Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Evaluation of the Effect of Chelating Arms and Carrier Agents on t he Radiotoxicity of TAT Agents

Author(s): Soghra Farzipour, Zahra Shaghaghi, Marziyeh Raeispour, Maryam Alvandi*, Fatemeh Jalali and Amirhossein Yazdi

Volume 16, Issue 1, 2023

Published on: 03 October, 2022

Page: [2 - 22] Pages: 21

DOI: 10.2174/1874471015666220510161047

Price: $65

Open Access Journals Promotions 2
Abstract

Targeted Alpha Therapy (TAT) is considered an evolving therapeutic option for cancer cells, in which a carrier molecule labeling with an α-emitter radionuclide make the bond with a specific functional or molecular target. α-particles with high Linear Energy Transfer (LET) own an increased Relative Biological Effectiveness (RBE) over common β-emitting radionuclides. Normal tissue toxicity due to non-specific uptake of mother and daughter α-emitter radionuclides seems to be the main conflict in clinical applications. The present survey reviews the available preclinical and clinical studies investigating healthy tissue toxicity of the applicable α -emitters and particular strategies proposed for optimizing targeted alpha therapy success in cancer patients.

Keywords: Targeted alpha therapy, radiotoxicity, radiobiology, dosimetry, chelator, carrier.

Graphical Abstract
[1]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[2]
Nourollahi, S.; Ghate, A.; Kim, M. Optimal modality selection in external beam radiotherapy. Math. Med. Biol., 2019, 36(3), 361-380.
[http://dx.doi.org/10.1093/imammb/dqy013] [PMID: 30192934]
[3]
Sgouros, G. Radiopharmaceutical therapy. Health Phys., 2019, 116(2), 175-178.
[http://dx.doi.org/10.1097/HP.0000000000001000] [PMID: 30585960]
[4]
Baidoo, K.E.; Yong, K.; Brechbiel, M.W. Molecular pathways: Targeted α-particle radiation therapy. Clin. Cancer Res., 2013, 19(3), 530-537.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0298] [PMID: 23230321]
[5]
Farzipour, S.; Shaghaghi, Z.; Abbasi, S.; Albooyeh, H.; Alvandi, M. Recent achievements about targeted alpha therapy-based targeting vectors and chelating agents. Anticancer. Agents Med. Chem., 2022, 22(8), 1496-1510.
[PMID: 34315393]
[6]
Allen, B.J.; Huang, C.Y.; Clarke, R.A. Targeted alpha anticancer therapies: Update and future prospects. Biologics, 2014, 8, 255-267.
[PMID: 25422581]
[7]
Jeon, J. Review of therapeutic applications of radiolabeled functional nanomaterials. Int. J. Mol. Sci., 2019, 20(9), E2323.
[http://dx.doi.org/10.3390/ijms20092323] [PMID: 31083402]
[8]
Dekempeneer, Y.; Keyaerts, M.; Krasniqi, A.; Puttemans, J.; Muyldermans, S.; Lahoutte, T.; D’huyvetter, M.; Devoogdt, N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther., 2016, 16(8), 1035-1047.
[http://dx.doi.org/10.1080/14712598.2016.1185412] [PMID: 27145158]
[9]
Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for radiotherapy: From basic radiochemistry to clinical studies-part 1. J. Nucl. Med., 2018, 59(6), 878-884.
[http://dx.doi.org/10.2967/jnumed.116.186338] [PMID: 29545378]
[10]
Ferrier, M.G.; Radchenko, V.; Wilbur, D.S. Radiochemical aspects of alpha emitting radionuclides for medical application. Radiochim. Acta, 2019, 107(9-11), 1065-1085.
[http://dx.doi.org/10.1515/ract-2019-0005]
[11]
Zalutsky, M.R.; Pruszynski, M. Astatine-211: Production and availability. Curr. Radiopharm., 2011, 4(3), 177-185.
[http://dx.doi.org/10.2174/1874471011104030177] [PMID: 22201707]
[12]
Radchenko, V.; Morgenstern, A.; Jalilian, A.; Ramogida, C.; Cutler, C. S.; Duchemin, C.; Hoehr, C.; Haddad, F.; Bruchertseifer, F.; Gausemel, H.; Yang, H.; Osso, J. A.; Washiyama, K.; Czerwinski, K.; Leufgen, K.; Pruszynski, M.; Valzdorf, O.; Causey, P.; Schaffer, P.; Perron, R.; Samsonov, M.; Wilbur, D. S.; Stora, T.; Li, Y. Production and supply of alpha particles emitting radionuclides for Targeted Alpha Therapy (TAT). J. Nucl. Med., 2022, 12(11), 1495-1503.
[13]
Yang, H.; Wilson, J.J.; Orvig, C.; Li, Y.; Wilbur, D.S.; Ramogida, C.; Radchenko, V.; Schaffer, P. Harnessing alpha-emitting radionuclides for therapy: Radiolabeling method review. J. Nucl. Med., 2022, 63(1), 5-13.
[PMID: 34503958]
[14]
Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for radiotherapy: From basic radiochemistry to clinical studies-part 2. J. Nucl. Med., 2018, 59(7), 1020-1027.
[http://dx.doi.org/10.2967/jnumed.117.204651] [PMID: 29496984]
[15]
Wenzl, T.; Wilkens, J.J. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications. Radiat. Oncol., 2011, 6(1), 171.
[http://dx.doi.org/10.1186/1748-717X-6-171] [PMID: 22172079]
[16]
Huang, C.Y.; Guatelli, S.; Oborn, B.M.; Allen, B.J. Microdosimetry for targeted alpha therapy of cancer. Comput. Math. Methods Med., 2012, 2012, 153212.
[http://dx.doi.org/10.1155/2012/153212] [PMID: 22988479]
[17]
de Kruijff, R.M.; Wolterbeek, H.T.; Denkova, A.G. A critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals (Basel), 2015, 8(2), 321-336.
[http://dx.doi.org/10.3390/ph8020321] [PMID: 26066613]
[18]
Jaggi, J.S.; Kappel, B.J.; McDevitt, M.R.; Sgouros, G.; Flombaum, C.D.; Cabassa, C.; Scheinberg, D.A. Efforts to control the errant products of a targeted in vivo generator. Cancer Res., 2005, 65(11), 4888-4895.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3096] [PMID: 15930310]
[19]
Vennart, J. Limits for intakes of radionuclides by workers: ICRP Publication 30. Health Phys., 1981, 40(4), 477-484.
[http://dx.doi.org/10.1097/00004032-198104000-00005] [PMID: 7228699]
[20]
Lassmann, M.; Nosske, D.; Reiners, C. Therapy of ankylosing spondylitis with 224Ra-radium chloride: Dosimetry and risk considerations. Radiat. Environ. Biophys., 2002, 41(3), 173-178.
[http://dx.doi.org/10.1007/s00411-002-0164-5] [PMID: 12373325]
[21]
Henriksen, G.; Fisher, D.R.; Roeske, J.C.; Bruland, Ø.S.; Larsen, R.H. Targeting of osseous sites with alpha-emitting 223Ra: Comparison with the beta-emitter 89Sr in mice. J. Nucl. Med., 2003, 44(2), 252-259.
[PMID: 12571218]
[22]
Age-dependent doses to members of the public from intake of radionuclides: Part 2. Ingestion dose coefficients. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. Ann. ICRP, 1993, 23(3-4), 1-167.
[PMID: 7978694]
[23]
Amato, E.; Italiano, A.; Auditore, L.; Baldari, S. Radiation protection from external exposure to radionuclides: A Monte Carlo data handbook. Phys. Med., 2018, 46, 160-167.
[http://dx.doi.org/10.1016/j.ejmp.2018.02.003] [PMID: 29519404]
[24]
Wang, H.; Yu, K.N.; Hou, J.; Liu, Q.; Han, W. Radiation-induced bystander effect: Early process and rapid assessment. Cancer Lett., 2015, 356(1), 137-144.
[http://dx.doi.org/10.1016/j.canlet.2013.09.031] [PMID: 24139967]
[25]
Brady, D.; O’Sullivan, J.M.; Prise, K.M. What is the Role of the Bystander Response in Radionuclide Therapies? Front. Oncol., 2013, 3, 215.
[http://dx.doi.org/10.3389/fonc.2013.00215] [PMID: 23967404]
[26]
Paillas, S.; Ladjohounlou, R.; Lozza, C.; Pichard, A.; Boudousq, V.; Jarlier, M.; Sevestre, S.; Le Blay, M.; Deshayes, E.; Sosabowski, J.; Chardès, T.; Navarro-Teulon, I.; Mairs, R.J.; Pouget, J.P. Localized irradiation of cell membrane by auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects. Antioxid. Redox Signal., 2016, 25(8), 467-484.
[http://dx.doi.org/10.1089/ars.2015.6309] [PMID: 27224059]
[27]
Chouin, N.; Bernardeau, K.; Bardiès, M.; Faivre-Chauvet, A.; Bourgeois, M.; Apostolidis, C.; Morgenstern, A.; Lisbona, A.; Chérel, M.; Davodeau, F. Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. II. Application of the microdosimetric model to experimental results. Radiat. Res., 2009, 171(6), 664-673.
[http://dx.doi.org/10.1667/RR1536.1] [PMID: 19580473]
[28]
Wang, R.; Coderre, J.A. A bystander effect in alpha-particle irradiations of human prostate tumor cells. Radiat. Res., 2005, 164(6), 711-722.
[http://dx.doi.org/10.1667/3475.1] [PMID: 16296877]
[29]
Aston, W.J.; Hope, D.E.; Nowak, A.K.; Robinson, B.W.; Lake, R.A.; Lesterhuis, W.J. A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice. BMC Cancer, 2017, 17(1), 684.
[http://dx.doi.org/10.1186/s12885-017-3677-7] [PMID: 29037232]
[30]
Dahle, J.; Jonasdottir, T.J.; Heyerdahl, H.; Nesland, J.M.; Borrebaek, J.; Hjelmerud, A.K.; Larsen, R.H. Assessment of long-term radiotoxicity after treatment with the low-dose-rate alpha-particle-emitting radioimmunoconjugate (227)Th-rituximab. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(1), 93-102.
[http://dx.doi.org/10.1007/s00259-009-1197-7] [PMID: 19593562]
[31]
Peltek, O.O.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S. Current outlook on radionuclide delivery systems: From design consideration to translation into clinics. J. Nanobiotechnology, 2019, 17(1), 90.
[http://dx.doi.org/10.1186/s12951-019-0524-9] [PMID: 31434562]
[32]
Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev., 2014, 43(1), 260-290.
[http://dx.doi.org/10.1039/C3CS60304K] [PMID: 24173525]
[33]
Guérard, F.; Gestin, J.F.; Brechbiel, M.W. Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy. Cancer Biother. Radiopharm., 2013, 28(1), 1-20.
[http://dx.doi.org/10.1089/cbr.2012.1292] [PMID: 23075373]
[34]
McLendon, R.E.; Archer, G.E.; Garg, P.K.; Bigner, D.D.; Zalutsky, M.R. Radiotoxicity of systematically administered [211At]astatide in B6C3F1 and BALB/c (nu/nu) mice: A long-term survival study with histologic analysis. Int. J. Radiat. Oncol. Biol. Phys., 1996, 35(1), 69-80.
[http://dx.doi.org/10.1016/S0360-3016(96)85013-9] [PMID: 8641929]
[35]
Zalutsky, M.R.; Reardon, D.A.; Akabani, G.; Coleman, R.E.; Friedman, A.H.; Friedman, H.S.; McLendon, R.E.; Wong, T.Z.; Bigner, D.D. Clinical experience with alpha-particle emitting 211At: Treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J. Nucl. Med., 2008, 49(1), 30-38.
[http://dx.doi.org/10.2967/jnumed.107.046938] [PMID: 18077533]
[36]
Andersson, H.; Cederkrantz, E.; Bäck, T.; Divgi, C.; Elgqvist, J.; Himmelman, J.; Horvath, G.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Palm, S.; Hultborn, R. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2--a phase I study. J. Nucl. Med., 2009, 50(7), 1153-1160.
[http://dx.doi.org/10.2967/jnumed.109.062604] [PMID: 19525452]
[37]
Dekempeneer, Y.; Bäck, T.; Aneheim, E.; Jensen, H.; Puttemans, J.; Xavier, C.; Keyaerts, M.; Palm, S.; Albertsson, P.; Lahoutte, T.; Caveliers, V.; Lindegren, S.; D’Huyvetter, M. Labeling of Anti-HER2 nanobodies with astatine-211: Optimization and the effect of different coupling reagents on their in vivo behavior. Mol. Pharm., 2019, 16(8), 3524-3533.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00354] [PMID: 31268724]
[38]
Green, D.J.; Shadman, M.; Jones, J.C.; Frayo, S.L.; Kenoyer, A.L.; Hylarides, M.D.; Hamlin, D.K.; Wilbur, D.S.; Balkan, E.R.; Lin, Y.; Miller, B.W.; Frost, S.H.; Gopal, A.K.; Orozco, J.J.; Gooley, T.A.; Laird, K.L.; Till, B.G.; Bäck, T.; Sandmaier, B.M.; Pagel, J.M.; Press, O.W. Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model. Blood, 2015, 125(13), 2111-2119.
[http://dx.doi.org/10.1182/blood-2014-11-612770] [PMID: 25628467]
[39]
Kiess, A. P.; Minn, I.; Vaidyanathan, G.; Hobbs, R. F.; Josefsson, A.; Shen, C.; Brummet, M.; Chen, Y.; Choi, J.; Koumarianou, E.; Baidoo, K.; Brechbiel, M. W.; Mease, R. C.; Sgouros, G.; Zalutsky, M. R.; Pomper, M. G. (2S)-2-(3-(1-Carboxy-5-(4-211At-Astatobenzamido)Pentyl)Ureido)-Pentanedioic Acid for PSMA-Targeted α-Particle Radiopharmaceutical Therapy. J. Nucl. Med., 2016, 57(10), 1569-1575.
[http://dx.doi.org/10.2967/jnumed.116.174300] [PMID: 27230930]
[40]
Sudo, H.; Tsuji, A.B.; Sugyo, A.; Nagatsu, K.; Minegishi, K.; Ishioka, N.S.; Ito, H.; Yoshinaga, K.; Higashi, T. Preclinical evaluation of the acute radiotoxicity of the α-emitting molecular-targeted therapeutic agent 211At-MABG for the treatment of malignant pheochromocytoma in normal mice. Transl. Oncol., 2019, 12(7), 879-888.
[http://dx.doi.org/10.1016/j.tranon.2019.04.008] [PMID: 31078058]
[41]
Ohshima, Y.; Sudo, H.; Watanabe, S.; Nagatsu, K.; Tsuji, A.B.; Sakashita, T.; Ito, Y.M.; Yoshinaga, K.; Higashi, T.; Ishioka, N.S. Antitumor effects of radionuclide treatment using α-emitting meta-211At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(6), 999-1010.
[http://dx.doi.org/10.1007/s00259-017-3919-6] [PMID: 29350258]
[42]
Makvandi, M.; Lieberman, B.P.; LeGeyt, B.; Hou, C.; Mankoff, D.A.; Mach, R.H.; Pryma, D.A. The pre-clinical characterization of an alpha-emitting sigma-2 receptor targeted radiotherapeutic. Nucl. Med. Biol., 2016, 43(1), 35-41.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.10.001] [PMID: 26702785]
[43]
Palm, S.; Bäck, T.; Aneheim, E.; Hallqvist, A.; Hultborn, R.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Albertsson, P. Evaluation of therapeutic efficacy of 211At-labeled farletuzumab in an intraperitoneal mouse model of disseminated ovarian cancer. Transl. Oncol., 2021, 14(1), 100873.
[http://dx.doi.org/10.1016/j.tranon.2020.100873] [PMID: 32987283]
[44]
Aoki, M.; Zhao, S.; Takahashi, K.; Washiyama, K.; Ukon, N.; Tan, C.; Shimoyama, S.; Nishijima, K.I.; Ogawa, K. Preliminary evaluation of astatine-211-labeled bombesin derivatives for targeted alpha therapy. Chem. Pharm. Bull. (Tokyo), 2020, 68(6), 538-545.
[http://dx.doi.org/10.1248/cpb.c20-00077] [PMID: 32475858]
[45]
Vaidyanathan, G.; Affleck, D.J.; Bigner, D.D.; Zalutsky, M.R. N-succinimidyl 3-[211At]astato-4-guanidinomethylbenzoate: An acylation agent for labeling internalizing antibodies with alpha-particle emitting 211At. Nucl. Med. Biol., 2003, 30(4), 351-359.
[http://dx.doi.org/10.1016/S0969-8051(03)00005-2] [PMID: 12767391]
[46]
Robinson, M.K.; Shaller, C.; Garmestani, K.; Plascjak, P.S.; Hodge, K.M.; Yuan, Q.A.; Marks, J.D.; Waldmann, T.A.; Brechbiel, M.W.; Adams, G.P. Effective treatment of established human breast tumor xenografts in immunodeficient mice with a single dose of the alpha-emitting radioisotope astatine-211 conjugated to anti-HER2/neu diabodies. Clin. Cancer Res., 2008, 14(3), 875-882.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1250] [PMID: 18245551]
[47]
Choi, J.; Vaidyanathan, G.; Koumarianou, E.; Kang, C.M.; Zalutsky, M.R. Astatine-211 labeled anti-HER2 5F7 single domain antibody fragment conjugates: Radiolabeling and preliminary evaluation. Nucl. Med. Biol., 2018, 56, 10-20.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.09.003] [PMID: 29031230]
[48]
Steffen, A.C.; Almqvist, Y.; Chyan, M.K.; Lundqvist, H.; Tolmachev, V.; Wilbur, D.S.; Carlsson, J. Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Oncol. Rep., 2007, 17(5), 1141-1147.
[http://dx.doi.org/10.3892/or.17.5.1141] [PMID: 17390057]
[49]
Mease, R. C.; Kang, C.; Kumar, V.; Ray, S.; Minn, I. L.; Brummet, M.; Gabrielson, K.; Feng, Y.; Park, A.; Kiess, A.; Sgouros, G.; Vaidyanathan, G.; Zalutsky, M.; Pomper, M. G. An improved 211At-labeled agent for PSMA-targeted alpha therapy. J. Nuc. Med., 2022, 63(2), 259-267.
[50]
Larsen, R.H.; Slade, S.; Zalutsky, M.R. Blocking [211At]astatide accumulation in normal tissues: Preliminary evaluation of seven potential compounds. Nucl. Med. Biol., 1998, 25(4), 351-357.
[http://dx.doi.org/10.1016/S0969-8051(97)00230-8] [PMID: 9639296]
[51]
Morgenstern, A.; Bruchertseifer, F.; Apostolidis, C. Targeted alpha therapy with 213Bi. Curr. Radiopharm., 2011, 4(4), 295-305.
[http://dx.doi.org/10.2174/1874471011104040295] [PMID: 22202152]
[52]
Norenberg, J.P.; Krenning, B.J.; Konings, I.R.; Kusewitt, D.F.; Nayak, T.K.; Anderson, T.L.; de Jong, M.; Garmestani, K.; Brechbiel, M.W.; Kvols, L.K. 213Bi-[DOTA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin. Cancer Res., 2006, 12(3 Pt 1), 897-903.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1264] [PMID: 16467104]
[53]
Wild, D.; Frischknecht, M.; Zhang, H.; Morgenstern, A.; Bruchertseifer, F.; Boisclair, J.; Provencher-Bolliger, A.; Reubi, J.C.; Maecke, H.R. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res., 2011, 71(3), 1009-1018.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1186] [PMID: 21245097]
[54]
Chérel, M.; Gouard, S.; Gaschet, J.; Saï-Maurel, C.; Bruchertseifer, F.; Morgenstern, A.; Bourgeois, M.; Gestin, J.F.; Bodéré, F.K.; Barbet, J.; Moreau, P.; Davodeau, F. 213Bi radioimmunotherapy with an anti-mCD138 monoclonal antibody in a murine model of multiple myeloma. J. Nucl. Med., 2013, 54(9), 1597-1604.
[http://dx.doi.org/10.2967/jnumed.112.111997] [PMID: 24003167]
[55]
Rosenblat, T.L.; McDevitt, M.R.; Mulford, D.A.; Pandit-Taskar, N.; Divgi, C.R.; Panageas, K.S.; Heaney, M.L.; Chanel, S.; Morgenstern, A.; Sgouros, G.; Larson, S.M.; Scheinberg, D.A.; Jurcic, J.G. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin. Cancer Res., 2010, 16(21), 5303-5311.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0382] [PMID: 20858843]
[56]
Raja, C.; Graham, P.; Abbas Rizvi, S.M.; Song, E.; Goldsmith, H.; Thompson, J.; Bosserhoff, A.; Morgenstern, A.; Apostolidis, C.; Kearsley, J.; Reisfeld, R.; Allen, B.J. Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther., 2007, 6(6), 846-852.
[http://dx.doi.org/10.4161/cbt.6.6.4089] [PMID: 17495524]
[57]
Sathekge, M.; Knoesen, O.; Meckel, M.; Modiselle, M.; Vorster, M.; Marx, S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 1099-1100.
[http://dx.doi.org/10.1007/s00259-017-3657-9] [PMID: 28255795]
[58]
Nonnekens, J.; Chatalic, K.L.; Molkenboer-Kuenen, J.D.; Beerens, C.E.; Bruchertseifer, F.; Morgenstern, A.; Veldhoven-Zweistra, J.; Schottelius, M.; Wester, H.J.; van Gent, D.C.; van Weerden, W.M.; Boerman, O.C.; de Jong, M.; Heskamp, S. 213Bi-Labeled Prostate-Specific Membrane Antigen-Targeting Agents Induce DNA Double-Strand Breaks in Prostate Cancer Xenografts. Cancer Biother. Radiopharm., 2017, 32(2), 67-73.
[http://dx.doi.org/10.1089/cbr.2016.2155] [PMID: 28301262]
[59]
Cordier, D.; Forrer, F.; Bruchertseifer, F.; Morgenstern, A.; Apostolidis, C.; Good, S.; Müller-Brand, J.; Mäcke, H.; Reubi, J.C.; Merlo, A. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: A pilot trial. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(7), 1335-1344.
[http://dx.doi.org/10.1007/s00259-010-1385-5] [PMID: 20157707]
[60]
Kratochwil, C.; Giesel, F.L.; Bruchertseifer, F.; Mier, W.; Apostolidis, C.; Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(11), 2106-2119.
[http://dx.doi.org/10.1007/s00259-014-2857-9] [PMID: 25070685]
[61]
Chan, H.S.; Konijnenberg, M.W.; Daniels, T.; Nysus, M.; Makvandi, M.; de Blois, E.; Breeman, W.A.; Atcher, R.W.; de Jong, M.; Norenberg, J.P. Improved safety and efficacy of 213Bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with L-lysine. EJNMMI Res., 2016, 6(1), 83.
[http://dx.doi.org/10.1186/s13550-016-0240-5] [PMID: 27873240]
[62]
Meredith, R.F.; Torgue, J.J.; Rozgaja, T.A.; Banaga, E.P.; Bunch, P.W.; Alvarez, R.D.; Straughn, J.M., Jr; Dobelbower, M.C.; Lowy, A.M. Safety and outcome measures of first-in-human intraperitoneal α radioimmunotherapy with 212Pb-TCMC-trastuzumab. Am. J. Clin. Oncol., 2018, 41(7), 716-721.
[http://dx.doi.org/10.1097/COC.0000000000000353] [PMID: 27906723]
[63]
Drecoll, E.; Gaertner, F.C.; Miederer, M.; Blechert, B.; Vallon, M.; Müller, J.M.; Alke, A.; Seidl, C.; Bruchertseifer, F.; Morgenstern, A.; Senekowitsch-Schmidtke, R.; Essler, M. Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells. PLoS One, 2009, 4(5), e5715.
[http://dx.doi.org/10.1371/journal.pone.0005715] [PMID: 19479088]
[64]
Adams, G.P.; Shaller, C.C.; Chappell, L.L.; Wu, C.; Horak, E.M.; Simmons, H.H.; Litwin, S.; Marks, J.D.; Weiner, L.M.; Brechbiel, M.W. Delivery of the alpha-emitting radioisotope bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nucl. Med. Biol., 2000, 27(4), 339-346.
[http://dx.doi.org/10.1016/S0969-8051(00)00103-7] [PMID: 10938467]
[65]
Allen, B.J.; Rizvi, S.M.; Qu, C.F.; Smith, R.C. Targeted alpha therapy approach to the management of pancreatic cancer. Cancers (Basel), 2011, 3(2), 1821-1843.
[http://dx.doi.org/10.3390/cancers3021821] [PMID: 24212784]
[66]
Milenic, D.E.; Brady, E.D.; Garmestani, K.; Albert, P.S.; Abdulla, A.; Brechbiel, M.W. Improved efficacy of alpha-particle-targeted radiation therapy: Dual targeting of human epidermal growth factor receptor-2 and tumor-associated glycoprotein 72. Cancer, 2010, 116(4)(Suppl.), 1059-1066.
[http://dx.doi.org/10.1002/cncr.24793] [PMID: 20127951]
[67]
Sandmaier, B.M.; Bethge, W.A.; Wilbur, D.S.; Hamlin, D.K.; Santos, E.B.; Brechbiel, M.W.; Fisher, D.R.; Storb, R. Bismuth 213-labeled anti-CD45 radioimmunoconjugate to condition dogs for nonmyeloablative allogeneic marrow grafts. Blood, 2002, 100(1), 318-326.
[http://dx.doi.org/10.1182/blood-2001-12-0322] [PMID: 12070043]
[68]
Li, Y.; Tian, Z.; Rizvi, S.M.; Bander, N.H.; Allen, B.J. In vitro and preclinical targeted alpha therapy of human prostate cancer with Bi-213 labeled J591 antibody against the prostate specific membrane antigen. Prostate Cancer Prostatic Dis., 2002, 5(1), 36-46.
[http://dx.doi.org/10.1038/sj.pcan.4500543] [PMID: 15195129]
[69]
Bethge, W.A.; Wilbur, D.S.; Storb, R.; Hamlin, D.K.; Santos, E.B.; Brechbiel, M.W.; Fisher, D.R.; Sandmaier, B.M. Selective T-cell ablation with bismuth-213-labeled anti-TCRalphabeta as nonmyeloablative conditioning for allogeneic canine marrow transplantation. Blood, 2003, 101(12), 5068-5075.
[http://dx.doi.org/10.1182/blood-2002-12-3867] [PMID: 12609833]
[70]
Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med., 2016, 57(12), 1941-1944.
[http://dx.doi.org/10.2967/jnumed.116.178673] [PMID: 27390158]
[71]
Allen, B.J.; Raja, C.; Rizvi, S.; Li, Y.; Tsui, W.; Graham, P.; Thompson, J.F.; Reisfeld, R.A.; Kearsley, J.; Morgenstern, A.; Apostolidis, C. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther., 2005, 4(12), 1318-1324.
[http://dx.doi.org/10.4161/cbt.4.12.2251] [PMID: 16322682]
[72]
Allen, B.J.; Singla, A.A.; Rizvi, S.M.; Graham, P.; Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A. Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy, 2011, 3(9), 1041-1050.
[http://dx.doi.org/10.2217/imt.11.97] [PMID: 21913827]
[73]
Banerjee, S.R.; Lisok, A.; Minn, I.; Josefsson, A.; Kumar, V.; Brummet, M.; Boinapally, S.; Brayton, C.; Mease, R.C.; Sgouros, G.; Hobbs, R.F.; Pomper, M.G. Preclinical Evaluation of 213Bi- and 225Ac-Labeled Low-Molecular-Weight Compounds for Radiopharmaceutical Therapy of Prostate Cancer. J. Nucl. Med., 2021, 62(7), 980-988.
[http://dx.doi.org/10.2967/jnumed.120.256388] [PMID: 33246975]
[74]
Davis, I.A.; Glowienka, K.A.; Boll, R.A.; Deal, K.A.; Brechbiel, M.W.; Stabin, M.; Bochsler, P.N.; Mirzadeh, S.; Kennel, S.J. Comparison of 225actinium chelates: Tissue distribution and radiotoxicity. Nucl. Med. Biol., 1999, 26(5), 581-589.
[http://dx.doi.org/10.1016/S0969-8051(99)00024-4] [PMID: 10473198]
[75]
Beyer, G.J.; Bergmann, R.; Schomäcker, K.; Rösch, F.; Schäfer, G.; Kulikov, E.V.; Novgorodov, A.F. Comparison of the Biodistribution of 225Ac and Radio-Lanthanides as Citrate Complexes. Isotopenpraxis Isotopes in Environmental and Health Studies, 1990, 26(3), 111-114.
[http://dx.doi.org/10.1080/10256019008624245]
[76]
McDevitt, M.R.; Ma, D.; Simon, J.; Frank, R.K.; Scheinberg, D.A. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl. Radiat. Isot., 2002, 57(6), 841-847.
[http://dx.doi.org/10.1016/S0969-8043(02)00167-7] [PMID: 12406626]
[77]
Makvandi, M.; Dupis, E.; Engle, J.W.; Nortier, F.M.; Fassbender, M.E.; Simon, S.; Birnbaum, E.R.; Atcher, R.W.; John, K.D.; Rixe, O.; Norenberg, J.P. Alpha-emitters and targeted alpha therapy in oncology: From basic science to clinical investigations. Target. Oncol., 2018, 13(2), 189-203.
[http://dx.doi.org/10.1007/s11523-018-0550-9] [PMID: 29423595]
[78]
Kennel, S.J.; Chappell, L.L.; Dadachova, K.; Brechbiel, M.W.; Lankford, T.K.; Davis, I.A.; Stabin, M.; Mirzadeh, S. Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors. Cancer Biother. Radiopharm., 2000, 15(3), 235-244.
[http://dx.doi.org/10.1089/108497800414329] [PMID: 10941530]
[79]
Song, H.; Hobbs, R.F.; Vajravelu, R.; Huso, D.L.; Esaias, C.; Apostolidis, C.; Morgenstern, A.; Sgouros, G. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: Comparing efficacy with 213Bi and 90Y. Cancer Res., 2009, 69(23), 8941-8948.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1828] [PMID: 19920193]
[80]
Agrawal, S. The role of 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: Is it the new beginning. Indian J. Urol., 2020, 36(1), 69-70.
[http://dx.doi.org/10.4103/iju.IJU_266_19] [PMID: 31983833]
[81]
Tafreshi, N.; Pandya, D.; Doligalski, M.; Budzevich, M.; McLaughlin, M.; Morse, D.; Wadas, T. 225Ac-DOTA-MC1RL, a potential radiotherapy for the treatment of uveal melanoma. J. Nucl. Med., 2018, 59(Suppl. 1), 316-316.
[82]
Rosenblat, T.L.; McDevitt, M.R.; Pandit-Taskar, N.; Carrasquillo, J.A.; Chanel, S.; Frattini, M.G.; Larson, S.M.; Scheinberg, D.A.; Jurcic, J.G.; Phase, I. Trial of the targeted alpha-particle nano-generator actinium-225 (225Ac)-HuM195 (Anti-CD33) in Acute Myeloid Leukemia (AML). Blood, 2007, 110(11), 910-910.
[http://dx.doi.org/10.1182/blood.V110.11.910.910]
[83]
Jurcic, J.G.; Levy, M.Y.; Park, J.H.; Ravandi, F.; Perl, A.E.; Pagel, J.M.; Smith, B.D.; Estey, E.H.; Kantarjian, H.; Cicic, D.; Scheinberg, D.A.; Phase, I. Trial of targeted alpha-particle therapy with Actinium-225 (225Ac)-Lintuzumab and Low-Dose Cytarabine (LDAC) in patients age 60 or older with untreated Acute Myeloid Leukemia (AML). Blood, 2016, 128(22), 4050-4050.
[http://dx.doi.org/10.1182/blood.V128.22.4050.4050]
[84]
Borchardt, P.E.; Yuan, R.R.; Miederer, M.; McDevitt, M.R.; Scheinberg, D.A. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res., 2003, 63(16), 5084-5090.
[PMID: 12941838]
[85]
Singh Jaggi, J.; Henke, E.; Seshan, S.V.; Kappel, B.J.; Chattopadhyay, D.; May, C.; McDevitt, M.R.; Nolan, D.; Mittal, V.; Benezra, R.; Scheinberg, D.A. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization. PLoS One, 2007, 2(3), e267.
[http://dx.doi.org/10.1371/journal.pone.0000267] [PMID: 17342201]
[86]
Miederer, M.; McDevitt, M.R.; Sgouros, G.; Kramer, K.; Cheung, N.K.; Scheinberg, D.A. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J. Nucl. Med., 2004, 45(1), 129-137.
[PMID: 14734685]
[87]
Miederer, M.; Henriksen, G.; Alke, A.; Mossbrugger, I.; Quintanilla-Martinez, L.; Senekowitsch-Schmidtke, R.; Essler, M. Preclinical evaluation of the alpha-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. Clin. Cancer Res., 2008, 14(11), 3555-3561.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4647] [PMID: 18519789]
[88]
Merkx, R.; Heskamp, S.; Mulders, P.F.; Rijpkema, M.; Oosterwijk, E.; Wheatcroft, M.; Kip, A.; Morgenstern, A.; Bruchertseifer, F. 225Ac-labeled girentuximab for targeted alpha therapy of CAIX-expressing renal cell cancer xenografts. J. Med. Imaging Radiat. Sci., 2019, 50.
[89]
Yadav, M.P.; Ballal, S.; Sahoo, R.K.; Tripathi, M.; Seth, A.; Bal, C. Efficacy and safety of 225Ac-PSMA-617 targeted alpha therapy in metastatic castration-resistant Prostate Cancer patients. Theranostics, 2020, 10(20), 9364-9377.
[http://dx.doi.org/10.7150/thno.48107] [PMID: 32802197]
[90]
Larsen, R.H.; Saxtorph, H.; Skydsgaard, M.; Borrebaek, J.; Jonasdottir, T.J.; Bruland, O.S.; Klastrup, S.; Harling, R.; Ramdahl, T. Radiotoxicity of the alpha-emitting bone-seeker 223Ra injected intravenously into mice: Histology, clinical chemistry and hematology. In Vivo, 2006, 20(3), 325-331.
[PMID: 16724665]
[91]
Sartor, O.; Sharma, D. Radium and other alpha emitters in prostate cancer. Transl. Androl. Urol., 2018, 7(3), 436-444.
[http://dx.doi.org/10.21037/tau.2018.02.07] [PMID: 30050802]
[92]
Kluetz, P.G.; Pierce, W.; Maher, V.E.; Zhang, H.; Tang, S.; Song, P.; Liu, Q.; Haber, M.T.; Leutzinger, E.E.; Al-Hakim, A.; Chen, W.; Palmby, T.; Alebachew, E.; Sridhara, R.; Ibrahim, A.; Justice, R.; Pazdur, R. Radium Ra 223 dichloride injection: U.S. Food and Drug Administration drug approval summary. Clin. Cancer Res., 2014, 20(1), 9-14.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2665] [PMID: 24190979]
[93]
Suchánková, P.; Kukleva, E.; `tamberg, K.; Nykl, P.; Sakmár, M.; Vlk, M.; Kozempel, J. Determination, modeling and evaluation of kinetics of 223Ra sorption on hydroxyapatite and titanium dioxide nanoparticles. Materials (Basel), 2020, 13(8), 1915.
[94]
Henriksen, G.; Hoff, P.; Larsen, R.H. Evaluation of potential chelating agents for radium. Appl. Radiat. Isot., 2002, 56(5), 667-671.
[http://dx.doi.org/10.1016/S0969-8043(01)00282-2] [PMID: 11993940]
[95]
Nilsson, S.; Larsen, R.H.; Fosså, S.D.; Balteskard, L.; Borch, K.W.; Westlin, J.E.; Salberg, G.; Bruland, O.S. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin. Cancer Res., 2005, 11(12), 4451-4459.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2244] [PMID: 15958630]
[96]
Nilsson, S.; Strang, P.; Aksnes, A.K.; Franzèn, L.; Olivier, P.; Pecking, A.; Staffurth, J.; Vasanthan, S.; Andersson, C.; Bruland, Ø.S. A randomized, dose-response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur. J. Cancer, 2012, 48(5), 678-686.
[http://dx.doi.org/10.1016/j.ejca.2011.12.023] [PMID: 22341993]
[97]
Nilsson, S.; Cislo, P.; Sartor, O.; Vogelzang, N.J.; Coleman, R.E.; O’Sullivan, J.M.; Reuning-Scherer, J.; Shan, M.; Zhan, L.; Parker, C. Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann. Oncol., 2016, 27(5), 868-874.
[http://dx.doi.org/10.1093/annonc/mdw065] [PMID: 26912557]
[98]
Piotrowska, A.; Leszczuk, E.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy. J. Nanopart. Res., 2013, 15(11), 2082.
[http://dx.doi.org/10.1007/s11051-013-2082-7] [PMID: 24307862]
[99]
Sofou, S.; Thomas, J.L.; Lin, H.Y.; McDevitt, M.R.; Scheinberg, D.A.; Sgouros, G. Engineered liposomes for potential alpha-particle therapy of metastatic cancer. J. Nucl. Med., 2004, 45(2), 253-260.
[PMID: 14960644]
[100]
Wang, G.; de Kruijff, R.M.; Rol, A.; Thijssen, L.; Mendes, E.; Morgenstern, A.; Bruchertseifer, F.; Stuart, M.C.; Wolterbeek, H.T.; Denkova, A.G. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles. Appl. Radiat. Isot., 2014, 85, 45-53.
[http://dx.doi.org/10.1016/j.apradiso.2013.12.008] [PMID: 24374072]
[101]
Jonasdottir, T.J.; Fisher, D.R.; Borrebaek, J.; Bruland, O.S.; Larsen, R.H. First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent. Anticancer Res., 2006, 26(4B), 2841-2848.
[PMID: 16886603]
[102]
Thijssen, L.; Schaart, D.R.; de Vries, D.; Morgenstern, A.; Bruchertseifer, F.; Denkova, A.G. Polymersomes as nano-carriers to retain harmful recoil nuclides in alpha radionuclide therapy: A feasibility study. Radiochim. Acta, 2012, 100(7), 473-482.
[http://dx.doi.org/10.1524/ract.2012.1935]
[103]
Woodward, J.; Kennel, S.J.; Stuckey, A.; Osborne, D.; Wall, J.; Rondinone, A.J.; Standaert, R.F.; Mirzadeh, S. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug. Chem., 2011, 22(4), 766-776.
[http://dx.doi.org/10.1021/bc100574f] [PMID: 21434681]
[104]
McDevitt, M.R.; Ma, D.; Lai, L.T.; Simon, J.; Borchardt, P.; Frank, R.K.; Wu, K.; Pellegrini, V.; Curcio, M.J.; Miederer, M.; Bander, N.H.; Scheinberg, D.A. Tumor therapy with targeted atomic nanogenerators. Science, 2001, 294(5546), 1537-1540.
[http://dx.doi.org/10.1126/science.1064126] [PMID: 11711678]
[105]
Sgouros, G.; Ballangrud, A.M.; Jurcic, J.G.; McDevitt, M.R.; Humm, J.L.; Erdi, Y.E.; Mehta, B.M.; Finn, R.D.; Larson, S.M.; Scheinberg, D.A. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J. Nucl. Med., 1999, 40(11), 1935-1946.
[PMID: 10565792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy