Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

阿尔茨海默病线粒体自噬的研究进展

卷 20, 期 12, 2023

发表于: 12 March, 2024

页: [827 - 844] 页: 18

弟呕挨: 10.2174/0115672050300063240305074310

摘要

随着老年人口的增加,阿尔茨海默病(AD)的患病率不断上升,损害了老年人的认知能力和生活自理能力。线粒体自噬的过程包括选择性清除老化和受损的线粒体,这是维持细胞内稳态和能量代谢所必需的。目前已经发现,自噬异常与AD的发生和发展密切相关。本文就AD的线粒体自噬机制、线粒体自噬异常及治疗效果作一综述。目的是为AD的病因和治疗提供新的视角。

关键词: 阿尔茨海默病(AD),线粒体损伤,线粒体自噬,PINK1,帕金,体内平衡。

[1]
Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers, 2021, 7(1), 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[2]
Liu, W.; Gauthier, S. Alzheimer’s disease: Current status and perspective. Sci. Bull., 2022, 67(24), 2494-2497.
[http://dx.doi.org/10.1016/j.scib.2022.12.006]
[3]
Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; Song, Y.; Shi, Y.; Zhang, H.; Gong, M.; Wei, C.; Tang, Y.; Fang, B.; Guo, D.; Wang, F.; Zhou, A.; Chu, C.; Zuo, X.; Yu, Y.; Yuan, Q.; Wang, W.; Li, F.; Shi, S.; Yang, H.; Zhou, C.; Liao, Z.; Lv, Y.; Li, Y.; Kan, M.; Zhao, H.; Wang, S.; Yang, S.; Li, H.; Liu, Z.; Wang, Q.; Qin, W.; Jia, J.; Quan, M.; Wang, Y.; Li, W.; Cao, S.; Xu, L.; Han, Y.; Liang, J.; Qiao, Y.; Qin, Q.; Qiu, Q. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health, 2020, 5(12), e661-e671.
[http://dx.doi.org/10.1016/S2468-2667(20)30185-7] [PMID: 33271079]
[4]
2023 alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[5]
Jia, J.; Wei, C.; Chen, S.; Li, F.; Tang, Y.; Qin, W.; Zhao, L.; Jin, H.; Xu, H.; Wang, F.; Zhou, A.; Zuo, X.; Wu, L.; Han, Y.; Han, Y.; Huang, L.; Wang, Q.; Li, D.; Chu, C.; Shi, L.; Gong, M.; Du, Y.; Zhang, J.; Zhang, J.; Zhou, C.; Lv, J.; Lv, Y.; Xie, H.; Ji, Y.; Li, F.; Yu, E.; Luo, B.; Wang, Y.; Yang, S.; Qu, Q.; Guo, Q.; Liang, F.; Zhang, J.; Tan, L.; Shen, L.; Zhang, K.; Zhang, J.; Peng, D.; Tang, M.; Lv, P.; Fang, B.; Chu, L.; Jia, L.; Gauthier, S. The cost of alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement., 2018, 14(4), 483-491.
[http://dx.doi.org/10.1016/j.jalz.2017.12.006] [PMID: 29433981]
[6]
Seshadri, S.; Fitzpatrick, A.L.; Ikram, M.A.; DeStefano, A.L.; Gudnason, V.; Boada, M.; Bis, J.C.; Smith, A.V.; Carassquillo, M.M.; Lambert, J.C.; Harold, D.; Schrijvers, E.M.; Ramirez-Lorca, R.; Debette, S.; Longstreth, W.T., Jr; Janssens, A.C.; Pankratz, V.S.; Dartigues, J.F.; Hollingworth, P.; Aspelund, T.; Hernandez, I.; Beiser, A.; Kuller, L.H.; Koudstaal, P.J.; Dickson, D.W.; Tzourio, C.; Abraham, R.; Antunez, C.; Du, Y.; Rotter, J.I.; Aulchenko, Y.S.; Harris, T.B.; Petersen, R.C.; Berr, C.; Owen, M.J.; Lopez-Arrieta, J.; Varadarajan, B.N.; Becker, J.T.; Rivadeneira, F.; Nalls, M.A.; Graff-Radford, N.R.; Campion, D.; Auerbach, S.; Rice, K.; Hofman, A.; Jonsson, P.V.; Schmidt, H.; Lathrop, M.; Mosley, T.H.; Au, R.; Psaty, B.M.; Uitterlinden, A.G.; Farrer, L.A.; Lumley, T.; Ruiz, A.; Williams, J.; Amouyel, P.; Younkin, S.G.; Wolf, P.A.; Launer, L.J.; Lopez, O.L.; van Duijn, C.M.; Breteler, M.M. Genome-wide analysis of genetic loci associated with alzheimer disease. JAMA, 2010, 303(18), 1832-1840.
[http://dx.doi.org/10.1001/jama.2010.574] [PMID: 20460622]
[7]
Gao, Y.; Ren, R.J.; Zhong, Z.L.; Dammer, E.; Zhao, Q.H.; Shan, S.; Zhou, Z.; Li, X.; Zhang, Y.Q.; Cui, H.L.; Hu, Y.B.; Chen, S.D.; Chen, J.J.; Guo, Q.H.; Wang, G. Mutation profile of APP, PSEN1, and PSEN2 in Chinese familial alzheimer’s disease. Neurobiol. Aging, 2019, 77, 154-157.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.018] [PMID: 30822634]
[8]
Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol., 2021, 20(1), 68-80.
[http://dx.doi.org/10.1016/S1474-4422(20)30412-9] [PMID: 33340485]
[9]
Gallardo, G.; Holtzman, D.M. Amyloid-β and tau at the crossroads of alzheimer’s disease. Adv. Exp. Med. Biol., 2019, 1184, 187-203.
[http://dx.doi.org/10.1007/978-981-32-9358-8_16] [PMID: 32096039]
[10]
Jia, J.P.; Wang, S.H. Pathogenesis and therapeutic progress of alzheimer’s disease. J. Apoplexy Nerv. Dis., 2023, 40(5), 387-390.
[http://dx.doi.org/10.19845/j.cnki.zfysjjbzz.2023.0092]
[11]
Mary, A.; Eysert, F.; Checler, F.; Chami, M. Mitophagy in alzheimer’s disease: Molecular defects and therapeutic approaches. Mol. Psychiatry, 2023, 28(1), 202-216.
[http://dx.doi.org/10.1038/s41380-022-01631-6] [PMID: 35665766]
[12]
Hou, X.; Watzlawik, J.O.; Cook, C.; Liu, C.C.; Kang, S.S.; Lin, W.L.; DeTure, M.; Heckman, M.G.; Diehl, N.N.; Al-Shaikh, F.S.H.; Walton, R.L.; Ross, O.A.; Melrose, H.L.; Ertekin-Taner, N.; Bu, G.; Petrucelli, L.; Fryer, J.D.; Murray, M.E.; Dickson, D.W.; Fiesel, F.C.; Springer, W. Mitophagy alterations in alzheimer’s disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimers Dement., 2021, 17(3), 417-430.
[http://dx.doi.org/10.1002/alz.12198] [PMID: 33090691]
[13]
Harrington, J.S.; Ryter, S.W.; Plataki, M.; Price, D.R.; Choi, A.M.K. Mitochondria in health, disease, and aging. Physiol. Rev., 2023, 103(4), 2349-2422.
[http://dx.doi.org/10.1152/physrev.00058.2021] [PMID: 37021870]
[14]
Fecher, C.; Trovò, L.; Müller, S.A.; Snaidero, N.; Wettmarshausen, J.; Heink, S.; Ortiz, O.; Wagner, I.; Kühn, R.; Hartmann, J.; Karl, R.M.; Konnerth, A.; Korn, T.; Wurst, W.; Merkler, D.; Lichtenthaler, S.F.; Perocchi, F.; Misgeld, T. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat. Neurosci., 2019, 22(10), 1731-1742.
[http://dx.doi.org/10.1038/s41593-019-0479-z] [PMID: 31501572]
[15]
Pradeepkiran, J.A.; Reddy, P.H. Defective mitophagy in alzheimer’s disease. Ageing Res. Rev., 2020, 64, 101191.
[http://dx.doi.org/10.1016/j.arr.2020.101191] [PMID: 33022416]
[16]
Lemasters, J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res., 2005, 8(1), 3-5.
[http://dx.doi.org/10.1089/rej.2005.8.3] [PMID: 15798367]
[17]
Cen, X.; Zhang, M.; Zhou, M.; Ye, L.; Xia, H. Mitophagy regulates neurodegenerative diseases. Cells, 2021, 10(8), 1876.
[http://dx.doi.org/10.3390/cells10081876] [PMID: 34440645]
[18]
Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; Eckert, A.; Harvey, J.; Jeggo, R.; Jhamandas, J.H.; Kann, O.; la Cour, C.M.; Martin, W.F.; Mithieux, G.; Moreira, P.I.; Murphy, M.P.; Nave, K.A.; Nuriel, T.; Oliet, S.H.R.; Saudou, F.; Mattson, M.P.; Swerdlow, R.H.; Millan, M.J. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2020, 19(9), 609-633.
[http://dx.doi.org/10.1038/s41573-020-0072-x] [PMID: 32709961]
[19]
Eiyama, A.; Okamoto, K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol., 2015, 33, 95-101.
[http://dx.doi.org/10.1016/j.ceb.2015.01.002] [PMID: 25697963]
[20]
Deas, E.; Plun-Favreau, H.; Gandhi, S.; Desmond, H.; Kjaer, S.; Loh, S.H.Y.; Renton, A.E.M.; Harvey, R.J.; Whitworth, A.J.; Martins, L.M.; Abramov, A.Y.; Wood, N.W. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet., 2011, 20(5), 867-879.
[http://dx.doi.org/10.1093/hmg/ddq526] [PMID: 21138942]
[21]
Kondapalli, C.; Kazlauskaite, A.; Zhang, N.; Woodroof, H.I.; Campbell, D.G.; Gourlay, R.; Burchell, L.; Walden, H.; Macartney, T.J.; Deak, M.; Knebel, A.; Alessi, D.R.; Muqit, M.M.K. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol., 2012, 2(5), 120080.
[http://dx.doi.org/10.1098/rsob.120080] [PMID: 22724072]
[22]
Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.V.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet., 2010, 19(24), 4861-4870.
[http://dx.doi.org/10.1093/hmg/ddq419] [PMID: 20871098]
[23]
Geisler, S.; Holmström, K.M.; Skujat, D.; Fiesel, F.C.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol., 2010, 12(2), 119-131.
[http://dx.doi.org/10.1038/ncb2012] [PMID: 20098416]
[24]
Kumar, A.; Aguirre, J.D.; Condos, T.E.C.; Martinez-Torres, R.J.; Chaugule, V.K.; Toth, R.; Sundaramoorthy, R.; Mercier, P.; Knebel, A.; Spratt, D.E.; Barber, K.R.; Shaw, G.S.; Walden, H. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J., 2015, 34(20), 2506-2521.
[http://dx.doi.org/10.15252/embj.201592337] [PMID: 26254304]
[25]
Nguyen, T.N.; Padman, B.S.; Lazarou, M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol., 2016, 26(10), 733-744.
[http://dx.doi.org/10.1016/j.tcb.2016.05.008] [PMID: 27291334]
[26]
Richter, B.; Sliter, D.A.; Herhaus, L.; Stolz, A.; Wang, C.; Beli, P.; Zaffagnini, G.; Wild, P.; Martens, S.; Wagner, S.A.; Youle, R.J.; Dikic, I. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 4039-4044.
[http://dx.doi.org/10.1073/pnas.1523926113] [PMID: 27035970]
[27]
Heo, J.M.; Ordureau, A.; Paulo, J.A.; Rinehart, J.; Harper, J.W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell, 2015, 60(1), 7-20.
[http://dx.doi.org/10.1016/j.molcel.2015.08.016] [PMID: 26365381]
[28]
Wong, Y.C.; Holzbaur, E.L.F. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA, 2014, 111(42), E4439-E4448.
[http://dx.doi.org/10.1073/pnas.1405752111] [PMID: 25294927]
[29]
Kirkin, V.; Lamark, T.; Johansen, T.; Dikic, I. NBR1 co-operates with p62 in selective autophagy of ubiquitinated targets. Autophagy, 2009, 5(5), 732-733.
[http://dx.doi.org/10.4161/auto.5.5.8566] [PMID: 19398892]
[30]
Choubey, V.; Zeb, A.; Kaasik, A. Molecular mechanisms and regulation of mammalian mitophagy. Cells, 2021, 11(1), 38.
[http://dx.doi.org/10.3390/cells11010038] [PMID: 35011599]
[31]
Wang, S.; Long, H.; Hou, L.; Feng, B.; Ma, Z.; Wu, Y.; Zeng, Y.; Cai, J.; Zhang, D.; Zhao, G. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther., 2023, 8(1), 304.
[http://dx.doi.org/10.1038/s41392-023-01503-7] [PMID: 37582956]
[32]
Villa, E.; Proïcs, E.; Rubio-Patiño, C.; Obba, S.; Zunino, B.; Bossowski, J.P.; Rozier, R.M.; Chiche, J.; Mondragón, L.; Riley, J.S.; Marchetti, S.; Verhoeyen, E.; Tait, S.W.G.; Ricci, J.E. Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Rep., 2017, 20(12), 2846-2859.
[http://dx.doi.org/10.1016/j.celrep.2017.08.087] [PMID: 28930681]
[33]
Szargel, R.; Shani, V.; Abd Elghani, F.; Mekies, L.N.; Liani, E.; Rott, R.; Engelender, S. The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum. Mol. Genet., 2016, 25(16), 3476-3490.
[http://dx.doi.org/10.1093/hmg/ddw189] [PMID: 27334109]
[34]
Yun, J.; Puri, R.; Yang, H.; Lizzio, M.A.; Wu, C.; Sheng, Z.H.; Guo, M. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. eLife, 2014, 3, e01958.
[http://dx.doi.org/10.7554/eLife.01958] [PMID: 24898855]
[35]
Novak, I.; Kirkin, V.; McEwan, D.G.; Zhang, J.; Wild, P.; Rozenknop, A.; Rogov, V.; Löhr, F.; Popovic, D.; Occhipinti, A.; Reichert, A.S.; Terzic, J.; Dötsch, V.; Ney, P.A.; Dikic, I. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep., 2010, 11(1), 45-51.
[http://dx.doi.org/10.1038/embor.2009.256] [PMID: 20010802]
[36]
Shi, R.Y.; Zhu, S.H.; Li, V.; Gibson, S.B.; Xu, X.S.; Kong, J.M. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci. Ther., 2014, 20(12), 1045-1055.
[http://dx.doi.org/10.1111/cns.12325] [PMID: 25230377]
[37]
Jin, X.H.; Lu, S.F.; Bai, M.; Shen, J.D.; Su, Y.C.; Xu, E.P. Research progress in NIX-mediated mitophagy. Chin. J. Pathophysiol., 2022, 38(11), 2086-2092.
[38]
Liu, L.; Feng, D.; Chen, G.; Chen, M.; Zheng, Q.; Song, P.; Ma, Q.; Zhu, C.; Wang, R.; Qi, W.; Huang, L.; Xue, P.; Li, B.; Wang, X.; Jin, H.; Wang, J.; Yang, F.; Liu, P.; Zhu, Y.; Sui, S.; Chen, Q. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol., 2012, 14(2), 177-185.
[http://dx.doi.org/10.1038/ncb2422] [PMID: 22267086]
[39]
Chen, M.; Chen, Z.; Wang, Y.; Tan, Z.; Zhu, C.; Li, Y.; Han, Z.; Chen, L.; Gao, R.; Liu, L.; Chen, Q. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy, 2016, 12(4), 689-702.
[http://dx.doi.org/10.1080/15548627.2016.1151580] [PMID: 27050458]
[40]
Hirai, K.; Aliev, G.; Nunomura, A.; Fujioka, H.; Russell, R.L.; Atwood, C.S.; Johnson, A.B.; Kress, Y.; Vinters, H.V.; Tabaton, M.; Shimohama, S.; Cash, A.D.; Siedlak, S.L.; Harris, P.L.R.; Jones, P.K.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondrial abnormalities in alzheimer’s disease. J. Neurosci., 2001, 21(9), 3017-3023.
[http://dx.doi.org/10.1523/JNEUROSCI.21-09-03017.2001] [PMID: 11312286]
[41]
Xie, C.; Zhuang, X.X.; Niu, Z.; Ai, R.; Lautrup, S.; Zheng, S.; Jiang, Y.; Han, R.; Gupta, T.S.; Cao, S.; Lagartos-Donate, M.J.; Cai, C.Z.; Xie, L.M.; Caponio, D.; Wang, W.W.; Schmauck-Medina, T.; Zhang, J.; Wang, H.; Lou, G.; Xiao, X.; Zheng, W.; Palikaras, K.; Yang, G.; Caldwell, K.A.; Caldwell, G.A.; Shen, H.M.; Nilsen, H.; Lu, J.H.; Fang, E.F. Amelioration of alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat. Biomed. Eng., 2022, 6(1), 76-93.
[http://dx.doi.org/10.1038/s41551-021-00819-5] [PMID: 34992270]
[42]
Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; Rocktäschel, P.; Croteau, D.L.; Akbari, M.; Greig, N.H.; Fladby, T.; Nilsen, H.; Cader, M.Z.; Mattson, M.P.; Tavernarakis, N.; Bohr, V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of alzheimer’s disease. Nat. Neurosci., 2019, 22(3), 401-412.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[43]
Kerr, J.S.; Adriaanse, B.A.; Greig, N.H.; Mattson, M.P.; Cader, M.Z.; Bohr, V.A.; Fang, E.F. Mitophagy and alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci., 2017, 40(3), 151-166.
[http://dx.doi.org/10.1016/j.tins.2017.01.002] [PMID: 28190529]
[44]
Reddy, P.H.; Oliver, D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in alzheimer’s disease. Cells, 2019, 8(5), 488.
[http://dx.doi.org/10.3390/cells8050488] [PMID: 31121890]
[45]
Du, H.; Guo, L.; Yan, S.; Sosunov, A.A.; McKhann, G.M.; ShiDu Yan, S. Early deficits in synaptic mitochondria in an alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18670-18675.
[http://dx.doi.org/10.1073/pnas.1006586107] [PMID: 20937894]
[46]
Reiss, A.B.; Arain, H.A.; Stecker, M.M.; Siegart, N.M.; Kasselman, L.J. Amyloid toxicity in alzheimer’s disease. Rev. Neurosci., 2018, 29(6), 613-627.
[http://dx.doi.org/10.1515/revneuro-2017-0063] [PMID: 29447116]
[47]
Yao, Y.; Ren, Z.; Yang, R.; Mei, Y.; Dai, Y.; Cheng, Q.; Xu, C.; Xu, X.; Wang, S.; Kim, K.M.; Noh, J.H.; Zhu, J.; Zhao, N.; Liu, Y.U.; Mao, G.; Sima, J. Salidroside reduces neuropathology in alzheimer’s disease models by targeting NRF2/SIRT3 pathway. Cell Biosci., 2022, 12(1), 180.
[http://dx.doi.org/10.1186/s13578-022-00918-z] [PMID: 36333711]
[48]
Tian, Y.H. The Mechanism of Senegenin Alleviating Aβ1-42-induced Neuron Damage: Study on Mitophagy Pathway; Lanzhou University, 2022.
[http://dx.doi.org/10.27204/d.cnki.glzhu.2022.003705]
[49]
Han, Y.; Wang, N.; Kang, J.; Fang, Y. β-Asarone improves learning and memory in Aβ1-42-induced alzheimer’s disease rats by regulating PINK1-Parkin-mediated mitophagy. Metab. Brain Dis., 2020, 35(7), 1109-1117.
[http://dx.doi.org/10.1007/s11011-020-00587-2] [PMID: 32556928]
[50]
Jiang, Y.; Li, H.; Huang, P.; Li, S.; Li, B.; Huo, L.; Zhong, J.; Pan, Z.; Li, Y.; Xia, X. Panax notoginseng saponins protect PC12 cells against Aβ induced injury via promoting parkin-mediated mitophagy. J. Ethnopharmacol., 2022, 285, 114859.
[http://dx.doi.org/10.1016/j.jep.2021.114859] [PMID: 34818573]
[51]
Wang, N.; Yang, J.; Chen, R.; Liu, Y.; Liu, S.; Pan, Y.; Lei, Q.; Wang, Y.; He, L.; Song, Y.; Li, Z. Ginsenoside Rg1 ameliorates alzheimer’s disease pathology via restoring mitophagy. J. Ginseng Res., 2023, 47(3), 448-457.
[http://dx.doi.org/10.1016/j.jgr.2022.12.001] [PMID: 37252274]
[52]
Kopeikina, K.J.; Carlson, G.A.; Pitstick, R.; Ludvigson, A.E.; Peters, A.; Luebke, J.I.; Koffie, R.M.; Frosch, M.P.; Hyman, B.T.; Spires-Jones, T.L. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human alzheimer’s disease brain. Am. J. Pathol., 2011, 179(4), 2071-2082.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.004] [PMID: 21854751]
[53]
Corsetti, V.; Florenzano, F.; Atlante, A.; Bobba, A.; Ciotti, M.T.; Natale, F.; Della Valle, F.; Borreca, A.; Manca, A.; Meli, G.; Ferraina, C.; Feligioni, M.; D’Aguanno, S.; Bussani, R.; Ammassari-Teule, M.; Nicolin, V.; Calissano, P.; Amadoro, G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: Implications in alzheimer’s disease. Hum. Mol. Genet., 2015, 24(11), 3058-3081.
[http://dx.doi.org/10.1093/hmg/ddv059] [PMID: 25687137]
[54]
Martín-Maestro, P.; Gargini, R.; García, E.; Simón, D.; Avila, J.; García-Escudero, V. Mitophagy failure in APP and tau overexpression model of alzheimer’s disease. J. Alzheimers Dis., 2019, 70(2), 525-540.
[http://dx.doi.org/10.3233/JAD-190086] [PMID: 31256128]
[55]
Kshirsagar, S.; Sawant, N.; Morton, H.; Reddy, A.P.; Reddy, P.H. Mitophagy enhancers against phosphorylated Tau-induced mitochondrial and synaptic toxicities in alzheimer disease. Pharmacol. Res., 2021, 174, 105973.
[http://dx.doi.org/10.1016/j.phrs.2021.105973] [PMID: 34763094]
[56]
Cummins, N.; Tweedie, A.; Zuryn, S.; Bertran-Gonzalez, J.; Götz, J. Disease-associated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria. EMBO J., 2019, 38(3), e99360.
[http://dx.doi.org/10.15252/embj.201899360] [PMID: 30538104]
[57]
Manczak, M.; Reddy, P.H. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in alzheimer’s disease. Hum. Mol. Genet., 2012, 21(23), 5131-5146.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[58]
Vijayan, M.; Alvir, R.V.; Alvir, R.V.; Bunquin, L.E.; Pradeepkiran, J.A.; Reddy, P.H. A partial reduction of VDAC1 enhances mitophagy, autophagy, synaptic activities in a transgenic Tau mouse model. Aging Cell, 2022, 21(8), e13663.
[http://dx.doi.org/10.1111/acel.13663] [PMID: 35801276]
[59]
Flammang, B.; Pardossi-Piquard, R.; Sevalle, J.; Debayle, D.; Dabert-Gay, A.S.; Thévenet, A.; Lauritzen, I.; Checler, F. Evidence that the amyloid-β protein precursor intracellular domain, AICD, derives from β-secretase-generated C-terminal fragment. J. Alzheimers Dis., 2012, 30(1), 145-153.
[http://dx.doi.org/10.3233/JAD-2012-112186] [PMID: 22406447]
[60]
Wang, B.J.; Her, G.M.; Hu, M.K.; Chen, Y.W.; Tung, Y.T.; Wu, P.Y.; Hsu, W.M.; Lee, H.; Jin, L.W.; Hwang, S.P.L.; Chen, R.P.Y.; Huang, C.J.; Liao, Y.F. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2017, 114(15), E3129-E3138.
[http://dx.doi.org/10.1073/pnas.1618804114] [PMID: 28351972]
[61]
Vaillant-Beuchot, L.; Mary, A.; Pardossi-Piquard, R.; Bourgeois, A.; Lauritzen, I.; Eysert, F.; Kinoshita, P.F.; Cazareth, J.; Badot, C.; Fragaki, K.; Bussiere, R.; Martin, C.; Mary, R.; Bauer, C.; Pagnotta, S.; Paquis-Flucklinger, V.; Buée-Scherrer, V.; Buée, L.; Lacas-Gervais, S.; Checler, F.; Chami, M. Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in alzheimer’s disease models and human brains. Acta Neuropathol., 2021, 141(1), 39-65.
[http://dx.doi.org/10.1007/s00401-020-02234-7] [PMID: 33079262]
[62]
Reddy, P.H.; Yin, X.; Manczak, M.; Kumar, S.; Pradeepkiran, J.A.; Vijayan, M.; Reddy, A.P. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from alzheimer’s disease. Hum. Mol. Genet., 2018, 27(14), 2502-2516.
[http://dx.doi.org/10.1093/hmg/ddy154] [PMID: 29701781]
[63]
Wang, X.; Su, B.; Lee, H.; Li, X.; Perry, G.; Smith, M.A.; Zhu, X. Impaired balance of mitochondrial fission and fusion in alzheimer’s disease. J. Neurosci., 2009, 29(28), 9090-9103.
[http://dx.doi.org/10.1523/JNEUROSCI.1357-09.2009] [PMID: 19605646]
[64]
Medala, V.K.; Gollapelli, B.; Dewanjee, S.; Ogunmokun, G.; Kandimalla, R.; Vallamkondu, J. Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in alzheimer’s disease. J. Neurosci. Res., 2021, 99(4), 1120-1135.
[http://dx.doi.org/10.1002/jnr.24781] [PMID: 33465841]
[65]
Kandimalla, R.; Manczak, M.; Pradeepkiran, J.A.; Morton, H.; Reddy, P.H. A partial reduction of Drp1 improves cognitive behavior and enhances mitophagy, autophagy and dendritic spines in a transgenic Tau mouse model of alzheimer disease. Hum. Mol. Genet., 2022, 31(11), 1788-1805.
[http://dx.doi.org/10.1093/hmg/ddab360] [PMID: 34919689]
[66]
Xie, W.; Guo, D.; Li, J.; Yue, L.; Kang, Q.; Chen, G.; Zhou, T.; Wang, H.; Zhuang, K.; Leng, L.; Li, H.; Chen, Z.; Gao, W.; Zhang, J. CEND1 deficiency induces mitochondrial dysfunction and cognitive impairment in alzheimer’s disease. Cell Death Differ., 2022, 29(12), 2417-2428.
[http://dx.doi.org/10.1038/s41418-022-01027-7] [PMID: 35732922]
[67]
Xu, Q.; Bernardo, A.; Walker, D.; Kanegawa, T.; Mahley, R.W.; Huang, Y. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci., 2006, 26(19), 4985-4994.
[http://dx.doi.org/10.1523/JNEUROSCI.5476-05.2006] [PMID: 16687490]
[68]
Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol., 2019, 15(9), 501-518.
[http://dx.doi.org/10.1038/s41582-019-0228-7] [PMID: 31367008]
[69]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[70]
Jia, L.; Xu, H.; Chen, S.; Wang, X.; Yang, J.; Gong, M.; Wei, C.; Tang, Y.; Qu, Q.; Chu, L.; Shen, L.; Zhou, C.; Wang, Q.; Zhao, T.; Zhou, A.; Li, Y.; Li, F.; Li, Y.; Jin, H.; Qin, Q.; Jiao, H.; Li, Y.; Zhang, H.; Lyu, D.; Shi, Y.; Song, Y.; Jia, J. The APOE ε4 exerts differential effects on familial and other subtypes of alzheimer’s disease. Alzheimers Dement., 2020, 16(12), 1613-1623.
[http://dx.doi.org/10.1002/alz.12153] [PMID: 32881347]
[71]
Chang, S.; Ma, T.; Miranda, R.D.; Balestra, M.E.; Mahley, R.W.; Huang, Y. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl. Acad. Sci. USA, 2005, 102(51), 18694-18699.
[http://dx.doi.org/10.1073/pnas.0508254102] [PMID: 16344479]
[72]
Chen, H.K.; Ji, Z.S.; Dodson, S.E.; Miranda, R.D.; Rosenblum, C.I.; Reynolds, I.J.; Freedman, S.B.; Weisgraber, K.H.; Huang, Y.; Mahley, R.W. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J. Biol. Chem., 2011, 286(7), 5215-5221.
[http://dx.doi.org/10.1074/jbc.M110.151084] [PMID: 21118811]
[73]
Simonovitch, S.; Schmukler, E.; Masliah, E.; Pinkas-Kramarski, R.; Michaelson, D.M. The effects of APOE4 on mitochondrial dynamics and proteins in vivo. J. Alzheimers Dis., 2019, 70(3), 861-875.
[http://dx.doi.org/10.3233/JAD-190074] [PMID: 31306119]
[74]
Schmukler, E.; Solomon, S.; Simonovitch, S.; Goldshmit, Y.; Wolfson, E.; Michaelson, D.M.; Pinkas-Kramarski, R. Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. Cell Death Dis., 2020, 11(7), 578.
[http://dx.doi.org/10.1038/s41419-020-02776-4] [PMID: 32709881]
[75]
Blanchard, J.W.; Akay, L.A.; Davila-Velderrain, J.; von Maydell, D.; Mathys, H.; Davidson, S.M.; Effenberger, A.; Chen, C.Y.; Maner-Smith, K.; Hajjar, I.; Ortlund, E.A.; Bula, M.; Agbas, E.; Ng, A.; Jiang, X.; Kahn, M.; Blanco-Duque, C.; Lavoie, N.; Liu, L.; Reyes, R.; Lin, Y.T.; Ko, T.; R’Bibo, L.; Ralvenius, W.T.; Bennett, D.A.; Cam, H.P.; Kellis, M.; Tsai, L.H. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature, 2022, 611(7937), 769-779.
[http://dx.doi.org/10.1038/s41586-022-05439-w] [PMID: 36385529]
[76]
Roca-Agujetas, V.; Barbero-Camps, E.; de Dios, C.; Podlesniy, P.; Abadin, X.; Morales, A.; Marí, M.; Trullàs, R.; Colell, A. Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in alzheimer’s disease. Mol. Neurodegener., 2021, 16(1), 15.
[http://dx.doi.org/10.1186/s13024-021-00435-6] [PMID: 33685483]
[77]
Yazaki, K.; Matsuno, Y.; Yoshida, K.; Sherpa, M.; Nakajima, M.; Matsuyama, M.; Kiwamoto, T.; Morishima, Y.; Ishii, Y.; Hizawa, N. ROS-Nrf2 pathway mediates the development of TGF-β1-induced epithelial-mesenchymal transition through the activation of Notch signaling. Eur. J. Cell Biol., 2021, 100(7-8), 151181.
[http://dx.doi.org/10.1016/j.ejcb.2021.151181] [PMID: 34763128]
[78]
George, M.; Tharakan, M.; Culberson, J.; Reddy, A.P.; Reddy, P.H. Role of Nrf2 in aging, alzheimer’s and other neurodegenerative diseases. Ageing Res. Rev., 2022, 82, 101756.
[http://dx.doi.org/10.1016/j.arr.2022.101756] [PMID: 36243357]
[79]
Liu, G.W.; Chen, W.M.; Qin, J.P.; Gu, H.Q.; Liu, Q. Advances in the relationship between Nrf 2 and tumor and brain diseases. Jianyan Yixue Yu Linchuang, 2022, 19(17), 2320-2322.
[80]
Osama, A.; Zhang, J.; Yao, J.; Yao, X.; Fang, J. Nrf2: A dark horse in alzheimer’s disease treatment. Ageing Res. Rev., 2020, 64, 101206.
[http://dx.doi.org/10.1016/j.arr.2020.101206] [PMID: 33144124]
[81]
Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771), 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[82]
Zhao, N.; Zhang, X.; Li, B.; Wang, J.; Zhang, C.; Xu, B. Treadmill exercise improves PINK1/parkin-mediated mitophagy activity against alzheimer’s disease pathologies by upregulated SIRT1-FOXO1/3 axis in APP/PS1 mice. Mol. Neurobiol., 2023, 60(1), 277-291.
[http://dx.doi.org/10.1007/s12035-022-03035-7] [PMID: 36261693]
[83]
Silva, D.F.; Esteves, A.R.; Oliveira, C.R.; Cardoso, S.M. Mitochondrial metabolism power SIRT2-dependent deficient traffic causing alzheimer’s-disease related pathology. Mol. Neurobiol., 2017, 54(6), 4021-4040.
[http://dx.doi.org/10.1007/s12035-016-9951-x] [PMID: 27311773]
[84]
Zhou, Z.D.; Tan, E.K. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson’s disease. Ageing Res. Rev., 2020, 62, 101107.
[http://dx.doi.org/10.1016/j.arr.2020.101107] [PMID: 32535274]
[85]
Yang, W.X. Mitochondrial Sirt3 Expression is Decreased in APP/PS1 Double Transgenic Mouse Model of alzheimer’s; Chongqing Medical University, 2015.
[86]
Huang, J.; Zeng, X.L.; Zhang, Q.Y.; Mi, M.T. Resveratrol improves mitochondrial function via up-regulating Sirt 3 in induced steatotic HepG2 cells. J. Army Med. Univ., 2017, 39(6), 536-540.
[http://dx.doi.org/10.16016/j.1000-5404.201609164]
[87]
Huang, Y.; Yang, Q.Y.; Chen, T.; Chen, C.; Zhong, Q.; Zhang, Z.Z. Progress in mitophagy in alzheimer’s disease. Int. J. Psychiatry, 2018, 45(6), 971-973.
[http://dx.doi.org/10.13479/j.cnki.jip.2018.06.004]
[88]
Wang, J.L.; Zhang, X.L.; Wang, X.Y. SIRT3 regulates age-related disease via mitochondrial pathway: From pathogenesis to therapy. Chin. J. Cell. Biol., 2017, 39(10), 1349-1356.
[89]
Fu, J.; Wu, H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol., 2023, 41(1), 301-316.
[http://dx.doi.org/10.1146/annurev-immunol-081022-021207] [PMID: 36750315]
[90]
Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[91]
Das, S.; Mishra, M.K.; Ghosh, J.; Basu, A. Japanese Encephalitis Virus infection induces IL-18 and IL-1β in microglia and astrocytes: Correlation with in vitro cytokine responsiveness of glial cells and subsequent neuronal death. J. Neuroimmunol., 2008, 195(1-2), 60-72.
[http://dx.doi.org/10.1016/j.jneuroim.2008.01.009] [PMID: 18374991]
[92]
Hung, W.L.; Ho, C.T.; Pan, M.H. Targeting the NLRP3 inflammasome in neuroinflammation: Health promoting effects of dietary phytochemicals in neurological disorders. Mol. Nutr. Food Res., 2020, 64(4), 1900550.
[http://dx.doi.org/10.1002/mnfr.201900550] [PMID: 31675164]
[93]
Gao, Y.; Li, J.; Li, J.; Hu, C.; Zhang, L.; Yan, J.; Li, L.; Zhang, L. Tetrahydroxy stilbene glycoside alleviated inflammatory damage by mitophagy via AMPK related PINK1/Parkin signaling pathway. Biochem. Pharmacol., 2020, 177, 113997.
[http://dx.doi.org/10.1016/j.bcp.2020.113997] [PMID: 32353422]
[94]
Yu, J.; Nagasu, H.; Murakami, T.; Hoang, H.; Broderick, L.; Hoffman, H.M.; Horng, T. Inflammasome activation leads to Caspase-1–dependent mitochondrial damage and block of mitophagy. Proc. Natl. Acad. Sci. USA, 2014, 111(43), 15514-15519.
[http://dx.doi.org/10.1073/pnas.1414859111] [PMID: 25313054]
[95]
Yang, X.; Zhang, M.; Dai, Y.; Sun, Y.; Aman, Y.; Xu, Y.; Yu, P.; Zheng, Y.; Yang, J.; Zhu, X. Spermidine inhibits neurodegeneration and delays aging via the PINK1-PDR1-dependent mitophagy pathway in C. elegans. Aging, 2020, 12(17), 16852-16866.
[http://dx.doi.org/10.18632/aging.103578] [PMID: 32902411]
[96]
Pekar, T.; Bruckner, K.; Pauschenwein-Frantsich, S.; Gschaider, A.; Oppliger, M.; Willesberger, J.; Ungersbäck, P.; Wendzel, A.; Kremer, A.; Flak, W.; Wantke, F.; Jarisch, R. The positive effect of spermidine in older adults suffering from dementia. Wien. Klin. Wochenschr., 2021, 133(9-10), 484-491.
[http://dx.doi.org/10.1007/s00508-020-01758-y] [PMID: 33211152]
[97]
Pekar, T.; Wendzel, A.; Jarisch, R. The positive effect of spermidine in older adults suffering from dementia after 1 year. Wien. Klin. Wochenschr., 2024, 136(1-2), 64-66.
[http://dx.doi.org/10.1007/s00508-023-02226-z] [PMID: 37284840]
[98]
Zhang, R.; Lu, J.; Pei, G.; Huang, S. Galangin rescues alzheimer’s amyloid-β induced mitophagy and brain organoid growth impairment. Int. J. Mol. Sci., 2023, 24(4), 3398.
[http://dx.doi.org/10.3390/ijms24043398] [PMID: 36834819]
[99]
Wang, H.; Jiang, T.; Li, W.; Gao, N.; Zhang, T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of alzheimer’s disease. Toxicol. Lett., 2018, 282, 100-108.
[http://dx.doi.org/10.1016/j.toxlet.2017.10.021] [PMID: 29097221]
[100]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S.; Mintzer, J.; Reynolds, B.A.; Karlawish, J.; Galasko, D.; Heidebrink, J.; Aggarwal, N.; Graff-Radford, N.; Sano, M.; Petersen, R.; Bell, K.; Doody, R.; Smith, A.; Bernick, C.; Porteinsson, A.; Tariot, P.; Mulnard, R.; Lerner, A.; Schneider, L.; Burns, J.; Raskind, M.; Ferris, S.; Jicha, G.; Quiceno, M.; Obisesan, T.; Rosenberg, P.; Weintraub, D.; Kieburtz, K.; Miller, B.; Kryscio, R.; Alexopoulis, G. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[101]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[102]
Ahmedy, O.A.; Abdelghany, T.M.; El-Shamarka, M.E.A.; Khattab, M.A.; El-Tanbouly, D.M. Apigenin attenuates LPS-induced neurotoxicity and cognitive impairment in mice via promoting mitochondrial fusion/mitophagy: role of SIRT3/PINK1/Parkin pathway. Psychopharmacology, 2022, 239(12), 3903-3917.
[http://dx.doi.org/10.1007/s00213-022-06262-x] [PMID: 36287214]
[103]
Lu, J.; Gu, L.; Li, Q.; Wu, N.; Li, H.; Zhang, X. Andrographolide emeliorates maltol aluminium-induced neurotoxicity via regulating p62-mediated Keap1-Nrf2 pathways in PC12 cells. Pharm. Biol., 2021, 59(1), 230-239.
[http://dx.doi.org/10.1080/13880209.2021.1883678] [PMID: 33632062]
[104]
Zhou, Y.; Luo, D.; Shi, J.; Yang, X.; Xu, W.; Gao, W.; Guo, Y.; Zhao, Q.; Xie, X.; He, Y.; Du, G.; Pang, X. Loganin alleviated cognitive impairment in 3×Tg-AD mice through promoting mitophagy mediated by optineurin. J. Ethnopharmacol., 2023, 312, 116455.
[http://dx.doi.org/10.1016/j.jep.2023.116455] [PMID: 37019163]
[105]
Wang, C.; Zou, Q.; Pu, Y.; Cai, Z.; Tang, Y. Berberine rescues d-ribose-induced alzheimer’s pathology via promoting mitophagy. Int. J. Mol. Sci., 2023, 24(6), 5896.
[http://dx.doi.org/10.3390/ijms24065896] [PMID: 36982968]
[106]
Yang, M.; Yu, W-J.; He, C-X.; Jin, Y-J.; Li, Z.; Li, P.; Deng, S-S.; Yi, Y-Q.; Cheng, S-W.; Song, Z-Y. Effect on danggui shaoyao powder on mitophagy in rat model of alzheimer’s disease based on PINK1-parkin pathway. Zhongguo Zhongyao Zazhi, 2023, 48(2), 534-541.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20220907.501] [PMID: 36725243]
[107]
Chai, G.; Wu, J.; Gong, J.; Zhou, J.; Jiang, Z.; Yi, H.; Gu, Y.; Huang, H.; Yao, Z.; Zhang, Y.; Zhao, P.; Nie, Y. Activation of β2-adrenergic receptor ameliorates amyloid-β-induced mitophagy defects and tau pathology in mice. Neuroscience, 2022, 505, 34-50.
[http://dx.doi.org/10.1016/j.neuroscience.2022.09.020] [PMID: 36208707]
[108]
Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 119-141.
[http://dx.doi.org/10.1038/s41580-020-00313-x] [PMID: 33353981]
[109]
Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K.; Yoshino, J.; Imai, S. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab., 2016, 24(6), 795-806.
[http://dx.doi.org/10.1016/j.cmet.2016.09.013] [PMID: 28068222]
[110]
Irie, J.; Inagaki, E.; Fujita, M.; Nakaya, H.; Mitsuishi, M.; Yamaguchi, S.; Yamashita, K.; Shigaki, S.; Ono, T.; Yukioka, H.; Okano, H.; Nabeshima, Y.; Imai, S.; Yasui, M.; Tsubota, K.; Itoh, H. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr. J., 2020, 67(2), 153-160.
[http://dx.doi.org/10.1507/endocrj.EJ19-0313] [PMID: 31685720]
[111]
Hou, Y.; Wei, Y.; Lautrup, S.; Yang, B.; Wang, Y.; Cordonnier, S.; Mattson, M.P.; Croteau, D.L.; Bohr, V.A. NAD + supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of alzheimer’s disease via cGAS–STING. Proc. Natl. Acad. Sci. USA, 2021, 118(37), e2011226118.
[http://dx.doi.org/10.1073/pnas.2011226118] [PMID: 34497121]
[112]
Birkmayer, J.G. Coenzyme nicotinamide adenine dinucleotide: new therapeutic approach for improving dementia of the Alzheimer type. Ann. Clin. Lab. Sci., 1996, 26(1), 1-9.
[PMID: 8834355]
[113]
Cen, X.; Chen, Y.; Xu, X.; Wu, R.; He, F.; Zhao, Q.; Sun, Q.; Yi, C.; Wu, J.; Najafov, A.; Xia, H. Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an alzheimer’s disease mouse model. Nat. Commun., 2020, 11(1), 5731.
[http://dx.doi.org/10.1038/s41467-020-19547-6] [PMID: 33184293]
[114]
Fan, L. The protective mechanism of melatonin-promoting mitochondrial autophagy in regulating NLRP 3 inflammasome activity in AD; Shandong University, 2020.
[http://dx.doi.org/10.27272/d.cnki.gshdu.2020.000283]
[115]
Chen, C.; Yang, C.; Wang, J.; Huang, X.; Yu, H.; Li, S.; Li, S.; Zhang, Z.; Liu, J.; Yang, X.; Liu, G.P. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of alzheimer’s disease. J. Pineal Res., 2021, 71(4), e12774.
[http://dx.doi.org/10.1111/jpi.12774] [PMID: 34617321]
[116]
Sumsuzzman, D.M.; Choi, J.; Jin, Y.; Hong, Y. Neurocognitive effects of melatonin treatment in healthy adults and individuals with alzheimer’s disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev., 2021, 127, 459-473.
[http://dx.doi.org/10.1016/j.neubiorev.2021.04.034] [PMID: 33957167]
[117]
Bhansali, S.; Bhansali, A.; Dhawan, V. Metformin promotes mitophagy in mononuclear cells: A potential in vitro model for unraveling metformin’s mechanism of action. Ann. N. Y. Acad. Sci., 2020, 1463(1), 23-36.
[http://dx.doi.org/10.1111/nyas.14141] [PMID: 31225649]
[118]
De Marañón, A.M.; Díaz-Pozo, P.; Canet, F.; Díaz-Morales, N.; Abad-Jiménez, Z.; López-Domènech, S.; Vezza, T.; Apostolova, N.; Morillas, C.; Rocha, M.; Víctor, V.M. Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox Biol., 2022, 53, 102342.
[http://dx.doi.org/10.1016/j.redox.2022.102342] [PMID: 35605453]
[119]
Kazkayasi, I.; Telli, G.; Nemutlu, E.; Uma, S. Intranasal metformin treatment ameliorates cognitive functions via insulin signaling pathway in ICV-STZ-induced mice model of alzheimer’s disease. Life Sci., 2022, 299, 120538.
[http://dx.doi.org/10.1016/j.lfs.2022.120538] [PMID: 35395244]
[120]
Koenig, A.M.; Mechanic-Hamilton, D.; Xie, S.X.; Combs, M.F.; Cappola, A.R.; Xie, L.; Detre, J.A.; Wolk, D.A.; Arnold, S.E. Effects of the insulin sensitizer metformin in alzheimer disease. Alzheimer Dis. Assoc. Disord., 2017, 31(2), 107-113.
[http://dx.doi.org/10.1097/WAD.0000000000000202] [PMID: 28538088]
[121]
Zheng, B.; Su, B.; Ahmadi-Abhari, S.; Kapogiannis, D.; Tzoulaki, I.; Riboli, E.; Middleton, L. Dementia risk in patients with type 2 diabetes: Comparing metformin with no pharmacological treatment. Alzheimers Dement., 2023, 19(12), 5681-5689.
[http://dx.doi.org/10.1002/alz.13349] [PMID: 37395154]
[122]
Cho, S.Y.; Kim, E.W.; Park, S.J.; Phillips, B.U.; Jeong, J.; Kim, H.; Heath, C.J.; Kim, D.; Jang, Y.; López-Cruz, L.; Saksida, L.M.; Bussey, T.J.; Lee, D.Y.; Kim, E. Reconsidering repurposing: Long-term metformin treatment impairs cognition in alzheimer’s model mice. Transl. Psychiatry, 2024, 14(1), 34.
[http://dx.doi.org/10.1038/s41398-024-02755-9] [PMID: 38238285]
[123]
Wang, H.; Fu, J.; Xu, X.; Yang, Z.; Zhang, T. Rapamycin activates mitophagy and alleviates cognitive and synaptic plasticity deficits in a mouse model of alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci., 2021, 76(10), 1707-1713.
[http://dx.doi.org/10.1093/gerona/glab142] [PMID: 34003967]
[124]
Lonskaya, I.; Hebron, M.L.; Desforges, N.M.; Schachter, J.B.; Moussa, C.E.H. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J. Mol. Med., 2014, 92(4), 373-386.
[http://dx.doi.org/10.1007/s00109-013-1112-3] [PMID: 24337465]
[125]
Turner, R.S.; Hebron, M.L.; Lawler, A.; Mundel, E.E.; Yusuf, N.; Starr, J.N.; Anjum, M.; Pagan, F.; Torres-Yaghi, Y.; Shi, W.; Mulki, S.; Ferrante, D.; Matar, S.; Liu, X.; Esposito, G.; Berkowitz, F.; Jiang, X.; Ahn, J.; Moussa, C. Nilotinib effects on safety, tolerability, and biomarkers in alzheimer’s disease. Ann. Neurol., 2020, 88(1), 183-194.
[http://dx.doi.org/10.1002/ana.25775] [PMID: 32468646]
[126]
Li, Z; Wang, X; Ren, L. Effects of “harmony between kidney and brain ” electroacupuncture for mitochondrial autophagy related proteins LC3-Ⅱand Bnip3 in the hippocampus of alzheimer’s diseases rats. Liaoning J Tradit Chin Med, 2019, 46(2), 407-409.
[http://dx.doi.org/10.13192/j.issn.1000-1719.2019.02.059]
[127]
Quan, Q.H. Effect of “mutual assistance of kidney and brain”Electroacupuncture therapy on the expression of PINK1 and PARKIN mitochondrial autophagy-related proteins of alzheimer’s Diseases Rats; Liaoning University of Traditional Chinese Medicine, 2019.
[http://dx.doi.org/10.27213/d.cnki.glnzc.2019.000136]
[128]
Liu, S.Y.; Li, Z.G.; Sun, R.Q.; Liu, Y.; Wang, S.; Wang, X. Effect of “TongduQishen” EA on the expression of HIF-1 α and BNIP 3 in the cerebral cortex of APP / PS1 double transgenic mice. J. of Clin. Acupunct. Moxibust., 2022, 38(12), 53-59.
[http://dx.doi.org/10.19917/j.cnki.1005-0779.022231]
[129]
Zhou, M.L. Experimental Study of Acupoint Catgut Embedding on Mitophagy of Hippocampal. Compound Aging Model Rats; Guangzhou University of Traditional Chinese Medicine, 2019.
[http://dx.doi.org/10.27044/d.cnki.ggzzu.2019.001333]
[130]
Zhang, Z.Y.; Kang, W.M.; Zhang, S.; Bo, H. High-intensity interval training-induced neuroprotection of hippocampus in APP / PS1 transgenic mice via upregulation of mitophagy. Chin. J. Rehabil. Med., 2020, 35(6), 670-675.
[131]
Zhong, G.; Long, H.; Zhou, T.; Liu, Y.; Zhao, J.; Han, J.; Yang, X.; Yu, Y.; Chen, F.; Shi, S. Blood-brain barrier Permeable nanoparticles for alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials, 2022, 288, 121690.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121690] [PMID: 35965114]
[132]
Xu, F.; Wu, Y.; Yang, Q.; Cheng, Y.; Xu, J.; Zhang, Y.; Dai, H.; Wang, B.; Ma, Q.; Chen, Y.; Lin, F.; Wang, C. Engineered extracellular vesicles with SHP2 high expression promote mitophagy for alzheimer’s disease treatment. Adv. Mater., 2022, 34(49), 2207107.
[http://dx.doi.org/10.1002/adma.202207107] [PMID: 36193769]

© 2024 Bentham Science Publishers | Privacy Policy