Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Biochemical and In Silico Studies on Triazole Derivatives as Tyrosinase Inhibitors: Potential Treatment of Hyperpigmentation Related Skin Disorders

Author(s): Yusra Choudhary, Atia-tul-Wahab*, Humaira Zafar, Salman Siddiqui, Majid Khan, Khalid M. Khan, Amer H. Asseri, M. Iqbal Choudhary and Atta-ur-Rahman*

Volume 20, Issue 4, 2024

Published on: 29 February, 2024

Page: [397 - 413] Pages: 17

DOI: 10.2174/0115734064271581231219111952

Price: $65

conference banner
Abstract

Introduction: Tyrosinase is a versatile, glycosylated copper-containing oxidase enzyme that mainly catalyzes the biosynthesis of melanin in mammals. Its overexpression leads to the formation of excess melanin, resulting in hyperpigmentary skin disorders, such as dark spots, melasma, freckles, etc. Therefore, inhibition of tyrosinase is a therapeutic approach for the treatment of hyperpigmentation.

Methods: The current study focused on evaluating tyrosinase inhibitory activities of triazole derivatives 1-20, bearing different substituents on the phenyl ring. 17 derivatives have shown a potent tyrosinase inhibition with IC50 values between 1.6 to 13 μM, as compared to the standard drug, i.e., kojic acid (IC50 = 24.1 ± 0.5 μM). Particularly, compounds 11 and 15 displayed 12 times more potent inhibitory effects than the kojic acid.

Results: The structure-activity relationship revealed that substituting halogens at the C-4 position of the benzene ring renders remarkable anti-tyrosinase activities. Compounds 1-3 and 8 showed a competitive type of inhibition, while compounds 5, 11, and 15 showed a non-competitive mode of inhibition. Next, we performed molecular docking analyses to study the binding modes and interactions between the ligands (inhibitors) and the active site of the tyrosinase enzyme (receptor). Besides this, we have assessed the toxicity profile of inhibitors on the BJ human fibroblast cell line.

Conclusion: The majority of the newly identified tyrosinase inhibitors were found to be noncytotoxic. The results presented herein form the basis of further studies on triazole derivatives as potential drug leads against tyrosinase-related diseases.

Keywords: Human melanocytes, melanogenesis, triazole derivatives, tyrosinase inhibitors, hyperpigmentation.

Graphical Abstract
[1]
Cui, H.X.; Duan, F.F.; Jia, S.S.; Cheng, F.R.; Yuan, K. Antioxidant and tyrosinase inhibitory activities of seed oils from Torreya grandis Fort. ex Lindl. BioMed Res. Int., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/5314320] [PMID: 30320135]
[2]
Ramsden, C.A.; Riley, P.A. Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem., 2014, 22(8), 2388-2395.
[http://dx.doi.org/10.1016/j.bmc.2014.02.048] [PMID: 24656803]
[3]
Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[http://dx.doi.org/10.3390/ijms10062440] [PMID: 19582213]
[4]
Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50(24), 5477-5486.
[http://dx.doi.org/10.1021/bi200395t] [PMID: 21598903]
[5]
Lai, X.; Wichers, H.J.; Soler-Lopez, M.; Dijkstra, B.W. Structure and function of human tyrosinase and tyrosinase‐related proteins. Chemistry, 2018, 24(1), 47-55.
[http://dx.doi.org/10.1002/chem.201704410] [PMID: 29052256]
[6]
Solano, F. Melanins: Skin pigments and much more—types, structural models, biological functions, and formation routes. New J. Sci., 2014, 2014, 1-28.
[http://dx.doi.org/10.1155/2014/498276]
[7]
Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 279-309.
[http://dx.doi.org/10.1080/14756366.2018.1545767] [PMID: 30734608]
[8]
Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci., 2005, 62(15), 1707-1723.
[http://dx.doi.org/10.1007/s00018-005-5054-y] [PMID: 15968468]
[9]
Zaidi, K.U.; Ali, A.S.; Ali, S.A.; Naaz, I. Microbial tyrosinases: Promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem. Res. Int., 2014, 2014, 1-16.
[http://dx.doi.org/10.1155/2014/854687] [PMID: 24895537]
[10]
Souza, P.M.; Elias, S.T.; Simeoni, L.A.; de Paula, J.E.; Gomes, S.M.; Guerra, E.N.S.; Fonseca, Y.M.; Silva, E.C.; Silveira, D.; Magalhães, P.O. Plants from brazilian cerrado with potent tyrosinase inhibitory activity. PLoS One, 2012, 7(11), e48589.
[http://dx.doi.org/10.1371/journal.pone.0048589] [PMID: 23173036]
[11]
Jablonski, N.G.; Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci., 2010, 107(S2), 8962-8968.
[http://dx.doi.org/10.1073/pnas.0914628107] [PMID: 20445093]
[12]
Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 403-425.
[http://dx.doi.org/10.1080/14756366.2016.1256882] [PMID: 28097901]
[13]
Ruan, Y.; Huang, P.; Yan, J.; Li, G.; Huang, J. Dual diomarkers triggered prodrugs for precise treatment of melanoma: Design, synthesis and activities. Chem. Res. Chin. Univ., 2022, 38(4), 949-956.
[http://dx.doi.org/10.1007/s40242-022-2121-y]
[14]
Li, G.; Yang, Y.; Zhang, Y.; Huang, P.; Yan, J.; Song, Z.; Yuan, Q.; Huang, J. A reactive oxygen species-tyrosinase cascade-activated prodrug for selectively suppressing melanoma. CCS Chemistry, 2022, 4(5), 1654-1670.
[http://dx.doi.org/10.31635/ccschem.021.202101032]
[15]
Sarkar, R.; Arora, P.; Garg, K.V. Cosmeceuticals for hyperpigmentation: What is available? J. Cutan. Aesthet. Surg., 2013, 6(1), 4-11.
[http://dx.doi.org/10.4103/0974-2077.110089] [PMID: 23723597]
[16]
Li, J.; Feng, L.; Liu, L.; Wang, F.; Ouyang, L.; Zhang, L.; Hu, X.; Wang, G. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur. J. Med. Chem., 2021, 224, 113744.
[http://dx.doi.org/10.1016/j.ejmech.2021.113744] [PMID: 34365131]
[17]
Li, J.; Li, C.; Peng, X.; Li, S.; Liu, B.; Chu, C. Recent discovery of tyrosinase inhibitors in traditional Chinese medicines and screening methods. J. Ethnopharmacol., 2023, 303, 115951.
[http://dx.doi.org/10.1016/j.jep.2022.115951] [PMID: 36410577]
[18]
Khan, K.M.; Mughal, U.R.; Khan, M.T.H. Zia-Ullah; Perveen, S.; Iqbal, C.M. Oxazolones: New tyrosinase inhibitors; synthesis and their structure–activity relationships. Bioorg. Med. Chem., 2006, 14(17), 6027-6033.
[http://dx.doi.org/10.1016/j.bmc.2006.05.014] [PMID: 16750372]
[19]
Vanjare, B.D.; Mahajan, P.G.; Dige, N.C.; Raza, H.; Hassan, M.; Han, Y.; Kim, S.J.; Seo, S.Y.; Lee, K.H. Novel 1,2,4-triazole analogues as mushroom tyrosinase inhibitors: Synthesis, kinetic mechanism, cytotoxicity and computational studies. Mol. Divers., 2021, 25(4), 2089-2106.
[http://dx.doi.org/10.1007/s11030-020-10102-5] [PMID: 32399854]
[20]
Jain, A.; Piplani, P. Exploring the chemistry and therapeutic potential of triazoles: A comprehensive literature review. Mini Rev. Med. Chem., 2019, 19(16), 1298-1368.
[http://dx.doi.org/10.2174/1389557519666190312162601] [PMID: 30864516]
[21]
Mermer, A.; Demirci, S. Recent advances in triazoles as tyrosinase inhibitors. Eur. J. Med. Chem., 2023, 259, 115655.
[http://dx.doi.org/10.1016/j.ejmech.2023.115655] [PMID: 37482020]
[22]
Tang, R.; Jin, L.; Mou, C.; Yin, J.; Bai, S.; Hu, D.; Wu, J.; Yang, S.; Song, B. Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety. Chem. Cent. J., 2013, 7(1), 30.
[http://dx.doi.org/10.1186/1752-153X-7-30] [PMID: 23402603]
[23]
Singhal, N.; Sharma, P.K.; Dudhe, R.; Kumar, N. Recent advancement of triazole derivatives and their biological significance. J. Chem. Pharm. Res., 2011, 3(2), 126-133.
[24]
Hearing, V.J. Methods in Enzymology; Academic: New York, 1987, 142, pp. 154-165.
[25]
Zhu, K.; Day, T.; Warshaviak, D.; Murrett, C.; Friesner, R.; Pearlman, D. Antibody structure determination using a combination of homology modeling, energy‐based refinement, and loop prediction. Proteins, 2014, 82(8), 1646-1655.
[http://dx.doi.org/10.1002/prot.24551] [PMID: 24619874]
[26]
Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.F.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all‐atom protein loop prediction. Proteins, 2004, 55(2), 351-367.
[http://dx.doi.org/10.1002/prot.10613] [PMID: 15048827]
[27]
Release, S. 2022-3: BioLuminate; Schrödinger, LLC: New York, NY, 2021.
[28]
Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[29]
Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691.
[http://dx.doi.org/10.1007/s10822-007-9133-z] [PMID: 17899391]
[30]
Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24(6-7), 591-604.
[http://dx.doi.org/10.1007/s10822-010-9349-1] [PMID: 20354892]
[31]
Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model., 2009, 49(2), 377-389.
[http://dx.doi.org/10.1021/ci800324m] [PMID: 19434839]
[32]
Price, P.; McMillan, T.J. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res., 1990, 50(5), 1392-1396.
[PMID: 2302704]
[33]
Mannerström, M.; Toimela, T.; Sarkanen, J.R.; Heinonen, T. Human BJ fibroblasts is an alternative to mouse BALB/c 3T3 cells in in vitro neutral red uptake assay. Basic Clin. Pharmacol. Toxicol., 2017, 121(S3), 109-115.
[http://dx.doi.org/10.1111/bcpt.12790] [PMID: 28374970]
[34]
Invidiata, F.P.; Furná, G.; Lampronti, I.; Simoni, D. 1,2,4‐Triazoles. Improved synthesis of 5‐substituted 4‐amino‐3‐mer‐cato‐(4 H)‐1,2,4‐triazoles and a facile route to 3,6‐disubstituted 1,2,4‐triazolo[3,4‐ b][1,3,4]thiadiazoles. J. Heterocycl. Chem., 1997, 34(4), 1255-1258.
[http://dx.doi.org/10.1002/jhet.5570340427]
[35]
Sung, K.; Lee, A.R. Synthesis of [(4,5‐disubstituted‐4 H ‐1,2,4‐triazol‐3‐yl)thio]alkanoic acids and their analogues as possible antiinflammatory agents. J. Heterocycl. Chem., 1992, 29(5), 1101-1109.
[http://dx.doi.org/10.1002/jhet.5570290512]
[36]
Bayrak, H.; Demirbas, A.; Demirbas, N.; Karaoglu, S.A. Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(11), 4362-4366.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.022] [PMID: 19647352]
[37]
Hari Narayana Moorthy, N.S.; Vittal, U.B.; Karthikeyan, C.; Thangapandian, V.; Venkadachallam, A.P.; Trivedi, P. Synthesis, antifungal evaluation and in silico study of novel Schiff bases derived from 4-amino-5(3,5-dimethoxy-phenyl)-4H-1,2,4-triazol-3-thiol. Arab. J. Chem., 2017, 10, S3239-S3244.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.021]
[38]
Li, D.J.; Fub, H.Q. Synthesis and Antibacterial Activities of 1,7-Bis [(3-Aryl)-1,2,4-Triazolo[3,4-b]-[1,3,4]-thiadiazole-6-yl]heptanes. Heterocycl. Commun., 2007, 13(6), 407-412.
[http://dx.doi.org/10.1515/HC.2007.13.6.407]
[39]
Ghani, U.; Ullah, N. New potent inhibitors of tyrosinase: Novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site. Bioorg. Med. Chem., 2010, 18(11), 4042-4048.
[http://dx.doi.org/10.1016/j.bmc.2010.04.021] [PMID: 20452224]
[40]
Choi, I.; Park, Y.; Ryu, I.Y.; Jung, H.J.; Ullah, S.; Choi, H.; Park, C.; Kang, D.; Lee, S.; Chun, P.; Young, C.H.; Moon, H.R. In silico and in vitro insights into tyrosinase inhibitors with a 2-thioxooxazoline-4-one template. Comput. Struct. Biotechnol. J., 2021, 19, 37-50.
[http://dx.doi.org/10.1016/j.csbj.2020.12.001] [PMID: 33363708]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy