Generic placeholder image

Current Cancer Drug Targets


ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Bone Invasive Properties of Oral Squamous Cell Carcinoma and its Interactions with Alveolar Bone Cells: An In Vitro Study

Author(s): Omel Baneen Qallandar, Faeza Ebrahimi, Farhadul Islam, Riajul Wahab, Bin Qiao, Peter Reher, Vinod Gopalan* and Alfred King-yin Lam*

Volume 19, Issue 8, 2019

Page: [631 - 640] Pages: 10

DOI: 10.2174/1568009618666181102144317

Price: $65


Background: Co-culture of cancer cells with alveolar bone cells could modulate bone invasion and destructions. However, the mechanisms of interaction between oral squamous cell carcinoma (OSCC) and bone cells remain unclear.

Objective: The aim of this study is to analyse the direct and indirect effects of OSCC cells in the stimulation of osteolytic activity and bone invasion.

Methods: Direct co-culture was achieved by culturing OSCC (TCA8113) with a primary alveolar bone cell line. In the indirect co-culture, the supernatant of TCA8113 cells was collected to culture the alveolar bone cells. To assess the bone invasion properties, in vitro assays were performed.

Results: The proliferation of co-cultured cancer cells was significantly (p<0.05) higher in comparison to the monolayer control cells. However, the proliferation rates were not significantly different between direct and indirect co-cultured cells with indirect co-cultured cells proliferated slightly more than the direct co-cultured cells. Invasion and migration capacities of co-cultured OSCC and alveolar bone cells enhanced significantly (p<0.05) when compared to that of control monolayer counterparts. Most importantly, we noted that OSCC cells directly co-cultured with alveolar bone cells stimulated pronounced bone collagen destruction. In addition, stem cells and epithelialmesenchymal transition markers have shown significant changes in their expression in co-cultured cells.

Conclusion: In conclusion, the findings of this study highlight the importance of the interaction of alveolar bone cells and OSCC cells in co-culture setting in the pathogenesis of bone invasion. This may help in the development of potential future biotherapies for bone invasion in OSCC.

Keywords: Oral squamous cell carcinoma, bone invasion, co-culturing, alveolar bone cells, stem cell markers, EMT markers.

Graphical Abstract
Harper, L.J.; Piper, K.; Common, J.; Fortune, F.; Mackenzie, I.C. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J. Oral Pathol. Med., 2007, 36, 594-603.
Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol., 2009, 45, 309-316.
Abdulmajeed, A.A.; Dalley, A.J.; Farah, C.S. Putative cancer stem cell marker expression in oral epithelial dysplasia and squamous cell carcinoma. J. Oral Pathol. Med., 2013, 42, 755-760.
de Vicente, J.C.; Rodrigo, J.P.; Rodriguez-Santamarta, T.; Lequerica-Fernández, P.; Allonca, E.; García-Pedrero, J.M. Podoplanin expression in oral leukoplakia: Tumorigenic role. Oral Oncol., 2013, 49, 598-603.
a) Reggiani-Bonetti, L.; Migaldi, M.; Boninsegna, A.; Fanali, C.; Farina, M.; Chiarini, L.; Anesi, A.; Cittadini, A.; Leocata, P.; Maccio, L.; Sgambato, A. Expression of CD133 correlates with tumor stage, lymph node metastasis and recurrence in oral Squamous Cell Carcinoma. J. Cancer Sci. Ther., 2014, 6, 94-98.
b) Prince, M.E.; Sivanandan, R.; Kaczorowski, A.; Wolf, G.T.; Kaplan, M.J.; Dalerba, P.; Weissman, I.L.; Clarke, M.F.; Ailles, L.E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA, 2007, 104, 973-978.
Marur, S.; Forastiere, A.A. Head and neck cancer: Changing epidemiology, diagnosis, and treatment. Mayo Clin. Proc., 2008, 83, 489-501.
Mannelli, G.; Gallo, O. Cancer stem cells hypothesis and stem cells in head and neck cancers. Cancer Treat. Rev., 2012, 38, 515-539.
Pandey, M.; Rao, L.P.; Das, S.R.; Mathews, A.; Chacko, E.M.; Naik, B.R. Patterns of mandibular invasion in oral squamous cell carcinoma of the mandibular region. World J. Surg. Oncol., 2007, 5, 12.
Chen, Y.L.; Kuo, S.W.; Fang, K.H.; Hao, S.P. Prognostic impact of marginal mandibulectomy in the presence of superficial bone invasion and the nononcologic outcome. Head Neck, 2011, 33, 708-713.
Ishikuro, M.; Sakamoto, K.; Kayamori, K.; Akashi, T.; Kanda, H.; Izumo, T.; Yamaguchi, A. Significance of the fibrous stroma in bone invasion by human gingival squamous cell carcinomas. Bone, 2008, 43, 621-627.
Quan, J.; Johnson, N.W.; Zhou, G.; Parsons, P.G.; Boyle, G.M.; Gao, J. Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms. Cancer Metastasis Rev., 2012, 31, 209-219.
Wu, C.; Alman, B.A. Side population cells in human cancers. Cancer Lett., 2008, 268, 1-9.
Islam, F.; Gopalan, V.; Wahab, R.; Smith, R.A.; Lam, A.K. Cancer stem cells in oesophageal squamous cell carcinoma: Identification, prognostic and treatment perspectives. Crit. Rev. Oncol. Hematol., 2015, 96, 9-19.
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119, 1420-1428.
Sethi, S.; Macoska, J.; Chen, W.; Sarkar, F.H. Molecular signature of epithelial mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am. J. Transl. Res., 2010, 3, 90-99.
Fullár, A.; Kovalszky, I.; Bitsche, M.; Romani, A.; Schartinger, V.H.; Sprinzl, G.M.; Riechelmann, H.; Dudás, J. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp. Cell Res., 2012, 318, 1517-1527.
Quan, J.; Zhou, C.; Johnson, N.W.; Francis, G.; Dahlstrom, J.E.; Gao, J. Molecular pathways involved in crosstalk between cancer cells, osteoblasts and osteoclasts in the invasion of bone by oral squamous cell carcinoma. Pathology, 2012, 44, 221-227.
Okamoto, M.; Hiura, K.; Ohe, G.; Ohba, Y.; Terai, K.; Oshikawa, T.; Furuichi, S.; Nishikawa, H.; Moriyama, K.; Yoshida, H.; Sato, M. Mechanism for bone invasion of oral cancer cells mediated by interleukin-6 in vitro and in vivo. Cancer, 2000, 89, 1966-1975.
Haase, H.R.; Ivanovski, S.; Waters, M.J.; Bartold, P.M. Growth hormone regulates osteogenic marker mRNA expression in human periodontal fibroblasts and alveolar bone-derived cells. J. Periodontal Res., 2003, 38, 366-374.
Min, R.; Tong, J.; Wenjun, Y.; Wenhu, D.; Xiaojian, Z.; Jiacai, H.; Jian, Z.; Wantao, C.; Chenping, Z. Growth inhibition and induction of apoptosis in human oral squamous cell carcinoma Tca-8113 cell lines by Shikonin was partly through the inactivation of NF-kappa B pathway. Phytother. Res., 2008, 22, 407-415.
Qian, Y.; Huang, H.Z. The role of RANKL and MMP-9 in the bone resorption caused by ameloblastoma. J. Oral Pathol. Med., 2010, 39, 592-598.
Kasem, K.; Sullivan, E.; Gopalan, V.; Salajegheh, A.; Smith, R.A.; Lam, A.K. JK1(FAM134B) represses cell migration in colon cancer: a functional study of a novel gene. Exp. Mol. Pathol., 2014, 97, 99-104.
Islam, F.; Gopalan, V.; Law, S.; Tang, J.C.; Chan, K.W.; Lam, A.K. MiR-498 in esophageal squamous cell carcinoma: Clinicopathological impacts and functional interactions. Hum. Pathol., 2017, 62, 141-151.
Islam, F.; Gopalan, V.; Wahab, R.; Smith, R.A.; Qiao, B.; Lam, A.K. Stage dependent expression and tumor suppressive function of FAM134B (JK1) in colon cancer. Mol. Carcinog., 2017, 56, 238-249.
Islam, F.; Gopalan, V.; Vider, J.; Wahab, R. Ebrahimi. F.; Lu, C.T.; Kasem, K.; Lam, A.K.Y. MicroRNA-186-5p overexpression modulates colon cancer growth by repressing the expression of the FAM134B tumour inhibitor. Exp. Cell Res., 2017, 357, 260-270.
Islam, F.; Khanam, J.A.; Khatun, M.; Zuberi, N.; Khatun, L.; Kabir, S.R.; Reza, M.A.; Ali, M.M.; Rabbi, M.A.; Gopalan, V.; Lam, A.K. p-menth-1-ene-4,7-diol (EC-1) from Eucalyptus camaldulensis Dhnh triggers apoptosis and cell cycle changes in Ehrlich ascites carcinoma cells. Phytother. Res., 2015, 29, 573-581.
Gopalan, V.; Islam, F.; Pillai, S.; Tang, J.C.; Tong, D.K.; Law, S.; Chan, K.W.; Lam, A.K. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma. Exp. Cell Res., 2016, 348, 146-154.
Hu, M.; Polyak, K. Microenvironmental regulation of cancer development. Curr. Opin. Genet. Dev., 2008, 18, 27-34.
Lim, Y.C.; Oh, S.Y.; Kim, H. Cellular characteristics of head and neck cancer stem cells in type IV collagen-coated adherent cultures. Exp. Cell Res., 2012, 318, 1104-1111.
Sung, S.Y.; Chung, L.W. Prostate tumor-stroma interaction: Molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 2002, 70, 506-521.
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 9, 1423-1437.
Tada, T.; Jimi, E.; Okamoto, M.; Ozeki, S.; Okabe, K. Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts. Int. J. Cancer, 2005, 116, 253-262.
Tada, T.; Shin, M.; Fukushima, H.; Okabe, K.; Ozeki, S.; Okamoto, M.; Jimi, E. Oral squamous cell carcinoma cells modulate osteoclast function by RANKL-dependent and independent mechanisms. Cancer Lett., 2009, 274, 126-131.
Martin, C.K.; Dirksen, W.P.; Shu, S.T.; Werbeck, J.L.; Thudi, N.K.; Yamaguchi, M.; Wolfe, T.D.; Heller, K.N.; Rosol, T.J. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma. Oral Oncol., 2012, 48, 491-499.
Kim, M.J.; Kim, K.M.; Kim, J.; Kim, K.N. BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release. PLoS One, 2014, 9, e108170.
Glogauer, J.E.; Sun, C.X.; Bradley, G.; Magalhaes, M.A. Neutrophils increase oral squamous cell carcinoma invasion through an invadopodia-dependent pathway. Cancer Immunol. Res., 2015, 3, 1218-1226.
Mishra, A.; Shiozawa, Y.; Pienta, K.J.; Taichman, R.S. Homing of cancer cells to the bone. Cancer Microenviron., 2011, 4, 221-235.
Zhang, X.; Junior, C.R.; Liu, M.; Li, F.; D’Silva, N.J.; Kirkwood, K.L. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncol., 2013, 49, 119-128.
Shimo, T.; Kubota, S.; Goda, T.; Yoshihama, Y.; Kurio, N.; Nishida, T.; Ng, P.S.; Endo, K.; Takigawa, M.; Sasakii, A. Clinical significance and pathogenic function of connective tissue growth factor (CTGF/CCN2) in osteolytic mandibular squamous cell carcinoma. Anticancer Res., 2008, 28, 2343-2348.
Sato, K.; Lee, J.W.; Sakamoto, K.; Iimura, T.; Kayamori, K.; Yasuda, H.; Shindoh, M.; Ito, M.; Omura, K.; Yamaguchi, A. RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer. Am. J. Pathol., 2013, 182, 1890-1899.
Pandruvada, S.N.; Yuvaraj, S.; Liu, X.; Sundaram, K.; Shanmugarajan, S.; Ries, W.L.; Norris, J.S.; London, S.D.; Reddy, S.V. Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. Int. J. Cancer, 2010, 126, 2319-2329.
Stuelten, C.H.; DaCosta-Byfield, S.; Arany, P.R.; Karpova, T.S.; Stetler-Stevenson, W.G.; Roberts, A.B. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J. Cell Sci., 2005, 118, 2143-2153.
Kearns, A.E.; Khosla, S.; Kostenuik, P.J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev., 2008, 29, 155-192.
Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139, 871-890.
Basu-Roy, U.; Ambrosetti, D.; Favaro, R.; Nicolis, S.K.; Mansukhani, A.; Basilico, C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ., 2010, 17, 1345-1353.
Jouppila-Mättö, A.; Närkiö-Mäkelä, M.; Soini, Y.; Pukkila, M.; Sironen, R.; Tuhkanen, H.; Mannermaa, A.; Kosma, V.M. Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma is related to cancer progression. BMC Cancer, 2011, 11, 350.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy