zhang, W.; Xu, Z.; Yang, L.; Wen, A.; Hang, T. LC-MS-MS determination of imatinib and N-desmethyl imatinib in human plasma. J. Chromatogr. Sci., 2014, 52(4), 344-350.
[PMID: 23574742]
[119]
Elhamili, A.; Bergquist, J. A method for quantitative analysis of an anticancer drug in human plasma with CE-ESI-TOF-MS. Electrophoresis, 2011, 32(13), 1778-1785.
[PMID: 21706500]
[120]
Sousa, F.; Gonçalves, V.M.F.; Sarmento, B. Development and validation of a rapid reversed-phase HPLC method for the quantification of monoclonal antibody bevacizumab from polyester-based nanoparticles. J. Pharm. Biomed. Anal., 2017, 142, 171-177.
[PMID: 28511059]
[121]
Oliva, A.; Llabrés, M. Validation of a size-exclusion chromatography method for bevacizumab quantitation in pharmaceutical preparations: Application in a biosimilar study. Separations, 2019, 6(3), 43.
[122]
Iwamoto, N.; Takanashi, M.; Shimada, T.; Sasaki, J.; Hamada, A. Comparison of bevacizumab quantification results in plasma of non-small cell lung cancer patients using bioanalytical techniques between LC-MS/MS, ELISA, and microfluidic-based immunoassay. AAPS J., 2019, 21(6), 101.
[PMID: 31432293]
[123]
Liu, Y.; Zhang, W.; Yang, Y. Validated hydrophilic interaction LC-MS/MS method for simultaneous quantification of dacarbazine and 5-amino-4-imidazole-carboxamide in human plasma. Talanta, 2008, 77(1), 412-421.
[PMID: 18804654]
[124]
Liederer, B.M.; Berezhkovskiy, L.M.; Ubhayakar, S.S.; Deng, Y. An alternative approach for quantitative bioanalysis using diluted blood to profile oral exposure of small molecule anticancer drugs in mice. J. Pharm. Sci., 2013, 102(2), 750-760.
[PMID: 23225118]
[125]
Versace, F.; Uppugunduri, C.R.S.; Krajinovic, M.; Théorêt, Y.; Gumy-Pause, F.; Mangin, P.; Staub, C.; Ansari, M. A novel method for quantification of sulfolane (a metabolite of busulfan) in plasma by gas chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2012, 404(6-7), 1831-1838.
[PMID: 22918536]
[126]
Jahed, F.S.; Hamidi, S.; Ghaffary, S.; Nejati, B. Dispersive micro solid phase extraction of busulfan from plasma samples using novel mesoporous sorbent prior to determination by HPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1145, 122091.
[PMID: 32315975]
[127]
Ansari, M.; Uppugunduri, C.R.S.; Déglon, J.; Théorêt, Y.; Versace, F.; Gumy-Pause, F.; Ozsahin, H.; Dayer, P.; Desmules, J.; Daali, Y. A simplified method for busulfan monitoring using dried blood spot in combination with liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2012, 26(12), 1437-1446.
[PMID: 22592987]
[128]
Zolezzi, C.; Ferrari, S.; Bacci, G.; Fasano, M.C.; Sormani, G.; Pizzoferrato, A. Determination of ifosfamide by HPLC using online sample preparation. J. Chemother., 1999, 11(1), 69-73.
[PMID: 10078784]
[129]
Martins, I.; Souza, J.O.; Sanson, A.L.; Vieira, E.P.; Giusti-Paiva, A. Simultaneous determination of cyclophosphamide and Ifosfamide in plasma using SPE-HPLC-UV method. Lat. Am. J. Pharm., 2009, 28(1), 41-46.
[130]
Abdelsayed, M.E.; Maksoud, A.S.; Sidhom, I.; Gad, Z.M.; Hanafi, S.R. HPLC determination of the levels of 6-mercaptopurine metabolites suitable for the clinical risk assessment of its toxicity among Egyptian children with acute lymphocytic leukemia. J. Anal. Bioanal. Tech., 2017, 8(358), 2.
[131]
Sorouraddin, M-H.; Khani, M-Y.; Amini, K.; Naseri, A.; Asgari, D.; Rashidi, M-R. Simultaneous determination of 6-mercaptopurine and its oxidative metabolites in synthetic solutions and human plasma using spectrophotometric multivariate calibration methods. Bioimpacts, 2011, 1(1), 53-62.
[PMID: 23678408]
[132]
Bobin-Dubigeon, C.; Campone, M.; Rossignol, E.; Salaun, E.; Amiand, M-B.; Bard, J-M. New UPLC-MS/MS assay for the determination of tamoxifen and its metabolites in human plasma, application to patients. Future Sci. OA, 2019, 5(5), FSO374.
[PMID: 31245038]
[133]
Rahayu, ST; Harahap, Y; Mun'im, A; Sutandyo, N Determination of tamoxifen and 4-hydroxytamoxifen levels in rat plasma after administration of the ethyl acetate fraction of myrmecodia erinaceae Becc. using liquid chromatography tandem massspectrometry. 2018.
[134]
Deepakumari, HN; Revanasiddappa, HD Spectrophotometric estimation of flutamide in pure and in pharmaceutical preparations. Int. Sch. Res. Notices, 2012, 2012.
[135]
Fathima, M.Z.; Shanmugarajan, T.; Somasundaram, I. Development of analytical methods for the determination of flutamide in bulk drug and its pharmaceutical formulation. Int. J. Pharm. Tech. Res., 2015, 8, 146-153.
[136]
Khalil, HA; El-Yazbi, AF; Belal, TS; Hamdy, DA High performance liquid chromatographic assay for the simultaneous determination of posaconazole and vincristine in rat plasma. 0=Int J Anal Chem., 2015, 2015.
[137]
Rodrigues, A.S.; Lopes, A.R.; Leão, A.; Couceiro, A.; Ribeiro, A.B.S.; Ramos, F.; Noronha da Silveira, M.I.; Resende de Oliveira, C. Development of an analytical methodology for simultaneous determination of vincristine and doxorubicin in pharmaceutical preparations for oncology by HPLC-UV. J. Chromatogr. Sci., 2009, 47(5), 387-391.
[PMID: 19476707]
[138]
Rezende, V.M.; Rivellis, A.J.; Gomes, M.M.; Dörr, F.A.; Novaes, M.M.Y.; Nardinelli, L.; Costa, A.L.; Chamone, D.A.; Bendit, I. Determination of serum levels of imatinib mesylate in patients with chronic myeloid leukemia: Validation and application of a new analytical method to monitor treatment compliance. Rev. Bras. Hematol. Hemoter., 2013, 35(2), 103-108.
[PMID: 23741187]
[139]
Sandhya, P.; Vishnu, P.; Shyamala, N.; Devi, A.; Sharma, J. Method Development and Validation of Imatinib mesylate in Pharmaceutical dosage form by RP-HPLC. World J. Pharm. Pharm. Sci., 2013, 3(1), 682-688.

© 2024 Bentham Science Publishers | Privacy Policy