Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Overview of Synthesis and Applications of Unnatural Lipophilic α-Amino Acids

Author(s): Prateek Bhamboo, Smritilekha Bera* and Dhananjoy Mondal

Volume 28, Issue 5, 2024

Published on: 05 March, 2024

Page: [390 - 403] Pages: 14

DOI: 10.2174/0113852728297799240206084937

Price: $65

Abstract

Naturally and synthetically obtained lipophilic α-amino acids exhibit diverse properties and applications in academia and industry. Unnatural hydrophobic/lipophilic amino acids lacking polarity in their side chains manifest the biologically significant structure of peptides and proteins. The hydrophobic effect of lipophilic amino acids stabilizes the structure of proteins, peptides, and enzymes during their indigenous folding-unfolding phenomena. The presence of these amino acids in the backbone of protein and peptide-derived drug delivery systems such as lysine-derived surfactants and glycodendrimers can also enhance the cell penetration of drugs of interest. Cationic poly-l-lysine dendrimers, α-amino oleic acid, and a naturally occurring cyclic heptadepsipeptide HUN-7293 are recognized as promising biomaterials for developing prodrugs and also serve as biocompatible surfactants in the food, cosmetic and pharmaceutical industries. The synthesis of unnatural lipophilic amino acids, N-lauroyl sarcosine, N-lauroyl glutamic acid, N-octylglycine, N-myristoyl glycine etc. has gained attention for preparing novel compounds for advanced academic, industrial, and societal applications. This review article discusses the applications and synthesis of hydrophobic/lipophilic α-amino acids using ester enolate Claisen rearrangement, chiral auxiliary, chiral pool, chiral catalysts, and many more relevant methodologies.

Keywords: Unnatural, polarity, lipophilic α-amino acids, pharmaceuticals, hydrophobic effect, peptides and proteins.

« Previous
Graphical Abstract
[1]
Ziora, Z.M.; Blaskovich, M.A.; Toth, I.; Cooper, M.A. Lipoamino acids as major components of absorption promoters in drug delivery. Curr. Top. Med. Chem., 2012, 12(14), 1562-1580.
[http://dx.doi.org/10.2174/156802612802652448] [PMID: 22827525]
[2]
Wong, A.; Toth, I. Lipid, sugar and liposaccharide based delivery systems. Curr. Med. Chem., 2001, 8(9), 1123-1136.
[http://dx.doi.org/10.2174/0929867013372535] [PMID: 11472244]
[3]
Toth, I.; Flinn, N.; Hillery, A.; Gibbons, W.A.; Artursson, P. Lipidic conjugates of luteinizing hormone releasing hormone (LHRH)+ and thyrotropin releasing hormone (TRH)+ that release and protect the native hormones in homogenates of human intestinal epithelial (Caco-2) cells. Int. J. Pharm., 1994, 105(3), 241-247.
[http://dx.doi.org/10.1016/0378-5173(94)90108-2]
[4]
Li, F.; Wu, S.; Chen, N.; Zhu, J.; Zhao, X.; Zhang, P.; Zeng, Y.; Liu, Z. Fatty acid modification of the anticancer peptide lvtx-9 to enhance its cytotoxicity against malignant melanoma cells. Toxins, 2021, 13(12), 867.
[http://dx.doi.org/10.3390/toxins13120867] [PMID: 34941705]
[5]
Chi, Q.N.; Jia, S.X.; Yin, H.; Wang, L.E.; Fu, X.Y.; Ma, Y.N.; Sun, M.P.; Qi, Y.K.; Li, Z.; Du, S.S. Efficient synthesis and anticancer evaluation of spider toxin peptide LVTX-8-based analogues with enhanced stability. Bioorg. Chem., 2023, 134, 106451.
[http://dx.doi.org/10.1016/j.bioorg.2023.106451] [PMID: 36907048]
[6]
Han, Y.; Zhang, M.; Lai, R.; Zhang, Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides, 2021, 146, 170666.
[http://dx.doi.org/10.1016/j.peptides.2021.170666] [PMID: 34600037]
[7]
Rink, R.; Arkema-Meter, A.; Baudoin, I.; Post, E.; Kuipers, A.; Nelemans, S.A.; Akanbi, M.H.J.; Moll, G.N. To protect peptide pharmaceuticals against peptidases. J. Pharmacol. Toxicol. Methods, 2010, 61(2), 210-218.
[http://dx.doi.org/10.1016/j.vascn.2010.02.010] [PMID: 20176117]
[8]
Arbour, C.A.; Mendoza, L.G.; Stockdill, J.L. Recent advances in the synthesis of C-terminally modified peptides. Org. Biomol. Chem., 2020, 18(37), 7253-7272.
[http://dx.doi.org/10.1039/D0OB01417F] [PMID: 32914156]
[9]
Jiang, H.; Chen, W.; Wang, J.; Zhang, R. Selective N-terminal modification of peptides and proteins: Recent progresses and applications. Chin. Chem. Lett., 2022, 33(1), 80-88.
[http://dx.doi.org/10.1016/j.cclet.2021.06.011]
[10]
Shiba, T.; Mukunoki, Y.; Akiyama, H. Component amino-acids of antibiotic longicatenamycin - isolation of 5-chloro-δ-tryptophan. Bull. Chem. Soc. Jpn., 1975, 48(6), 1902-1906.
[http://dx.doi.org/10.1246/bcsj.48.1902]
[11]
Hughes, R.A.; Toth, I.; Ward, P.; Ireland, S.J.; Gibbons, W.A. Lipidic peptides. III: Lipidic amino acid and oligomer conjugates of morphine. J. Pharm. Sci., 1991, 80(12), 1103-1105.
[http://dx.doi.org/10.1002/jps.2600801202] [PMID: 1815065]
[12]
Lee, V.H.L.; Yamamoto, A.; Kompella, U.B. Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit. Rev. Ther. Drug Carrier Syst., 1991, 8(2), 91-192.
[PMID: 1934087]
[13]
Quintanar-Guerrero, D.; Allémann, E.; Fessi, H.; Doelker, E. Applications of the ion-pair concept to hydrophilic substances with special emphasis on peptides. Pharm. Res., 1997, 14(2), 119-127.
[http://dx.doi.org/10.1023/A:1012076022420] [PMID: 9090697]
[14]
Kawakami, K.; Yoshikawa, T.; Hayashi, T.; Nishihara, Y.; Masuda, K. Microemulsion formulation for enhanced absorption of poorly soluble drugs. J. Control. Release, 2002, 81(1-2), 75-82.
[http://dx.doi.org/10.1016/S0168-3659(02)00050-0] [PMID: 11992680]
[15]
Nadolski, M.J.; Linder, M.E. Protein lipidation. FEBS J., 2007, 274(20), 5202-5210.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06056.x] [PMID: 17892486]
[16]
Chua, B.Y.; Eriksson, E.M.; Brown, L.E.; Zeng, W.; Gowans, E.J.; Torresi, J.; Jackson, D.C. A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. Vaccine, 2008, 26(37), 4866-4875.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.032] [PMID: 18455278]
[17]
Phillipps, K.S.M.; Wykes, M.N.; Liu, X.Q.; Brown, M.; Blanchfield, J.; Toth, I. A novel synthetic adjuvant enhances dendritic cell function. Immunology, 2009, 128(1pt2), e582-e588.
[http://dx.doi.org/10.1111/j.1365-2567.2008.03038.x] [PMID: 19740319]
[18]
Skwarczynski, M.; Hayashi, Y.; Kiso, Y. Paclitaxel prodrugs: Toward smarter delivery of anticancer agents. J. Med. Chem., 2006, 49(25), 7253-7269.
[http://dx.doi.org/10.1021/jm0602155] [PMID: 17149855]
[19]
Blanchfield, J.; Toth, I. Lipid, sugar and liposaccharide based delivery systems. Curr. Med. Chem., 2004, 11(17), 2375-2382.
[http://dx.doi.org/10.2174/0929867043364621] [PMID: 15379718]
[20]
Phillips, R.; Ursell, T.; Wiggins, P.; Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature, 2009, 459(7245), 379-385.
[http://dx.doi.org/10.1038/nature08147] [PMID: 19458714]
[21]
MacCallum, J.L.; Tieleman, D.P. Interactions between small molecules and lipid bilayers. Curr. Top. Membr., 2008, 60, 227-256.
[http://dx.doi.org/10.1016/S1063-5823(08)00008-2]
[22]
Bapat, A.P.; Erck, R.; Seymour, B.T.; Zhao, B.; Cosimbescu, L. Lipophilic polymethacrylate ionic liquids as lubricant additives. Eur. Polym. J., 2018, 108, 38-47.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.08.026]
[23]
Ambaye, T.G.; Vaccari, M.; Prasad, S.; Rtimi, S. Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives. Environ. Technol. Innov., 2021, 24, 102090.
[http://dx.doi.org/10.1016/j.eti.2021.102090]
[24]
Tørfoss, V.; Ausbacher, D.; Cavalcanti-Jacobsen, C.A.; Hansen, T.; Brandsdal, B.O.; Havelkova, M.; Strøm, M.B. Synthesis of anticancer heptapeptides containing a unique lipophilic β2,2‐amino acid building block. J. Pept. Sci., 2012, 18(3), 170-176.
[http://dx.doi.org/10.1002/psc.1434] [PMID: 22249949]
[25]
Prata, C.A.H.; Zhang, X.X.; Luo, D.; McIntosh, T.J.; Barthelemy, P.; Grinstaff, M.W. Lipophilic peptides for gene delivery. Bioconjug. Chem., 2008, 19(2), 418-420.
[http://dx.doi.org/10.1021/bc700451b] [PMID: 18186598]
[26]
Mazák, K.; Noszál, B. Drug delivery: A process governed by species-specific lipophilicities. Eur. J. Pharm. Sci., 2014, 62, 96-104.
[http://dx.doi.org/10.1016/j.ejps.2014.05.017] [PMID: 24880112]
[27]
Buckley, S.T.; Fischer, S.M.; Fricker, G.; Brandl, M. In vitro models to evaluate the permeability of poorly soluble drug entities: Challenges and perspectives. Eur. J. Pharm. Sci., 2012, 45(3), 235-250.
[http://dx.doi.org/10.1016/j.ejps.2011.12.007] [PMID: 22178532]
[28]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[29]
Vale, N.; Ferreira, A.; Matos, J.; Fresco, P.; Gouveia, M. Amino acids in the development of prodrugs. Molecules, 2018, 23(9), 2318.
[http://dx.doi.org/10.3390/molecules23092318] [PMID: 30208629]
[30]
Ding, Y.; Ting, J.P.; Liu, J.; Al-Azzam, S.; Pandya, P.; Afshar, S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids, 2020, 52(9), 1207-1226.
[http://dx.doi.org/10.1007/s00726-020-02890-9] [PMID: 32945974]
[31]
Stojančević, M.; Bojić, G.; Salami, H.A.; Mikov, M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr. Issues Mol. Biol., 2014, 16, 55-68.
[PMID: 24002548]
[32]
Gomez-Orellana, I. Strategies to improve oral drug bioavailability. Expert Opin. Drug Deliv., 2005, 2(3), 419-433.
[http://dx.doi.org/10.1517/17425247.2.3.419] [PMID: 16296764]
[33]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[34]
Caltabiano, G.; Gonzalez, A.; Cordomí, A.; Campillo, M.; Pardo, L. The role of hydrophobic amino acids in the structure and function of the rhodopsin family of G protein-coupled receptors. Methods Enzymol., 2013, 520, 99-115.
[http://dx.doi.org/10.1016/B978-0-12-391861-1.00005-8] [PMID: 23332697]
[35]
Engelman, D.M.; Steitz, T.A.; Goldman, A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem., 1986, 15(1), 321-353.
[http://dx.doi.org/10.1146/annurev.bb.15.060186.001541] [PMID: 3521657]
[36]
Zhu, C.; Gao, Y.; Li, H.; Meng, S.; Li, L.; Francisco, J.S.; Zeng, X.C. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proc. Natl. Acad. Sci., 2016, 113(46), 12946-12951.
[http://dx.doi.org/10.1073/pnas.1616138113] [PMID: 27803319]
[37]
Wolfenden, R.; Andersson, L.; Cullis, P.M.; Southgate, C.C.B. Affinities of amino acid side chains for solvent water. Biochemistry, 1981, 20(4), 849-855.
[http://dx.doi.org/10.1021/bi00507a030] [PMID: 7213619]
[38]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Shape and Structure of Proteins. Molecular Biology of the Cell, 4th ed; Garland Science: New York, 2002.
[39]
Banach, M.; Fabian, P.; Stapor, K.; Konieczny, L.; Roterman, I. Structure of the hydrophobic core determines the 3d protein structure-verification by single mutation proteins. Biomolecules, 2020, 10(5), 767.
[http://dx.doi.org/10.3390/biom10050767] [PMID: 32423068]
[40]
(a) White, S.H. Biophysical dissection of membrane proteins. Nature, 2009, 459(7245), 344-346.
[http://dx.doi.org/10.1038/nature08142] [PMID: 19458709];
(b) Newport, T.D.; Sansom, M.S.P.; Stansfeld, P.J. The MemProtMD database: A resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res., 2019, 47(D1), D390-D397.
[http://dx.doi.org/10.1093/nar/gky1047] [PMID: 30418645]
[41]
Dowhan, W.; Mileykovskaya, E.; Bogdanov, M. Diversity and versatility of lipid–protein interactions revealed by molecular genetic approaches. Biochim. Biophys. Acta Biomembr., 2004, 1666(1-2), 19-39.
[http://dx.doi.org/10.1016/j.bbamem.2004.04.010] [PMID: 15519306]
[42]
Corradi, V.; Sejdiu, B.I.; Mesa-Galloso, H.; Abdizadeh, H.; Noskov, S.Y.; Marrink, S.J.; Tieleman, D.P. Emerging diversity in lipid–protein interactions. Chem. Rev., 2019, 119(9), 5775-5848.
[http://dx.doi.org/10.1021/acs.chemrev.8b00451] [PMID: 30758191]
[43]
Shaytan, A.K.; Shaitan, K.V.; Khokhlov, A.R. Solvent accessible surface area of amino acid residues in globular proteins: correlation of apparent transfer free energies with experimental hydrophobicity scales. Biomacromolecules, 2009, 10(5), 1224-1237.
[http://dx.doi.org/10.1021/bm8015169] [PMID: 19334678]
[44]
Rose, G.D.; Geselowitz, A.R.; Lesser, G.J.; Lee, R.H.; Zehfus, M.H. Hydrophobicity of amino acid residues in globular proteins. Science, 1985, 229(4716), 834-838.
[http://dx.doi.org/10.1126/science.4023714] [PMID: 4023714]
[45]
Sarkar, A.; Kellogg, G. Hydrophobicity-shake flasks, protein folding and drug discovery. Curr. Top. Med. Chem., 2010, 10(1), 67-83.
[http://dx.doi.org/10.2174/156802610790232233] [PMID: 19929828]
[46]
Durell, S.R.; Ben-Naim, A. Hydrophobic‐hydrophilic forces in protein folding. Biopolymers, 2017, 107(8), e23020.
[http://dx.doi.org/10.1002/bip.23020] [PMID: 28387920]
[47]
Resh, M.D. Covalent lipid modifications of proteins. Curr. Biol., 2013, 23(10), R431-R435.
[http://dx.doi.org/10.1016/j.cub.2013.04.024] [PMID: 23701681]
[48]
Velkov, T.; Chuang, S.; Wielens, J.; Sakellaris, H.; Charman, W.N.; Porter, C.J.H.; Scanlon, M.J. The interaction of lipophilic drugs with intestinal fatty acid-binding protein. J. Biol. Chem., 2005, 280(18), 17769-17776.
[http://dx.doi.org/10.1074/jbc.M410193200] [PMID: 15722357]
[49]
Lomize, A.L.; Pogozheva, I.D.; Lomize, M.A.; Mosberg, H.I. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol., 2007, 7(1), 44.
[http://dx.doi.org/10.1186/1472-6807-7-44] [PMID: 17603894]
[50]
Pal, S.; Mitra, R.K. Nonpolar hydrophobic amino acids tune the enzymatic activity of lysozyme. Biophys. Chem., 2022, 288, 106842.
[http://dx.doi.org/10.1016/j.bpc.2022.106842] [PMID: 35696897]
[51]
Thomas, S.E.; Mendes, V.; Kim, S.Y.; Malhotra, S.; Ochoa-Montaño, B.; Blaszczyk, M.; Blundell, T.L. Structural biology and the design of new therapeutics: From hiv and cancer to mycobacterial infections. J. Mol. Biol., 2017, 429(17), 2677-2693.
[http://dx.doi.org/10.1016/j.jmb.2017.06.014] [PMID: 28648615]
[52]
van de Waterbeemd, H.; Karajiannis, H.; El Tayar, N. Lipophilicity of amino acids. Amino Acids, 1994, 7(2), 129-145.
[http://dx.doi.org/10.1007/BF00814156] [PMID: 24186046]
[53]
Idrees, M.; Mohammad, A.R.; Karodia, N.; Rahman, A. Multimodal role of amino acids in microbial control and drug development. Antibiotics (Basel), 2020, 9(6), 330.
[http://dx.doi.org/10.3390/antibiotics9060330] [PMID: 32560458]
[54]
Toth, I. A novel chemical approach to drug delivery: Lipidic amino acid conjugates. J. Drug Target., 1994, 2(3), 217-239.
[http://dx.doi.org/10.3109/10611869408996805] [PMID: 7812692]
[55]
Karande, P.; Trasatti, J.P.; Chandra, D. Novel Approaches for the Delivery of Biologics to the Central Nervous System: Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies; Singh, M.; Salnikova, M; Academic Press, 2015, pp. 59-88.
[http://dx.doi.org/10.1016/B978-0-12-416603-5.00004-3]
[56]
Antagonists, B.A. Meyler’s Side Effects of Drugs; Aronson, J.K., Ed.; Elsevier, 2016, pp. 897-927.
[57]
Wen, J.; Huang, Y. Strategies to enhance drug permeability across biological barriers-a summary of this important special issue. Pharmaceutics, 2023, 15(4), 1189.
[http://dx.doi.org/10.3390/pharmaceutics15041189] [PMID: 37111674]
[58]
Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[59]
Tafreshi, N.K.; Kil, H.; Pandya, D.N.; Tichacek, C.J.; Doligalski, M.L.; Budzevich, M.M.; Delva, N.C.; Langsen, M.L.; Vallas, J.A.; Boulware, D.C.; Engelman, R.W.; Gage, K.L.; Moros, E.G.; Wadas, T.J.; McLaughlin, M.L.; Morse, D.L. Lipophilicity determines routes of uptake and clearance, and toxicity of an alpha-particle-emitting peptide receptor radiotherapy. ACS Pharmacol. Transl. Sci., 2021, 4(2), 953-965.
[http://dx.doi.org/10.1021/acsptsci.1c00035] [PMID: 33860213]
[60]
Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[61]
Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/180549] [PMID: 24772414]
[62]
Bera, S.; Zhanel, G.G.; Schweizer, F. Evaluation of amphiphilic aminoglycoside–peptide triazole conjugates as antibacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(10), 3031-3035.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.116] [PMID: 20413307]
[63]
Bera, S.; Zhanel, G.G.; Schweizer, F. Synthesis and antibacterial activity of amphiphilic lysine-ligated neomycin B conjugates. Carbohydr. Res., 2011, 346(5), 560-568.
[http://dx.doi.org/10.1016/j.carres.2011.01.015] [PMID: 21353205]
[64]
Hölscher, C. Brain insulin resistance: Role in neurodegenerative disease and potential for targeting. Expert Opin. Investig. Drugs, 2020, 29(4), 333-348.
[http://dx.doi.org/10.1080/13543784.2020.1738383] [PMID: 32175781]
[65]
Liu, W.; Chen, X.; Li, H.; Zhang, J.; An, J.; Liu, X. Anti-inflammatory function of plant-derived bioactive peptides: A Review. Foods, 2022, 11(15), 2361.
[http://dx.doi.org/10.3390/foods11152361] [PMID: 35954128]
[66]
Asirvatham, S.; Dhokchawle, B.V.; Tauro, S.J. Quantitative structure activity relationships studies of non-steroidal anti-inflammatory drugs: A review. Arab. J. Chem., 2019, 12(8), 3948-3962.
[http://dx.doi.org/10.1016/j.arabjc.2016.03.002]
[67]
Campese, V.M.; Lakdawala, R.S. The challenges of blood pressure control in dialysis patients: Handbook of Dialysis Therapy; Nissenson, A.R.; Fine, R.N, 5th ed; Elsevier, 2017, pp. 603-626.
[http://dx.doi.org/10.1016/B978-0-323-39154-2.00053-9]
[68]
Stegemann, S.; Leveiller, F.; Franchi, D.; de Jong, H.; Lindén, H. When poor solubility becomes an issue: From early stage to proof of concept. Eur. J. Pharm. Sci., 2007, 31(5), 249-261.
[http://dx.doi.org/10.1016/j.ejps.2007.05.110] [PMID: 17616376]
[69]
Cole, E.T.; Cadé, D.; Benameur, H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv. Drug Deliv. Rev., 2008, 60(6), 747-756.
[http://dx.doi.org/10.1016/j.addr.2007.09.009] [PMID: 18096270]
[70]
Aungst, B.J. Intestinal permeation enhancers. J. Pharm. Sci., 2000, 89(4), 429-442.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200004)89:4<429::AID-JPS1>3.0.CO;2-J] [PMID: 10737905]
[71]
Aljamal, K.; Ramaswamy, C.; Florence, A. Supramolecular structures from dendrons and dendrimers. Adv. Drug Deliv. Rev., 2005, 57(15), 2238-2270.
[http://dx.doi.org/10.1016/j.addr.2005.09.015] [PMID: 16310885]
[72]
Gabius, H.J. The sugar code in drug delivery. Adv. Drug Deliv. Rev., 2004, 56(4), 421-424.
[http://dx.doi.org/10.1016/j.addr.2003.10.014] [PMID: 14969750]
[73]
Zhang, H.; Ma, Y.; Sun, X.L. Recent developments in carbohydrate‐decorated targeted drug/gene delivery. Med. Res. Rev., 2010, 30(2), 270-289.
[http://dx.doi.org/10.1002/med.20171] [PMID: 19626595]
[74]
Drouillat, B.; Hillery, A.M.; Dekany, G.; Falconer, R.; Wright, K.; Toth, I. Novel liposaccharide conjugates for drug and peptide delivery. J. Pharm. Sci., 1998, 87(1), 25-30.
[http://dx.doi.org/10.1021/js9702123] [PMID: 9452964]
[75]
Abdelrahim, A.S.; Ziora, Z.M.; Bergeon, J.A.; Moss, A.R.; Toth, I. Design and synthesis of a series of novel, cationic liposaccharide derivatives as potential penetration enhancers for oral drug delivery. Tetrahedron, 2009, 65(45), 9436-9442.
[http://dx.doi.org/10.1016/j.tet.2009.08.072]
[76]
Falconer, R.A.; Toth, I. Design, synthesis and biological evaluation of novel lipoamino acid-based glycolipids for oral drug delivery. Bioorg. Med. Chem., 2007, 15(22), 7012-7020.
[http://dx.doi.org/10.1016/j.bmc.2007.07.048] [PMID: 17851079]
[77]
Garzon-Aburbeh, A.; Poupaert, J.H.; Claesen, M.; Dumont, P.; Atassi, G. 1,3-Dipalmitoylglycerol ester of chlorambucil as a lymphotropic, orally administrable antineoplastic agent. J. Med. Chem., 1983, 26(8), 1200-1203.
[http://dx.doi.org/10.1021/jm00362a021] [PMID: 6876088]
[78]
Kell, D.B.; Dobson, P.D.; Oliver, S.G. Pharmaceutical drug transport: The issues and the implications that it is essentially carrier-mediated only. Drug Discov. Today, 2011, 16(15-16), 704-714.
[http://dx.doi.org/10.1016/j.drudis.2011.05.010] [PMID: 21624498]
[79]
Al-Jamal, K.T.; Sakthivel, T.; Florence, A.T. Dendrisomes: Vesicular structures derived from a cationic lipidic dendron. J. Pharm. Sci., 2005, 94(1), 102-113.
[http://dx.doi.org/10.1002/jps.20161] [PMID: 15761934]
[80]
Nagabhushan, T.L.; Miller, G.H.; Weinstein, M.J. Structure–activity relationships in aminoglycoside-aminocyclitol antibiotics. The Aminoglycosides: Microbiology, Clinical Use, and Toxicology; Marcel Dekker: New York, 1982, pp. 3-27.
[81]
Oliveira, I.S.; Machado, R.L.; Araújo, M.J.; Gomes, A.C.; Marques, E.F. Stimuli-sensitive self-assembled tubules based on lysine-derived surfactants for delivery of anti-microbial proteins. Chemistry, 2021, 27(2), 692-704.
[http://dx.doi.org/10.1002/chem.202003320] [PMID: 32830362]
[82]
Shome, A.; Dutta, S.; Maiti, S.; Das, P.K. In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: Development of antibacterial soft nanocomposites. Soft Matter, 2011, 7(6), 3011-3022.
[http://dx.doi.org/10.1039/c0sm01087a]
[83]
Marvel, C.S.; Noyes, W.A. A study of the possible asymmetry of the aliphatic diazo compounds. J. Am. Chem. Soc., 1920, 42(11), 2259-2278.
[http://dx.doi.org/10.1021/ja01456a018]
[84]
Albertson, N.F. The synthesis of amino acids from ethyl acetamidomalonate and ethyl acetamidocyanoacetate; the use of primary halides. J. Am. Chem. Soc., 1946, 68(3), 450-453.
[http://dx.doi.org/10.1021/ja01207a032] [PMID: 21015741]
[85]
Birnbaum, S.M.; Fu, S.C.J.; Greenstein, J.P. Resolution of the racemic α-amino derivatives of heptylic, caprylic, nonylic, decylic, and undecylic acids. J. Biol. Chem., 1953, 203(1), 333-338.
[http://dx.doi.org/10.1016/S0021-9258(19)52643-6] [PMID: 13069516]
[86]
Kimura, Y. Studies on acylase activity and micro-organisms. XXI. Optical resolution of higher amino acids by acylase of soil bacteria. Chem. Pharm. Bull., 1962, 10(12), 1154-1157.
[http://dx.doi.org/10.1248/cpb.10.1154] [PMID: 14032787]
[87]
Parnaud, J.J.; Campari, G.; Pino, P. Some aspects of the catalytic synthesis of N-acyl-α-aminoacids by carbonylation of aldehydes in the presence of amides. J. Mol. Catal., 1979, 6(5), 341-350.
[http://dx.doi.org/10.1016/0304-5102(79)85009-9]
[88]
Landini, D.; Penso, M. N-alkylation of trifluoroacetamide with 2-bromo carboxylic esters under PTC conditions: A new procedure for the synthesis of alpha-amino acids. J. Org. Chem., 1991, 56(1), 420-423.
[http://dx.doi.org/10.1021/jo00001a077]
[89]
Zou, Y.; Han, J.; Saghyan, A.S.; Mkrtchyan, A.F.; Konno, H.; Moriwaki, H.; Izawa, K.; Soloshonok, V.A. Asymmetric synthesis of tailor-made amino acids using chiral Ni(II) complexes of Schiff bases. Molecules, 2020, 25(12), 2739-2777.
[http://dx.doi.org/10.3390/molecules25122739] [PMID: 32545684]
[90]
Gibbons, W.A.; Hughes, R.A.; Charalambous, M.; Christodoulou, M.; Szeto, A.; Aulabaugh, A.E.; Mascagni, P.; Toth, I. Lipidic peptides, I. Synthesis, resolution and structural elucidation of lipidic amino acids and their homo and hetero‐oligomers. Liebigs Ann. Chem., 1990, 1990(12), 1175-1183.
[http://dx.doi.org/10.1002/jlac.1990199001215]
[91]
Ullah, A.; Iftikhar, F.; Arfan, M.; Batool Kazmi, S.T.; Anjum, M.N.; Haq, I.; Ayaz, M.; Farooq, S.; Rashid, U. Amino acid conjugated antimicrobial drugs: Synthesis, lipophilicity-activity relationship, antibacterial and urease inhibition activity. Eur. J. Med. Chem., 2018, 145, 140-153.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.089] [PMID: 29324337]
[92]
Kondratov, I.S.; Logvinenko, I.G.; Tolmachova, N.A.; Morev, R.N.; Kliachyna, M.A.; Clausen, F.; Daniliuc, C.G.; Haufe, G. Synthesis and physical chemical properties of 2-amino-4-(trifluoromethoxy)butanoic acid – a CF3O-containing analogue of natural lipophilic amino acids. Org. Biomol. Chem., 2017, 15(3), 672-679.
[http://dx.doi.org/10.1039/C6OB02436J] [PMID: 27976770]
[93]
Chattopadhyay, S.K.; Chatterjee, B.; Ghosh, S. Stereodivergent synthesis of lipophilic α-amino acids and 3-amino-1,2-diols. Tetrahedron Asymmetry, 2016, 27(22-23), 1168-1176.
[http://dx.doi.org/10.1016/j.tetasy.2016.09.005]
[94]
Li, J.; Zhou, S.; Wang, J.; Kawashima, A.; Moriwaki, H.; Soloshonok, V.A.; Liu, H. Asymmetric synthesis of aromatic and heteroaromatic α-amino acids using a recyclable axially chiral ligand. Eur. J. Org. Chem., 2016, 2016(5), 999-1006.
[http://dx.doi.org/10.1002/ejoc.201501442]
[95]
Koshkin, S.A.; Garifzyanov, A.R.; Davletshina, N.V.; Kataeva, O.N.; Islamov, D.R.; Cherkasov, R.A. Synthesis of new lipophilic phosphine oxide derivatives of natural amino acids and their membrane transport properties toward carboxylic acids. Russ. J. Org. Chem., 2015, 51(9), 1232-1244.
[http://dx.doi.org/10.1134/S1070428015090031]
[96]
Cherkasov, R.A.; Koshkin, S.A.; Garifzyanov, A.R.; Davletshina, N.V. Synthesis of lipophilic N-phosphorylmethylated amino acids and their membrane-transport properties towards some organic acids. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(11-12), 1650-1651.
[http://dx.doi.org/10.1080/10426507.2016.1223666]
[97]
Wang, Z.J.; Spiccia, N.D.; Jackson, W.R.; Robinson, A.J. Tandem Rualkylidene‐catalysed cross metathesis/hydrogenation: Synthesis of lipophilic amino acids. J. Pept. Sci., 2013, 19(8), 470-476.
[http://dx.doi.org/10.1002/psc.2522] [PMID: 23733491]
[98]
Filipe, H.A.L.; Coreta-Gomes, F.M.; Velazquez-Campoy, A.; Almeida, A.R.; Peixoto, A.F.; Pereira, M.M.; Vaz, W.L.C.; Moreno, M.J. Synthesis and characterization of a lipidic alpha amino acid: Solubility and interaction with serum albumin and lipid bilayers. J. Phys. Chem. B, 2013, 117(13), 3439-3448.
[http://dx.doi.org/10.1021/jp307874v] [PMID: 23477590]
[99]
Erdbrink, H.; Nyakatura, E.K.; Huhmann, S.; Gerling, U.I.M.; Lentz, D.; Koksch, B.; Czekelius, C. Synthesis of enantiomerically pure (2S, 3S)-5,5,5-trifluoroisoleucine and (2R, 3S)-5,5,5-trifluoro-allo-isoleucine. Beilstein J. Org. Chem., 2013, 9, 2009-2014.
[http://dx.doi.org/10.3762/bjoc.9.236] [PMID: 24204411]
[100]
Worth, A.C.; Needham, C.E.; Franklin, D.B.; Lampkins, A.J. Facile synthesis of lipophilic δ-amino acid conjugates from 4-Alkoxydithionaphthoic acids. Synth. Commun., 2012, 42(18), 2694-2706.
[http://dx.doi.org/10.1080/00397911.2011.565142]
[101]
Wuttke, C.; Ford, R.; Lilley, M.; Grabowska, U.; Wiktelius, D.; Jackson, R.F.W. New routes to lipophilic amino acids: Synthesis of alkynyl and fluoro-containing alanine derivatives. Synlett, 2012, 23(2), 243-246.
[102]
Nielsen, S.D.; Smith, G.P.; Begtrup, M.; Kristensen, J.L. Synthesis of N-alkylated amino acids using fluorous-tagged hydroxylamines. Tetrahedron, 2011, 67(29), 5261-5267.
[http://dx.doi.org/10.1016/j.tet.2011.05.039]
[103]
Zhang, G.; Zhang, Y.; Wang, R. Catalytic asymmetric activation of a C(sp3)-H bond adjacent to a nitrogen atom: A versatile approach to optically active α-alkyl α-amino acids and C1-alkylated tetrahydroisoquinoline derivatives. Angew. Chem. Int. Ed., 2011, 50(44), 10429-10432.
[http://dx.doi.org/10.1002/anie.201105123] [PMID: 21915984]
[104]
Cavelier, F.; Marchand, D.; Martinez, J. α,α′-disubstituted amino acids with silylated side chains as lipophilic building blocks for the synthesis of peptaibol analogues. Chem. Biodivers., 2008, 5(7), 1279-1287.
[http://dx.doi.org/10.1002/cbdv.200890114] [PMID: 18649314]
[105]
Suhartono, M.; Weidlich, M.; Stein, T.; Karas, M.; Dürner, G.; Göbel, M.W. Synthesis of non-natural aromatic α-amino acids by a heck reaction. Eur. J. Org. Chem., 2008, 2008(9), 1608-1614.
[http://dx.doi.org/10.1002/ejoc.200701124]
[106]
Lin, J.; Liao, S.; Hruby, V.J. Syntheses of optically pure, conformationally constrained, and highly hydrophobic unusual amino acids: 2‐amino‐3, 3‐diarylpropionic acids. J. Pept. Res., 2005, 65(1), 105-112.
[http://dx.doi.org/10.1111/j.1399-3011.2004.00194.x] [PMID: 15686541]
[107]
Krebs, A.; Ludwig, V.; Pfizer, J.; Dürner, G.; Göbel, M.W. Enantioselective synthesis of non-natural aromatic α-amino acids. Chemistry, 2004, 10(2), 544-553.
[http://dx.doi.org/10.1002/chem.200305421] [PMID: 14735523]
[108]
Papini, A.M.; Nardi, E.; Nuti, F.; Uziel, J.; Ginanneschi, M.; Chelli, M.; Brandi, A. Diastereoselective alkylation of Schiff bases for the synthesis of lipidic unnatural fmoc-protected α-amino acids. Eur. J. Org. Chem., 2002, 2002(16), 2736-2741.
[http://dx.doi.org/10.1002/1099-0690(200208)2002:16<2736::AID-EJOC2736>3.0.CO;2-5]
[109]
Boger, D.L.; Keim, H.; Oberhauser, B.; Schreiner, E.P.; Foster, C.A. Total Synthesis of HUN-7293. J. Am. Chem. Soc., 1999, 121(26), 6197-6205.
[http://dx.doi.org/10.1021/ja990918u]
[110]
Chen, Y.; Bilban, M.; Foster, C.A.; Boger, D.L. Solution-phase parallel synthesis of a pharmacophore library of HUN-7293 analogues: A general chemical mutagenesis approach to defining structure-function properties of naturally occurring cyclic (depsi)peptides. J. Am. Chem. Soc., 2002, 124(19), 5431-5440.
[http://dx.doi.org/10.1021/ja020166v] [PMID: 11996584]
[111]
Magrioti, V.; Constantinou-Kokotou, V. Synthesis of (S)‐α‐amino oleic acid. Lipids, 2002, 37(2), 223-228.
[http://dx.doi.org/10.1007/s11745-002-0884-4] [PMID: 11908915]
[112]
Kokotos, G.; Padrón, J.M.; Martín, T.; Gibbons, W.A.; Martín, V.S. A general approach to the asymmetric synthesis of unsaturated lipidic α-amino acids. The first synthesis of α-aminoarachidonic acid. J. Org. Chem., 1998, 63(11), 3741-3744.
[http://dx.doi.org/10.1021/jo9715128]
[113]
Constantinou-Kokotou, V.; Kokotos, G. Synthesis of optically active lipidic α-amino acids and lipidic 2-amino alcohols. Amino Acids, 1999, 16(3-4), 273-285.
[http://dx.doi.org/10.1007/BF01388172] [PMID: 10399016]
[114]
Kokotos, G.; Padrón, J.; Noula, C.; Gibbons, W.A.; Martín, V.S. A general approach to the enantiomeric synthesis of lipidic α-amino acids, peptides and vicinal amino alcohols. Tetrahedron Asymmetry, 1996, 7(3), 857-866.
[http://dx.doi.org/10.1016/0957-4166(96)00084-5]
[115]
Kokotos, G.; Constantinou-Kokotou, V.; Noula, C.; Nicolaou, A.; Gibbons, W.A. Synthesis of lipidic amino acid and dipeptide inhibitors of human platelet phospholipase A2. Int. J. Pept. Protein Res., 1996, 48(2), 160-166.
[http://dx.doi.org/10.1111/j.1399-3011.1996.tb00827.x] [PMID: 8872534]
[116]
Medina, E.; Moyano, A.; Pericàs, M.A.; Riera, A. Enatioselective synthesis of conformationally rigid, highly lipophilic mesityl-substitutes amino acids. Helv. Chim. Acta, 2000, 83(5), 972-988.
[http://dx.doi.org/10.1002/(SICI)1522-2675(20000510)83:5<972::AID-HLCA972>3.0.CO;2-9]
[117]
Lucet, D.; Sabelle, S.; Kostelitz, O.; Le Gall, T.; Mioskowski, C. Enantioselective synthesis of α-amino acids and monosubstituted 1,2-diamines by conjugate addition of 4-phenyl-2-oxazolidinone to nitroalkenes. Eur. J. Org. Chem., 1999, 1999(10), 2583-2591.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199910)1999:10<2583::AID-EJOC2583>3.0.CO;2-E]
[118]
Ma, D.; Tian, H.; Zou, G. Asymmetric Strecker-type reaction of α-aryl ketones. Synthesis of (S)-αM4CPG, (S)-MPPG, (S)-AIDA, and (S)-APICA, the antagonists of metabotropic glutamate receptors. J. Org. Chem., 1999, 64(1), 120-125.
[http://dx.doi.org/10.1021/jo981297a] [PMID: 11674092]
[119]
Berkowitz, D.B.; Smith, M.K. Enantiomerically enriched α-methyl amino acids. Use of an acyclic, chiral alanine-derived dianion with a high diastereofacial bias. J. Org. Chem., 1995, 60(5), 1233-1238.
[http://dx.doi.org/10.1021/jo00110a029] [PMID: 29962540]
[120]
Grandel, R.; Kazmaier, U.; Nuber, B. Anti-selective aldol reactions of amino acid ester enolates. Application to the synthesis of α-alkylated β-hydroxy amino acids. Liebigs Ann., 1996, 1996(7), 1143-1150.
[http://dx.doi.org/10.1002/jlac.199619960713]
[121]
Kazmaier, U. Application of the ester enolate claisen rearrangement in the synthesis of amino acids containing quaternary carbon centers. J. Org. Chem., 1996, 61(11), 3694-3699.
[http://dx.doi.org/10.1021/jo960014g] [PMID: 11667217]
[122]
Kazmaier, U.; Maier, S. Stereoselective synthesis of α-alkylated γ,δ-unsaturated amino acids via Claisen rearrangement of chelated enolates. J. Chem. Soc. Chem. Commun., 1995, 19(19), 1991-1992.
[http://dx.doi.org/10.1039/C39950001991]
[123]
Georg, G.I.; Guan, X.; Kant, J. Asymmetric synthesis of α-alkylated α-amino acids: Azepane-2-carboxylic acids. Bioorg. Med. Chem. Lett., 1991, 1(2), 125-128.
[http://dx.doi.org/10.1016/S0960-894X(00)80245-0]
[124]
Georg, G.U.; Guan, X. Asymmetric synthesis of α-alkylated α-amino acids: Azocane-2-carboxylic acids. Tetrahedron Lett., 1992, 33(1), 17-20.
[http://dx.doi.org/10.1016/S0040-4039(00)77662-3]
[125]
Georg, G.I.; Guan, X.; Kant, J. Asymmetric synthesis of α-alkylated α-amino acids via Schmidt rearrangement of α, α-bisalkylated β-keto esters. Tetrahedron Lett., 1988, 29(4), 403-406.
[http://dx.doi.org/10.1016/S0040-4039(00)80107-0]
[126]
Fadel, A.; Salaün, J. α-Alkylation of acyclic amino acids with self-reproduction of the center of chirality. A new route to (S)-(+)-α-alkylated aspartic acids. Tetrahedron Lett., 1987, 28(20), 2243-2246.
[http://dx.doi.org/10.1016/S0040-4039(00)96091-X]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy