Generic placeholder image

CNS & Neurological Disorders - Drug Targets


ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Assessing Activation States in Microglia

Author(s): Carol A. Colton and Donna M. Wilcock

Volume 9, Issue 2, 2010

Page: [174 - 191] Pages: 18

DOI: 10.2174/187152710791012053

Price: $65


Since the original identification of microglia as a principal player in the brains innate immune response, microglial activation has been widely studied. Recent studies suggest that microglial responses are heterogeneous, requiring a more precise definition of the functional outcomes of their participation in disease. Similarly to other tissue macrophages, microglia respond to inflammatory or injurious stimuli in the CNS in a pre-programmed manner that is designed to both kill and to set the stage for repair and resolution of the disease. In vitro studies on acute immune responses have provided key information on the initiation, signaling pathways and products of activated macrophages. However, in chronic neurodegenerative diseases such as Alzheimers disease where in vivo analyses are critical to understanding the long-term disease processes, our knowledge of the integrated tissue immune response and the outcome of this immune activity to neurons and other glia over the extended course of disease is more limited. This is due in part to the complexity of microglial activation states and to the location of microglia in a dense neuronal network. Classical activation, alternative activation and acquired deactivation are each found in the brain during chronic neuroinflammatory diseases and may demonstrate regional differences in expression levels. This review will identify “markers” that can be used to explore inflammatory states in the brain and will discuss the likely functional outcomes when these cytoactive factors are expressed. A broad-based functional view is provided that is designed to more fully explore the balance between inflammo-toxic and inflammo-resolution factors that govern chronic disease progression.

Keywords: Neuroinflammation, microglia, alternative activation, acquired deactivation, perivascular microglia, classical activation, Alzheimer's disease, innate immune response

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy