We report an autonomous surveillance system with multiple networked pantilt-
zoom (PTZ) cameras assisted by a fixed wide-angle camera. The wide-angle camera
provides large but low resolution coverage and detects and tracks all moving objects in the
scene. Based on the output of the wide-angle camera, the system generates spatiotemporal
observation requests for each moving object, which are candidates for close-up views using
PTZ cameras. Due to the fact that there are usually much more objects than the number
of PTZ cameras, the system first assigns a subset of the requests/objects to each PTZ
camera. The PTZ cameras then select the parameter settings that best satisfy the assigned
competing requests to provide high resolution views of the moving objects. We propose
an approximation algorithm to solve the request assignment and the camera parameter
selection problems in real time. The effectiveness of the proposed system is validated in
comparison with an existing work using simulation. The simulation results show that in
heavy traffic scenarios, our algorithm increases the number of observed objects by over
210%.