Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Organocatalyst 1,4-diazabicyclo [2.2.2]octane (DABCO)-catalyzed Sustainable Synthesis of Bis-thiazolidinones Derivatives and their Spectral and DFT Analysis

Author(s): Saloni Sahal, Mamta Chahar*, Har Lal Singh, Renu Bishnoi and Sarita Khaturia*

Volume 28, Issue 9, 2024

Published on: 15 April, 2024

Page: [725 - 732] Pages: 8

DOI: 10.2174/0113852728304587240319061348

Abstract

Organocatalyst 1,4-diazabicyclo [2.2.2]octane (DABCO) has proven to be an efficient and environmentally friendly catalyst in the multicomponent reaction involving aldehydes, ethylenediamine, and thioglycolic acid under microwave conditions. DABCO stands out among other organic catalysts due to its cost-effectiveness, non-toxic nature, and environmentally conscious profile. The method employed in this study exhibited exceptional attributes, such as high yields, swift reaction times, atom economy, catalyst reusability, and minimal catalyst loading. Additionally, there were excellent yields of products (90-94%). The melting points, UV-Vis, IR, 1HNMR, 13CNMR, were used to analyze the produced compounds. The invitro antibacterial activity of the synthesized compounds was investigated against pathogenic strains E. coli and Bacillus supstalis, and the results obtained were further explained with the help of DFT and molecular orbital calculations. Moreover, the compound 4b was found to be the most potent antibacterial agent amongst all tested compounds.

Keywords: Atom economy, 1, 4-diazabicyclo [2.2.2]octane (DABCO), microwaves, multicomponent, organocatalyst, DFT analysis.

« Previous
Graphical Abstract
[1]
Gur, T.; Meydan, I.; Seckin, H.; Bekmezci, M.; Sen, F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ. Res., 2022, 204(Pt A), 111897.
[http://dx.doi.org/10.1016/j.envres.2021.111897] [PMID: 34418450]
[2]
Nair, G.M.; Sajini, T.; Mathew, B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open, 2022, 5, 100080.
[http://dx.doi.org/10.1016/j.talo.2021.100080]
[3]
Zimmerman, J.B.; Anastas, P.T.; Erythropel, H.C.; Leitner, W. Designing for a green chemistry future. Science, 2020, 367(6476), 397-400.
[http://dx.doi.org/10.1126/science.aay3060] [PMID: 31974246]
[4]
Andraos, J.; Matlack, A.S. Introduction to green chemistry; CRC Press: Boca raton, Florida, 2022.
[http://dx.doi.org/10.1201/9781003033615]
[5]
Lancaster, M. Green chemistry: An introductory text; Royal Society of Chemistry: London, United Kingdom, 2022.
[6]
Kurniawan, Y.S.; Priyangga, K.T.A.; Krisbiantoro, P.A.; Imawan, A.C. Green chemistry influences in organic synthesis: A review. J. Multidis. Appl. Nat. Sci., 2021, 1, 1-12.
[7]
Brahmachari, G.; Banerjee, B. Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: An emerging field of green chemistry practice and sustainability. Curr. Green Chem., 2015, 2(3), 274-305.
[http://dx.doi.org/10.2174/2213346102666150218195142]
[8]
Ardila-Fierro, K.J.; Hernández, J.G. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. ChemSusChem, 2021, 14(10), 2145-2162.
[http://dx.doi.org/10.1002/cssc.202100478] [PMID: 33835716]
[9]
Ameta, S.C.; Ameta, R. Green Chemistry: Fundamentals and applications; CRC Press: Boca raton, Florida, 2023.
[10]
Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green chemistry in the synthesis of pharmaceuticals. Chem. Rev., 2022, 122(3), 3637-3710.
[http://dx.doi.org/10.1021/acs.chemrev.1c00631] [PMID: 34910451]
[11]
Sajid, M.; Płotka-Wasylka, J. Green analytical chemistry metrics: A review. Talanta, 2022, 238(Pt 2), 123046.
[http://dx.doi.org/10.1016/j.talanta.2021.123046] [PMID: 34801903]
[12]
Leão, E.M.; Costa, C.C.; Campos, C.S.B.; Silva, B.F.L.; Machado, A.M.R.; Lucas, E.M.F. Optimizing preparation of the fenell (Foeniculum vulgare L.) extracts by using ultrassound - methodology in accordance with the principles of green chemistry. Res. Soc. Evel., 2022, 11(13), e15111334616-e15111334616.
[http://dx.doi.org/10.33448/rsd-v11i13.34616]
[13]
Nahlik, P.; Kempf, L.; Giese, J.; Kojak, E.; Daubenmire, P.L. Developing green chemistry educational principles by exploring the pedagogical content knowledge of secondary and pre-secondary school teachers. Chem. Educ. Res. Pract., 2023, 24(1), 283-298.
[http://dx.doi.org/10.1039/D2RP00229A]
[14]
Sheldon, R.A.; Norton, M. Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chem., 2020, 22(19), 6310-6322.
[http://dx.doi.org/10.1039/D0GC02630A]
[15]
Hessel, V.; Tran, N.N.; Asrami, M.R.; Tran, Q.D.; Van Duc Long, N.; Escribà-Gelonch, M.; Tejada, J.O.; Linke, S.; Sundmacher, K. Sustainability of green solvents - review and perspective. Green Chem., 2022, 24(2), 410-437.
[http://dx.doi.org/10.1039/D1GC03662A]
[16]
Cao, J.; Su, E. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry. J. Clean. Prod., 2021, 314, 127965.
[http://dx.doi.org/10.1016/j.jclepro.2021.127965]
[17]
Zhang, B.; Guo, T.; Li, Z.; Kühn, F.E.; Lei, M.; Zhao, Z.K.; Xiao, J.; Zhang, J.; Xu, D.; Zhang, T.; Li, C. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat. Commun., 2022, 13(1), 3365.
[http://dx.doi.org/10.1038/s41467-022-30815-5] [PMID: 35690613]
[18]
Feng, X.; Song, Y.; Lin, W. Dimensional reduction of Lewis acidic metal-organic frameworks for multicomponent reactions. J. Am. Chem. Soc., 2021, 143(21), 8184-8192.
[http://dx.doi.org/10.1021/jacs.1c03561] [PMID: 34018731]
[19]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[20]
Sharma, U.K.; Ranjan, P.; Van der Eycken, E.V.; You, S.L. Sequential and direct multicomponent reaction (MCR)-based dearomatization strategies. Chem. Soc. Rev., 2020, 49(23), 8721-8748.
[http://dx.doi.org/10.1039/D0CS00128G] [PMID: 33079105]
[21]
Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat., 2021, 31(3), 267-289.
[http://dx.doi.org/10.1080/13543776.2021.1858797] [PMID: 33275061]
[22]
Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules, 2020, 25(3), 505.
[http://dx.doi.org/10.3390/molecules25030505] [PMID: 31991635]
[23]
Parvin, T.; Yadav, R.; Choudhury, L.H. Recent applications of thiourea-based organocatalysts in asymmetric multicomponent reactions (AMCRs). Org. Biomol. Chem., 2020, 18(29), 5513-5532.
[http://dx.doi.org/10.1039/D0OB00595A] [PMID: 32644077]
[24]
Zhang, J.; Shi, W.; Yang, M.; Huang, K.; Zhu, Y.; Xie, Z. Modified polyethyleneimine with abundant N/O/S-heteroatoms and aromatic segments: Convenient synthesis via sulfur-isocyanide-amine multicomponent reaction and application in high-performance iodine capture. Eur. Polym. J., 2024, 205, 112724.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112724]
[25]
Wu, M.; Li, H.; Wang, L.; Feng, S.; Wang, Y.; Yang, N.; Wang, K.; Yu, M. Investigation on coal/coal gangue mixtures co-combustion via TG-DSC tests, multicomponent reaction model, and artificial neural network. Fuel, 2024, 359, 130443.
[http://dx.doi.org/10.1016/j.fuel.2023.130443]
[26]
Guan, Q.; Zhou, L.L.; Dong, Y.B. Construction of covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc., 2023, 145(3), 1475-1496.
[http://dx.doi.org/10.1021/jacs.2c11071] [PMID: 36646043]
[27]
Wang, Z.; Domling, A. Multicomponent reactions in medicinal chemistry. Multicomponent Reactions towards Heterocycles; Wiley: Hoboken, New Jersey, 2022, pp. 91-137.
[28]
Neto, B.A.D.; Rocha, R.O.; Lapis, A.A.M. What do we know about the ionic liquid effect in catalyzed multicomponent reactions?: A critical review. Curr. Opin. Green Sustain. Chem., 2022, 35, 100608.
[http://dx.doi.org/10.1016/j.cogsc.2022.100608]
[29]
Becerra, D.; Abonia, R.; Castillo, J.C. Recent applications of the multicomponent synthesis for bioactive pyrazole derivatives. Molecules, 2022, 27(15), 4723.
[http://dx.doi.org/10.3390/molecules27154723] [PMID: 35897899]
[30]
Gomha, S.; Badrey, M.G.; Wael, A. DABCO-catalyzed green synthesis of thiazole and 1,3-thiazine derivatives linked to benzofuran. Heterocycles, 2016, 92(8), 1450-1461.
[http://dx.doi.org/10.3987/COM-16-13470]
[31]
Zhao, G.L.; Shi, M. DABCO-catalyzed reactions of hydrazones with activated olefins. Tetrahedron, 2005, 61(30), 7277-7288.
[http://dx.doi.org/10.1016/j.tet.2005.04.071]
[32]
Nguyen, T.B.; Retailleau, P. DABCO-Catalyzed reaction of 2-naphthols with aryl isothiocyanates: Access to 2-iminonaphtho-1,3-oxathioles. Org. Lett., 2022, 24(36), 6676-6680.
[http://dx.doi.org/10.1021/acs.orglett.2c02736] [PMID: 36048584]
[33]
Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Materials Today Nano, 2020, 11, 100076.
[http://dx.doi.org/10.1016/j.mtnano.2020.100076]
[34]
Li, H.; Zhao, Z.; Xiouras, C.; Stefanidis, G.D.; Li, X.; Gao, X. Fundamentals and applications of microwave heating to chemicals separation processes. Renew. Sustain. Energy Rev., 2019, 114, 109316.
[http://dx.doi.org/10.1016/j.rser.2019.109316]
[35]
de Medeiros, T.V.; Manioudakis, J.; Noun, F.; Macairan, J.R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(24), 7175-7195.
[http://dx.doi.org/10.1039/C9TC01640F]
[36]
Hasnain, M.; Abideen, Z.; Naz, S.; Roessner, U.; Munir, N. Biodiesel production from new algal sources using response surface methodology and microwave application. Biomass Convers. Biorefin., 2023, 13(7), 6213-6228.
[http://dx.doi.org/10.1007/s13399-021-01560-4]
[37]
Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 795-804.
[http://dx.doi.org/10.1080/21691401.2017.1345921] [PMID: 28681662]
[38]
Wei, W.; Shao, Z.; Zhang, Y.; Qiao, R.; Gao, J. Fundamentals and applications of microwave energy in rock and concrete processing - A review. Appl. Therm. Eng., 2019, 157, 113751.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.113751]
[39]
Caliman, C.C.; Mesquita, A.F.; Cipriano, D.F.; Freitas, J.C.C.; Cotta, A.A.C.; Macedo, W.A.A.; Porto, A.O. One-pot synthesis of amine-functionalized graphene oxide by microwave-assisted reactions: An outstanding alternative for supporting materials in supercapacitors. RSC Advances, 2018, 8(11), 6136-6145.
[http://dx.doi.org/10.1039/C7RA13514A] [PMID: 35539592]
[40]
Senkiv, J.; Finiuk, N.; Kaminskyy, D.; Havrylyuk, D.; Wojtyra, M.; Kril, I.; Gzella, A.; Stoika, R.; Lesyk, R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur. J. Med. Chem., 2016, 117, 33-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.089] [PMID: 27089210]
[41]
Ashour, H.M.A. Synthesis and pharmacological evaluation of new pyrazolyl benzenesulfonamides linked to polysubstituted pyrazoles and thiazolidinonesasanti-inflammatory and analgesicagents. Monatsh. Chem., 2016, 147, 605-618.
[http://dx.doi.org/10.1007/s00706-015-1549-x]
[42]
Nechak, R.; Bouzroura, S.A.; Benmalek, Y.; Salhi, L.; Martini, S.P.; Morizur, V.; Dunach, E.; Kolli, B.N. Synthesis and antimicrobial activity evaluation of novel 4-thiazolidinones containing a pyrone moiety. Synth. Commun., 2015, 45(2), 262-272.
[http://dx.doi.org/10.1080/00397911.2014.970278]
[43]
Subhedar, D.D.; Shaikh, M.H.; Arkile, M.A.; Yeware, A.; Sarkar, D.; Shingate, B.B. Facile synthesis of 1,3-thiazolidin-4-ones as antitubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(7), 1704-1708.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.056] [PMID: 26927426]
[44]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer and antiviral activities of new 2-pyrazoline-substituted 4-thiazolidinones. J. Heterocycl. Chem., 2013, 50(S1), E55-E62.
[http://dx.doi.org/10.1002/jhet.1056]
[45]
Rawal, R.K.; Prabhakar, Y.S.; Katti, S.B.; De Clercq, E. 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg. Med. Chem., 2005, 13(24), 6771-6776.
[http://dx.doi.org/10.1016/j.bmc.2005.07.063] [PMID: 16198576]
[46]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem., 2007, 15(4), 1725-1731.
[http://dx.doi.org/10.1016/j.bmc.2006.12.003] [PMID: 17178227]
[47]
Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagat, S.; Chakraborti, A.K. Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones: Enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem., 2013, 15(10), 2872-2884.
[http://dx.doi.org/10.1039/c3gc41218k]
[48]
Meshram, J.; Ali, P.; Tiwari, V. Zeolite as an efficient and recyclable activation surface for the synthesis of bis-thiazolidinones: Theoretical screening owing to experimental biology. Green Chem. Lett. Rev., 2010, 3(3), 195-200.
[http://dx.doi.org/10.1080/17518251003660154]
[49]
Mobinikhaledi, A.; Amiri, A. Green and highly efficient one-pot synthesis of some new bisthiazolidinones. Lett. Org. Chem., 2013, 10(10), 764-769.
[http://dx.doi.org/10.2174/157017861131000059]
[50]
Abdel-Rahman, R.M.; Ali, T.E. Synthesis and biological evaluation of some] new polyfluorinated 4-thiazolidinone and a-aminophosphonic acid deriva-] tives. Monatsh. Chem., 2013, 144(8), 1243-1252.
[http://dx.doi.org/10.1007/s00706-013-0934-6]
[51]
Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Nazemzadeh, S.H. Synthesis of bis- thiazolidinones catalyzed by nano-NiZr4(PO4)6 under microwave irradiation. Iran. J. Catal., 2018, 8(1), 9-16.
[52]
Safaei-Ghomi, J.; Nazemzadeh, S.H.; Shahbazi-Alavi, H. Nano-CdZr4(PO4)6 as a reusable and robust catalyst for the synthesis of bis-thiazolidinones by a multicomponent reaction of aldehydes, ethylenediamine and thioglycolic acid. J. Sulfur Chem., 2017, 38(2), 195-205.
[http://dx.doi.org/10.1080/17415993.2016.1267176]
[53]
Hebishy, A.M.S.; Abdelfattah, M.S.; Elmorsy, A.; Elwahy, A.H.M. Novel bis(thiazolidin-4-ones) linked to aliphatic or aromatic spacers: Synthesis, characterization, and anticancer evaluation. J. Sulfur Chem., 2021, 42(2), 149-166.
[http://dx.doi.org/10.1080/17415993.2020.1823978]
[54]
Safaei-Ghomi, J.; Nazemzadeh, S.H.; Alnasrawi, M.; Shahbazi-Alavi, H. Sonosynthesis of thiazolidinones using nano-Fe3O4-tethered polyhedral oligomeric silsesquioxanes with eight branches of 3-aminopropy-ltriethoxysilane. Org. Chem. Res., 2021, 7(1), 42-53.
[55]
Shaabani, A.; Seyyedhamzeh, M.; Maleki, A.; Rezazadeh, F. Cellulose sulfuric acid: An efficient biopolymer-based catalyst for the synthesis of oxazolines, imidazolines and thiazolines under solvent-free conditions. Appl. Catal. A Gen., 2009, 358(2), 146-149.
[http://dx.doi.org/10.1016/j.apcata.2009.02.005]
[56]
Maleki, A.; Aghaei, M. Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4@clay core-shell. Ultrason. Sonochem., 2017, 38, 585-589.
[http://dx.doi.org/10.1016/j.ultsonch.2016.08.024] [PMID: 27545571]
[57]
Maleki, A.; Taheri-Ledari, R.; Rahimi, J.; Soroushnejad, M.; Hajizadeh, Z. Facile peptide bond formation: Effective interplay between isothiazolone rings and silanol groups at silver/iron oxide nanocomposite surfaces. ACS Omega, 2019, 4(6), 10629-10639.
[http://dx.doi.org/10.1021/acsomega.9b00986] [PMID: 31460161]
[58]
Maleki, A.; Firouzi-Haji, R.; Farahani, P. Green multicomponent synthesis of benzodiazepines in the presence of CuFe2O4 as an efficient magnetically recyclable nanocatalyst under solvent-free ball-milling conditions at room temperature. Org. Chem. Res., 2018, 4(1), 86-94.
[59]
Singh, H.L.; Chahar, M.; Sahal, S.; Khaturia, S. Sustainable synthesis of benzopyran derivatives catalyzed by MgO nanoparticles: Spectral, DFT and TEM analysis. Results Chem., 2023, 5, 100884.
[http://dx.doi.org/10.1016/j.rechem.2023.100884]
[60]
Sangeeta, S. Greener synthesis of pyranopyrazole derivatives catalyzed by CaO nanoparticles. Rasayan J. Chem., 2022, 15(1), 326-333.
[http://dx.doi.org/10.31788/RJC.2022.1516823]
[61]
Sangeeta, C. Green synthesis of dihydropyrimidinone derivatives using FeO nano catalysts. J. Huazhong Uni. Sci. Technol., 2021, 50(8), 1-11.
[62]
Khaturia, S.; Chahar, M.; Sachdeva, H. The uses of various nanoparticles in organic synthesis: A review. J. Nanomed. Nanotechnol., 2020, 11(2), 543-558.
[63]
Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738]
[64]
Yao, W.; Wang, J.; Zhong, A.; Li, J.; Yang, J. Combined KOH/BEt3 catalyst for selective deaminative hydroboration of aromatic carboxamides for construction of luminophores. Org. Lett., 2020, 22(20), 8086-8090.
[http://dx.doi.org/10.1021/acs.orglett.0c03033] [PMID: 33026813]
[65]
Liu, S.Y.; Wang, D.G.; Zhong, A.G.; Wen, H.R. One-step rapid synthesis of π-conjugated large oligomers via C-H activation coupling. Org. Chem. Front., 2018, 5(4), 653-661.
[http://dx.doi.org/10.1039/C7QO00960G]
[66]
Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front., 2021, 8(16), 4554-4559.
[http://dx.doi.org/10.1039/D1QO00705J]
[67]
Previtera, T.; Basile, M.; Vigorita, M.G.; Fenech, G.; Occhiuto, F.; Circosta, C.; Costa de Pasquale, R. 3,3′-Di [1,3-thiazolidine-4-one] system. II. Anti-inflammatory and anti-histaminic properties in new substituted derivatives. Eur. J. Med. Chem., 1987, 22(1), 67-74.
[http://dx.doi.org/10.1016/0223-5234(87)90175-9]
[68]
Kouznetsov, V.V.; Amado, D.F.; Bahsas, A.; Amaro-Luis, J. Synthesis and spectral data of new 1,2-bis-(2-hetaryl-4-oxothiazolidin-3-yl)ethanes and 1,4-bis-(2-hetaryl-4-oxothiazolidin-3-yl)butanes. J. Heterocycl. Chem., 2006, 43(2), 447-452.
[http://dx.doi.org/10.1002/jhet.5570430228]
[69]
Vigorita, M.G.; Previtera, T.; Ottana, R.; Grillone, I.; Monforte, F.; Monforte, M.T.; Rossitto, A. 3,3′-Bi(1,3-thiazolidin-4-one) system. VIII. 3,3′-(1,2-Ethanediyl) derivatives and corresponding 1,1′-disulfones: Synthesis, stereochemistry and antiinflammatory activity. Farmaco, 1997, 52(1), 43-48.
[70]
Bhanuka, S.; Khaturia, S.; Chahar, M.; Singh, H.L. Design, spectroscopic characterization and theoretical studies of organotin (IV) and organosilicon (IV) complexes with schiff base ligands derived from amino acids. Asian J. Chem., 2020, 32(11), 2821-2828.
[http://dx.doi.org/10.14233/ajchem.2020.22850]
[71]
Sharma, A.; Khaturia, S.; Singh, H.L. Synthesis of new schiff base of 1,3-Oxazine and 1,3-thiazine derivatives derived from 4-phenyl substituted chalcones and evaluation of their antibacterial activity. Asian J. Chem., 2021, 33(3), 531-536.
[http://dx.doi.org/10.14233/ajchem.2021.23050]
[72]
Alagawadi, K.R.; Alegaon, S.G. Synthesis, characterization and antimicrobial activity evaluation of new 2,4-thiazolidinediones bearing imidazo[2,1-b][1,3,4]thiadiazole moiety. Arab. J. Chem., 2011, 4(4), 465-472.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.012]
[73]
Azab, M.; Youssef, M.; El-Bordany, E. Synthesis and antibacterial evaluation of novel heterocyclic compounds containing a sulfonamido moiety. Molecules, 2013, 18(1), 832-844.
[http://dx.doi.org/10.3390/molecules18010832] [PMID: 23344196]
[74]
Abdel-Latif, E.; Almatari, A.S.; Abd-ElGhani, G.E. Synthesis and antibacterial evaluation of some new thiazole‐based polyheterocyclic ring systems. J. Heterocycl. Chem., 2019, 56(7), 1978-1985.
[http://dx.doi.org/10.1002/jhet.3577]
[75]
Kumar, S.; Saini, V.; Maurya, I.K.; Sindhu, J.; Kumari, M.; Kataria, R.; Kumar, V. Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: Potential standalone or adjuvant antimicrobial agents. PLoS One, 2018, 13(4), e0196016.
[http://dx.doi.org/10.1371/journal.pone.0196016] [PMID: 29672633]
[76]
Aryan, R.; Beyzaei, H.; Nojavan, M.; Pirani, F.; Samareh Delarami, H.; Sanchooli, M. Expedient multicomponent synthesis of a small library of some novel highly substituted pyrido[2,3-d]pyrimidine derivatives mediated and promoted by deep eutectic solvent and in vitro and quantum mechanical study of their antibacterial and antifungal activities. Mol. Divers., 2019, 23(1), 93-105.
[http://dx.doi.org/10.1007/s11030-018-9859-7] [PMID: 30027387]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy