Review Article

自由生活变形虫新药发现的创新方法

卷 20, 期 1, 2019

页: [60 - 69] 页: 10

弟呕挨: 10.2174/1389450119666180426100452

价格: $65

摘要

尽管在药物发现和化疗方案改进方面取得了进展,但由免费生活的阿米巴(Fla)引起的人类感染死亡率很高(~95%)。引起人脑致死性感染的FLA主要有马尾藻(NaegleriaFowleri)、曼氏Balamuthia mandrillaris和棘阿米巴。新的药物靶点的发现仍然是唯一可行的选择,以解决这些中枢神经系统(CNS)感染,以降低死亡率引起的佛罗里达州。在这些Fla中,N.fowleri可引起原发性阿米巴脑膜脑炎(PAM),而蓖麻黄和曼氏B.mandrillaris则可引起肉芽肿性阿米巴脑炎(GAE)。Fla引起的感染用利福平、氟康唑、两性霉素-B和米尔特福辛等药物治疗。米替福辛是一种抗利什曼药,也是一种实验性的抗癌药物.虽然只有罕见的成功病例,但这些药物仍然未能降低由Fla引起的脑感染的死亡率。最近,借助生物信息学计算工具和发现的FLA基因组数据,发现新的药物靶点已经成为可能。这些细胞靶点要么是Fla特有的蛋白质,要么是人类和这些单细胞真核生物之间共享的蛋白质。后一类蛋白质已被证明是FDA批准的非传染性疾病药物的靶点。本综述概述了可用于发现此类新药物靶点的生物信息学方法、过去进行的体外试验的历史记录以及这些目标在Fla引起的人类疾病中的翻译价值。

关键词: 药物靶点发现,无菌阿米巴,棘球虫,曼氏巴拉穆,结构活性关系。

图形摘要
[1]
Visvesvara GS, Moura H, Schuster FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 2007; 50(1): 1-26.
[2]
Fabres LF, Rosa Dos Santos SP, Benitez LB, Rott MB. Isolation and identification of Acanthamoeba spp. from thermal swimming pools and spas in Southern Brazil. Acta Parasitol 2016; 61(2): 221-7.
[3]
Khan NA. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 2006; 30: 564-95.
[4]
Baig AM. Primary Amoebic Meningoencephalitis: neurochemotaxis and neurotropic preferences of Naegleria fowleri. ACS Chem Neurosci 2016; 7(8): 1026-9.
[5]
Baig AM, Khan NA. A proposed cascade of vascular events leading to granulomatous amoebic encephalitis. Microb Pathog 2015; 88: 48-51.
[6]
Pugh JJ, Levy RA. Naegleria fowleri: Diagnosis, pathophysiology of brain inflammation, and antimicrobial treatments. ACS Chem Neurosci 2016; 7(9): 1178-9.
[7]
Stevens AR, O’Dell WD. In vitro and in vivo activity of 5-fluorocytosine on Acanthamoeba. Antimicrob Agents Chemother 1974; 6(3): 282-9.
[8]
Maritschnegg P, Sovinz P, Lackner H, et al. Granulomatous amebic encephalitis in a child with acute lymphoblastic leukemia successfully treated with multimodal antimicrobial therapy and hyperbaric oxygen. J Clin Microbiol 2011; 49: 446-8.
[9]
Baig AM. Pathogenesis of amoebic encephalitis: Are the amoebae being credited to an ‘inside job’ done by the host immune response? Acta Trop 2015; 148: 72-6.
[10]
Trösken ER, Adamska M, Arand M, et al. Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles. Toxicology 2006; 228(1): 24-32.
[11]
Lamb DC1, Kelly DE, Baldwin BC, Kelly SL. Differential inhibition of human CYP3A4 and Candida albicans CYP51 with azole antifungal agents. Chem Biol Interact 2000; 125(3): 165-75.
[12]
Dunn AL, Reed T, Stewart C, Levy RA. Naegleria fowleri that induces primary amoebic meningoencephalitis: Rapid diagnosis and rare case of survival in a 12-year-old caucasian girl. Lab Med 2016; 47(2): 149-54.
[13]
Schuster FL, Mandel N. Phenothiazine compounds inhibit in vitro growth of pathogenic free-living amoebae. Antimicrob Agents Chemother 1984; 25(1): 109-12.
[14]
Kim JH, Jung SY, Lee YJ, et al. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri. Antimicrob Agents Chemother 2008; 52(11): 4010-6.
[15]
Baig AM, Iqbal J, Khan NA. In vitro efficacies of clinically available drugs against growth and viability of an Acanthamoeba castellanii keratitis isolate belonging to the T4 genotype. Antimicrob Agents Chemother 2013; 57(8): 3561-7.
[16]
Kulsoom H, Baig AM, Siddiqui R, Khan NA. Combined drug therapy in the management of granulomatous amoebic encephalitis due to Acanthamoeba spp., and Balamuthia mandrillaris. Exp Parasitol 2014; 145(Suppl.): S115-20.
[17]
Agahan AL, Lim RB, Valenton MJ. Successful treatment of Acanthamoeba keratitis without anti-amoebic agents. Ann Acad Med Singapore 2009; 38: 175-6.
[18]
Baig AM, Zuberi H, Khan NA. Recommendations for the management of Acanthamoeba keratitis. J Med Microbiol 2014; 63(Pt 5): 770-1.
[19]
Baig AM, Rana Z, Tariq S, Lalani S, Ahmad HR. Traced on the timeline: Discovery of acetylcholine and the components of the human cholinergic system in a primitive unicellular eukaryote Acanthamoeba spp. ACS Chem Neurosci 2018; 9(3): 494-504.
[20]
Brunton LL, Chabner BA, Knollman BC. Goodman and Gilman’s The pharmacological basis of therapeutics, 12th ed McGraw-Hill, NewYork, NY 2011.
[21]
Rajendran K, Anwar A, Khan NA, Siddiqui R. Brain-eating amoebae: silver nanoparticle conjugation enhanced efficacy of anti-amoebic drugs against naegleria fowleri. ACS Chem Neurosci 2017; 8(12): 2626-30.
[22]
Baig AM, Rana Z, Tariq SS, Ahmad HR. Bioinformatic insights on target receptors of amiodarone in human and Acanthamoeba castellanii. Infect Disord Drug Targets 2017; 17(3): 160-77.
[23]
Cai X. Ancient origin of four-domain voltage-gated Na+ channels predates the divergence of animals and fungi. J Membr Biol 2012; 245: 117-23.
[24]
Baig AM, Zohaib R, Tariq S, Ahmad HR. Evolution of pH buffers and water homeostasis in eukaryotes: homology between humans and Acanthamoeba proteins. Future Microbiol 2018; 13: 195-207.
[25]
Baig AM, Ahmad HR. Evidence of a M(1)-muscarinic GPCR homolog in unicellular eukaryotes: featuring Acanthamoeba spp bioinformatics 3D-modelling and experimentations. J Recept Signal Transduct Res 2017; 37(3): 267-75.
[26]
Baig AM, Rana Z, Mannan M, Tariq S, Ahmad HR. Antibiotic Effects of Loperamide: Homology of Human Targets of Loperamide with Targets in Acanthamoeba spp. Recent Pat Antiinfect Drug Discov 2017; 12(1): 44-60.
[27]
Clarke M, Lohan AJ, Liu B, et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and Early evolution of tyrosine kinase signaling. Genome Biol 2013; 14(2): R11.
[28]
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking Nucleic Acids Res 2005; 33(Web Server issue): W363-7
[29]
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng 1995; 8(2): 127-34.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy