Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

针对人髓母细胞瘤细胞中STAT3的上游激酶

卷 19, 期 7, 2019

页: [571 - 582] 页: 12

弟呕挨: 10.2174/1568009618666181016165604

价格: $65

摘要

背景:髓母细胞瘤是儿童中最常见的恶性脑肿瘤。 尽管总体存活率有所提高,但仍缺乏有效的靶向治疗策略。 Janus家族的细胞质酪氨酸激酶(JAKs)和Src激酶,信号转导和转录激活因子3(STAT3)的上游蛋白激酶,在髓母细胞瘤发病机制中起重要作用,因此代表潜在的治疗靶点。 方法:在本报告中,我们检测了JAK1 / 2抑制剂,ruxolitinib,JAK3抑制剂,tofacitinib和两种Src抑制剂KX2-391和达沙替尼的抑制效果。 结果:这些小分子药物在体外显着降低细胞活力,抑制人髓母细胞瘤细胞的细胞迁移和集落形成。 Src抑制剂在抑制髓母细胞瘤细胞迁移能力方面比JAK抑制剂具有更强的功效。 Src抑制剂可以抑制STAT3和Src的磷酸化,而JAK抑制剂可以抑制JAK / STAT3的磷酸化。 我们还研究了Src抑制剂达沙替尼与顺铂的联合作用。 结果表明,达沙替尼通过抑制STAT3和Src,在人髓母细胞瘤细胞中与顺铂发挥协同作用。 结论:我们的研究结果表明,STAT3上游激酶,ruxolitinib,tofacitinib,KX2-391和达沙替尼的小分子抑制剂可能是治疗人髓母细胞瘤的新型和有吸引力的候选药物。

关键词: 髓母细胞瘤,Src抑制剂,JAK抑制剂,STAT3,达沙替尼,顺铂。

图形摘要
[1]
Ostrom, Q.T.; Gittleman, H.; Xu, J.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro-oncol., 2016, 18(2016), v1-v75.
[2]
Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.; Rutkowski, S.; Gajjar, A.; Ellison, D.W. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol., 2012, 123, 465-472.
[3]
Cavalli, F.M.G.; Remke, M.; Rampasek, L.; Peacock, J.; Shih, D.J.H.; Luu, B.; Garzia, L.; Torchia, J.; Nor, C.; Morrissy, A.S.; Agnihotri, S.; Thompson, Y.Y.; Kuzan-Fischer, C.M.; Farooq, H.; Isaev, K.; Daniels, C.; Cho, B.K.; Kim, S.K.; Wang, K.C.; Lee, J.Y.; Grajkowska, W.A.; Perek-Polnik, M.; Vasiljevic, A.; Faure-Conter, C.; Jouvet, A.; Giannini, C.; Nageswara Rao, A.A.; Li, K.K.W.; Ng, H.K.; Eberhart, C.G.; Pollack, I.F.; Hamilton, R.L.; Gillespie, G.Y.; Olson, J.M.; Leary, S.; Weiss, W.A.; Lach, B.; Chambless, L.B.; Thompson, R.C.; Cooper, M.K.; Vibhakar, R.; Hauser, P.; van Veelen, M.C.; Kros, J.M.; French, P.J.; Ra, Y.S.; Kumabe, T.; Lopez-Aguilar, E.; Zitterbart, K.; Sterba, J.; Finocchiaro, G.; Massimino, M.; Van Meir, E.G.; Osuka, S.; Shofuda, T.; Klekner, A.; Zollo, M.; Leonard, J.R.; Rubin, J.B.; Jabado, N.; Albrecht, S.; Mora, J.; Van Meter, T.E.; Jung, S.; Moore, A.S.; Hallahan, A.R.; Chan, J.A.; Tirapelli, D.P.C.; Carlotti, C.G.; Fouladi, M.; Pimentel, J.; Faria, C.C.; Saad, A.G.; Massimi, L.; Liau, L.M.; Wheeler, H.; Nakamura, H.; Elbabaa, S.K.; Perezpena-Diazconti, M.; Chico Ponce de Leon, F.; Robinson, S.; Zapotocky, M.; Lassaletta, A.; Huang, A.; Hawkins, C.E.; Tabori, U.; Bouffet, E.; Bartels, U.; Dirks, P.B.; Rutka, J.T.; Bader, G.D.; Reimand, J.; Goldenberg, A.; Ramaswamy, V. Taylor; M.D. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.
[4]
Ramaswamy, V.; Taylor, M.D. Medulloblastoma: From myth to molecular. J. Clin. Oncol., 2017, 35, 2355-2363.
[5]
Zollo, M. Genetics of recurrent medulloblastoma. Lancet Oncol., 2013, 14, 1147-1148.
[6]
Beier, D.; Proescholdt, M.; Reinert, C.; Pietsch, T.; Jones, D.T.; Pfister, S.M.; Hattingen, E.; Seidel, C.; Dirven, L.; Luerding, R.; Reijneveld, J. Multicenter pilot study of radio-chemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro-oncol., 2017, 20(3), 400-410.
[7]
Packer, R.J.; Sutton, L.N.; Elterman, R.; Lange, B.; Goldwein, J.; Nicholson, H.S.; Mulne, L.; Boyett, J.; D’Angio, G.; Wechsler-Jentzsch, K.; Reaman, G. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J. Neurosurg., 1994, 81(5), 690-698.
[8]
De, B.; Beal, K.; De Braganca, K.C.; Souweidane, M.M.; Dunkel, I.J.; Khakoo, Y.; Gilheeney, S.W.; DeAngelis, L.M.; Menzel, P.; Patel, S.H.; Wolden, S.L. Long-term outcomes of adult medulloblastoma patients treated with radiotherapy. J. Neurooncol., 2017, 136(1), 95-104.
[9]
Ris, M.D.; Walsh, K.; Wallace, D.; Armstrong, F.D.; Holmes, E.; Gajjar, A.; Zhou, T.; Packer, R.J. Intellectual and academic outcome following two chemotherapy regimens and radiotherapy for average-risk medulloblastoma: COG A9961. Pediatr. Blood Cancer, 2013, 60(8), 1350-1357.
[10]
von Hoff, K.; Rutkowski, S. Medulloblastoma. Curr. Treat. Options Neurol., 2012, 14(4), 416-426.
[11]
Yang, M.Y.; Lee, H.T.; Chen, C.M.; Shen, C.C.; Ma, H.I. Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. Int. J. Mol. Sci., 2014, 15(6), 11013-11029.
[12]
Kao, C.L.; Huang, P.I.; Tsai, P.H.; Tsai, M.L.; Lo, J.F.; Lee, Y.Y.; Chen, Y.J.; Chen, Y.W.; Chiou, S.H. Resveratrol-induced apoptosis and increased radiosensitivity in CD133-positive cells derived from atypical teratoid/rhabdoid tumor. Int. J. Radiat. Oncol. Biol. Phys., 2009, 74(1), 219-228.
[13]
Aoki, Y.; Feldman, G.M.; Tosato, G. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood, 2003, 101(4), 1535-1542.
[14]
Amin, H.M.; McDonnell, T.J.; Ma, Y.; Lin, Q.; Fujio, Y.; Kunisada, K.; Leventaki, V.; Das, P.; Rassidakis, G.Z.; Cutler, C.; Medeiros, L.J. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene, 2004, 23(32), 5426-5434.
[15]
Q., Xu; J., Briggs; S., Park; G., Niu; M., Kortylewski; S., Zhang; T., Gritsko; J., Turkson; H., Kay; G.L., Semenza; J.Q., Cheng; R., Jove; H., Yu Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 2005, 24, 5552-5560.
[16]
Bollrath, J.; Phesse, T.J.; von Burstin, V.A.; Putoczki, T.; Bennecke, M.; Bateman, T.; Nebelsiek, T.; Lundgren-May, T.; Canli, Ö.; Schwitalla, S.; Matthews, V. Greten, gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 2009, 15(2), 91-102.
[17]
Buchert, M.; Burns, C.J.; Ernst, M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene, 2016, 35(8), 939-951.
[18]
Thomas, S.J.; Snowden, J.A.; Zeidler, M.P.; Danson, S.J. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer, 2015, 113(3), 365-371.
[19]
Xiao, H.; Bid, H.K.; Jou, D.; Wu, X.; Yu, W.; Li, C.; Houghton, P.J.; Lin, J. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J. Biol. Chem., 2015, 290(6), 3418-3429.
[20]
Chen, X.; Wei, J.; Li, C.; Pierson, C.R.; Finlay, J.L.; Lin, J. Blocking interleukin-6 signaling inhibits cell viability/proliferation, glycolysis, and colony forming activity of human medulloblastoma cells. Int. J. Oncol., 2018, 52(2), 571-578.
[21]
Chen, X.; Williams, W.V.; Sandor, V.; Yeleswaram, S. Population pharmacokinetic analysis of orally-administered ruxolitinib (INCB018424 Phosphate) in patients with primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (PPV-MF) or post-essential thrombocythemia myelofibrosis (PET MF). J. Clin. Pharmacol., 2013, 53(7), 721-730.
[22]
NICE issues positive recommendation for XELJANZ(R) (tofacitinib citrate) as a new treatment option for adults with severe rheumatoid arthritis. Rheumatology (Oxford), 2017, 56(12), e49.
[http://dx.doi.org/10.1093/rheumatology/kex407]
[23]
Helena, A.Y.; Perez, L.; Chang, Q.; Gao, S.P.; Kris, M.G.; Riely, G.J.; Bromberg, J. A phase 1/2 trial of ruxolitinib and erlotinib in patients with EGFR-mutant lung adenocarcinomas with acquired resistance to erlotinib. J. Thorac. Oncol., 2017, 12(1), 102-109.
[24]
Panés, J.; Vermeire, S.; Lindsay, J.O.; Sands, B.E.; Su, C.; Friedman, G.; Zhang, H.; Yarlas, A.; Bayliss, M.; Maher, S.; Cappelleri, J.C. Tofacitinib in patients with ulcerative colitis: Health-related quality of life in phase 3 randomized controlled induction and maintenance studies. J. Crohn’s Colitis, 2017, 12(2), 145-156.
[25]
Fukuyama, T.; Tschernig, T.; Qi, Y.; Volmer, D.A.; Baumer, W. Aggression behaviour induced by oral administration of the Janus-kinase inhibitor tofacitinib, but not oclacitinib, under stressful conditions. Eur. J. Pharmacol., 2015, 764, 278-282.
[26]
Haile, W.B.; Gavegnano, C.; Tao, S.; Jiang, Y.; Schinazi, R.F.; Tyor, W.R. The janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiol. Dis., 2016, 92, 137-143.
[27]
Airiau, K.; Turcq, B.; Mahon, F.X.; Belloc, F. A new mechanism of resistance to ABL1 tyrosine kinase inhibitors in a BCR-ABL1-positive cell line. Leuk. Res., 2017, 61, 44-52.
[28]
Egloff, A.M.; Grandis, J.R. Grandis, response to combined molecular targeting: defining the role of P-STAT3. Clin. Cancer Res., 2011, 17(3), 393-395.
[29]
Nagaraj, N.S.; Smith, J.J.; Revetta, F.; Washington, M.K.; Merchant, N.B. Targeted inhibition of SRC kinase signaling attenuates pancreatic tumorigenesis. Mol. Cancer Ther., 2010, 9(8), 2322-2332.
[30]
Sikkema, A.H.; Diks, S.H.; den Dunnen, W.F.; ter Elst, A.; Scherpen, F.J.; Hoving, E.W.; Ruijtenbeek, R.; Boender, P.J.; de Wijn, R.; Kamps, W.A. Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Res., 2009, 69(14), 5987-5995.
[31]
Antonarakis, E.S.; Heath, E.I.; Posadas, E.M.; Evan, Y.Y.; Harrison, M.R.; Bruce, J.Y.; Cho, S.Y.; Wilding, G.E.; Fetterly, G.J.; Hangauer, D.G.; Kwan, M.F.R. A phase 2 study of KX2-391, an oral inhibitor of Src kinase and tubulin polymerization, in men with bone-metastatic castration-resistant prostate cancer. Cancer Chemother. Pharmacol., 2013, 71(4), 883-892.
[32]
Naing, A.; Cohen, R.; Dy, G.K.; Hong, D.S.; Dyster, L.; Hangauer, D.G.; Kwan, R.; Fetterly, G.; Kurzrock, R.; Adjei, A.A. A phase I trial of KX2-391, a novel non-ATP competitive substrate-pocket- directed SRC inhibitor, in patients with advanced malignancies. Invest. New Drugs, 2013, 31(4), 967-973.
[33]
Frismantas, V.; Dobay, M.P.; Rinaldi, A.; Tchinda, J.; Dunn, S.H.; Kunz, J.; Richter-Pechanska, P.; Marovca, B.; Pail, O.; Jenni, S.; Diaz-Flores, E. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood, 129(11), e26-e37.
[34]
Smolinski, M.P.; Bu, Y.; Clements, J.; Gelman, I.H.; Hegab, T.; Cutler, D.L.; Fang, J.W.; Fetterly, G.; Kwan, R.; Barnett, A.; Lau, J.Y. Discovery of novel dual mechanism of action src signaling and tubulin polymerization inhibitors (KX2-391 and KX2-361). J. Med. Chem., 2018, 61, 4704-4719.
[35]
Smolinski, M.P.; Bu, Y.; Clements, J.; Gelman, I.H.; Hegab, T.; Cutler, D.L.; Fang, J.W.; Fetterly, G.; Kwan, R.; Barnett, A.; Lau, J.Y. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood, 2008, 112, 1005-1012.
[36]
Aplenc, R.; Blaney, S.M.; Strauss, L.C.; Balis, F.M.; Shusterman, S.; Ingle, A.M.; Agrawal, S.; Sun, J.; Wright, J.J.; Adamson, P.C. Pediatric phase I trial and pharmacokinetic study of dasatinib: A report from the children’s oncology group phase I consortium. J. Clin. Oncol., 2011, 29(7), 839-844.
[37]
Cardin, D.B.; Goff, L.W.; Chan, E.; Whisenant, J.G.; Ayers, G.D.; Takebe, N.; Arlinghaus, L.R.; Yankeelov, T.E.; Berlin, J.; Merchant, N. Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: phase I results: A phase I clinical trial. Invest. New Drugs, 2017, 36(3), 442-450.
[38]
Evans, T.R.J.; Van Cutsem, E.; Moore, M.J.; Bazin, I.S.; Rosemurgy, A.; Bodoky, G.; Deplanque, G.; Harrison, M.; Melichar, B.; Pezet, D.; Elekes, A. Phase 2 placebo-controlled, double-blind trial of dasatinib added to gemcitabine for patients with locally-advanced pancreatic cancer. Ann. Oncol., 2017, 28, 354-361.
[39]
Kato, S.; Jardim, D.L.; Johnson, F.M.; Subbiah, V.; Piha-Paul, S.; Tsimberidou, A.M.; Falchook, G.S.; Karp, D.; Zinner, R.; Wheler, J.; Janku, F. Phase I study of the combination of crizotinib (as a MET inhibitor) and dasatinib (as a c-SRC inhibitor) in patients with advanced cancer. Invest. New Drugs, 2017, 36(3), 416-423.
[40]
Petersen, W.; Liu, J.; Yuan, L.; Zhang, H.; Schneiderjan, M.; Cho, Y.J.; MacDonald, T.J. Dasatinib suppression of medulloblastoma survival and migration is markedly enhanced by combining treatment with the aurora kinase inhibitor AT9283. Cancer Lett., 2015, 354, 68-76.
[41]
Rossi, A.; Schenone, S.; Angelucci, A.; Cozzi, M.; Caracciolo, V.; Pentimalli, F.; Puca, A.; Pucci, B.; La Montagna, R.; Bologna, M.; Botta, M. New pyrazolo-[3,4-d]-pyrimidine derivative Src kinase inhibitors lead to cell cycle arrest and tumor growth reduction of human medulloblastoma cells. FASEB J., 2010, 24, 2881-2892.
[42]
Robinson, G.W.; Rudneva, V.A.; Buchhalter, I.; Billups, C.A.; Waszak, S.M.; Smith, K.S.; Bowers, D.C.; Bendel, A.; Fisher, P.G.; Partap, S.; Crawford, J.R. Risk-adapted therapy for young children with medulloblastoma (SJYC07): Therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol., 2018, 19, 768-784.
[43]
Rao, A.A.N.; Wallace, D.J.; Billups, C.; Boyett, J.M.; Gajjar, A.; Packer, R.J. Cumulative cisplatin dose is not associated with event-free or overall survival in children with newly diagnosed average-risk medulloblastoma treated with cisplatin based adjuvant chemotherapy: Report from the Children’s Oncology Group. Pediatr. Blood Cancer, 2014, 61(1), 102-106.
[44]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[45]
Nicolaas, A.P.F.; Hans, M.R.; Jan, S.; Jaap, H.; Chris, V.B. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1, 2315-2319.
[46]
Harada, K.; Nishitsuji, H.; Ujino, S.; Shimotohno, K. Identification of KX2-391 as an inhibitor of HBV transcription by a recombinant HBV-based screening assay. Antiviral Res., 2017, 144, 138-146.
[47]
Heine, A.; Held, S.A.E.; Daecke, S.N.; Wallner, S.; Yajnanarayana, S.P.; Kurts, C.; Wolf, D.; Brossart, P. 2013The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood, 2013, 122(7), 1192-1202.
[48]
Lam, C.; Ferguson, I.D.; Mariano, M.C.; Lin, Y.H.T.; Murnane, M.; Liu, H.; Smith, G.A.; Wong, S.W.; Taunton, J.; Liu, J.O.; Mitsiades, C.S. Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment. Haematologica, 2018, 103(7), 1218-1228.
[49]
Gold, K.A.; Lee, J.J.; Harun, N.; Tang, X.; Price, J.; Kawedia, J.D.; Tran, H.T.; Erasmus, J.J.; Blumenschein, G.R.; William, W.N.; Wistuba, I.I. A phase I/II study combining erlotinib and dasatinib for non-small cell lung cancer. Oncologist, 2014, 19, 1040-1041.
[50]
Chee, C.E.; Krishnamurthi, S.; Nock, C.J.; Meropol, N.J.; Gibbons, J.; Fu, P.; Bokar, J.; Teston, L.; O’Brien, T.; Gudena, V.; Reese, A. Phase II study of dasatinib (BMS-354825) in patients with metastatic adenocarcinoma of the pancreas. Oncologist, 2013, 18(10), 1091-1092.
[51]
Ginsberg, S.; Kirshner, J.; Reich, S.; Panasci, L.; Finkelstein, T.; Fandrich, S.; Fitzpatrick, A.; Shechtman, L.; Comis, R. Systemic chemotherapy for a primary germ cell tumor of the brain: A pharmacokinetic study. Cancer Treat. Rep., 1981, 65(5-6), 477-483.
[52]
Kato, K.; Nomoto, M.; Izumi, H.; Ise, T.; Nakano, S.; Niho, Y.; Kohno, K. Structure and functional analysis of the human STAT3 gene promoter: alteration of chromatin structure as a possible mechanism for the upregulation in cisplatin-resistant cells. Biochim. Biophys. Acta, 2000, 1493(1), 91-100.
[53]
Liu, W.H.; Chen, M.T.; Wang, M.L.; Lee, Y.Y.; Chiou, G.Y.; Chien, C.S.; Huang, P.I.; Chen, Y.W.; Huang, M.C.; Chiou, S.H.; Shih, Y.H. Cisplatin-selected resistance is associated with increased motility and stem-like properties via activation of STAT3/Snail axis in atypical teratoid/rhabdoid tumor cells. Oncotarget, 2015, 6(3), 1750-1768.
[54]
Chen, J.; Lan, T.; Zhang, W.; Dong, L.; Kang, N.; Fu, M.; Liu, B.; Liu, K.; Zhang, C.; Hou, J.; Zhan, Q. Dasatinib enhances cisplatin sensitivity in human esophageal squamous cell carcinoma (ESCC) cells via suppression of PI3K/AKT and Stat3 pathways. Arch. Biochem. Biophys., 2015, 575, 38-45.
[55]
Neumann, J.E.; Swartling, F.J.; Schüller, U. Medulloblastoma: experimental models and reality. Acta Neuropathol., 2017, 134(5), 679-689.
[56]
Sen, M.; Thomas, S.M.; Kim, S.; Yeh, J.I.; Ferris, R.L.; Johnson, J.T.; Duvvuri, U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M.L. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov., 2012, 2(8), 694-705.
[57]
Sen, M.; Pollock, N.I.; Black, J.; DeGrave, K.A.; Wheeler, S.; Freilino, M.L.; Joyce, S.; Lui, V.W.; Zeng, Y.; Chiosea, S.I.; Grandis, J.R. JAK kinase inhibition abrogates STAT3 activation and head and neck squamous cell carcinoma tumor growth. Neoplasia, 2015, 17(3), 256-264.
[58]
Zapotocky, M.; Mata-Mbemba, D.; Sumerauer, D.; Liby, P.; Lassaletta, A.; Zamecnik, J.; Krskova, L.; Kyncl, M.; Stary, J.; Laughlin, S.; Arnoldo, A. Differential patterns of metastatic dissemination across medulloblastoma subgroups. J. Neurosurg. Pediatr., 2018, 21(2), 145-152.
[59]
Tavallai, M.; Booth, L.; Roberts, J.L.; Poklepovic, A.; Dent, P. Rationally repurposing ruxolitinib (Jakafi ((R))) as a solid tumor therapeutic. Front. Oncol., 2016, 6(17), 142.
[60]
Robison, N.J.; Yeo, K.K.; Berliner, A.P.; Malvar, J.; Sheard, M.A.; Margol, A.S.; Seeger, R.C.; Rushing, T.; Finlay, J.L.; Sposto, R.; Dhall, G. Phase I trial of dasatinib, lenalidomide, and temozolomide in children with relapsed or refractory central nervous system tumors. J. Neurooncol., 2018, 138(1), 199-207.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy