Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

Biogenesis and Function of circRNAs in Pulmonary Fibrosis

Author(s): Songzi Zhang, Wenjie Hu, Changjun Lv and Xiaodong Song*

Volume 24, Issue 5, 2024

Published on: 12 February, 2024

Page: [395 - 409] Pages: 15

DOI: 10.2174/0115665232284076240207073542

Price: $65

Abstract

Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.

Keywords: Pulmonary fibrosis, circRNA, biomarker, vaccine, circRNA-based therapy, biogenesis.

Graphical Abstract
[1]
Pugashetti JV, Adegunsoye A, Wu Z, et al. Validation of proposed criteria for progressive pulmonary fibrosis. Am J Respir Crit Care Med 2023; 207(1): 69-76.
[http://dx.doi.org/10.1164/rccm.202201-0124OC] [PMID: 35943866]
[2]
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune mechanisms of pulmonary fibrosis with bleomycin. Int J Mol Sci 2023; 24(4): 3149.
[http://dx.doi.org/10.3390/ijms24043149] [PMID: 36834561]
[3]
Podolanczuk AJ, Thomson CC, Remy-Jardin M, et al. Idiopathic pulmonary fibrosis: State of the art for 2023. Eur Respir J 2023; 61(4): 2200957.
[http://dx.doi.org/10.1183/13993003.00957-2022] [PMID: 36702498]
[4]
Raghu G, Remy-Jardin M, Richeldi L, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: An official ats/ers/jrs/alat clinical practice guideline. Am J Respir Crit Care Med 2022; 205(9): e18-47.
[http://dx.doi.org/10.1164/rccm.202202-0399ST] [PMID: 35486072]
[5]
Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 2018; 198(5): e44-68.
[http://dx.doi.org/10.1164/rccm.201807-1255ST] [PMID: 30168753]
[6]
Wijsenbeek M. Progress in the treatment of pulmonary fibrosis. Lancet Respir Med 2020; 8(5): 424-5.
[http://dx.doi.org/10.1016/S2213-2600(20)30062-X] [PMID: 32145831]
[7]
Wijsenbeek M, Kreuter M, Olson A, et al. Progressive fibrosing interstitial lung diseases: Current practice in diagnosis and management. Curr Med Res Opin 2019; 35(11): 2015-24.
[http://dx.doi.org/10.1080/03007995.2019.1647040] [PMID: 31328965]
[8]
Raghu G. Idiopathic pulmonary fibrosis: Shifting the concept to irreversible pulmonary fibrosis of many entities. Lancet Respir Med 2019; 7: 926-9.
[http://dx.doi.org/10.1016/S2213-2600(19)30311-X] [PMID: 31530469]
[9]
Raghu G, Collard HR, Egan JJ, et al. ATS/ERS/JRS/ALAT committee on idiopathic pulmonary fibrosis. An offificial ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fifibrosis: Evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011; 183: 788-824.
[http://dx.doi.org/10.1164/rccm.2009-040GL] [PMID: 21471066]
[10]
Pope JE, Denton CP, Johnson SR, Fernandez-Codina A, Hudson M, Nevskaya T. State-of-the-art evidence in the treatment of systemic sclerosis. Nat Rev Rheumatol 2023; 19(4): 212-26.
[http://dx.doi.org/10.1038/s41584-023-00909-5] [PMID: 36849541]
[11]
Cui F, Sun Y, Xie J, et al. Air pollutants, genetic susceptibility and risk of incident idiopathic pulmonary fibrosis. Eur Respir J 2023; 61(2): 2200777.
[http://dx.doi.org/10.1183/13993003.00777-2022] [PMID: 36137588]
[12]
Yue D, Zhang Q, Zhang J, et al. Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis. Environ Int 2023; 171: 107706.
[http://dx.doi.org/10.1016/j.envint.2022.107706] [PMID: 36565570]
[13]
Zhang T, Zhang J, Lv C, Li H, Song X. Senescent AECⅡ and the implication for idiopathic pulmonary fibrosis treatment. Front Pharmacol 2022; 13: 1059434.
[http://dx.doi.org/10.3389/fphar.2022.1059434] [PMID: 36457712]
[14]
Meyerholz DK. Rigid respiration: Fulminant pulmonary fibrosis after COVID-19. EBioMedicine 2023; 87: 104428.
[http://dx.doi.org/10.1016/j.ebiom.2022.104428] [PMID: 36580850]
[15]
Bailey JI, Sala MA. The pandemic within the pandemic: Predicting pulmonary fibrosis after COVID-19. Am J Respir Cell Mol Biol 2023; 69(3): 253-4.
[http://dx.doi.org/10.1165/rcmb.2023-0167ED] [PMID: 37290115]
[16]
Valenzuela C, Torrisi SE, Kahn N, Quaresma M, Stowasser S, Kreuter M. Ongoing challenges in pulmonary fibrosis and insights from the nintedanib clinical programme. Respir Res 2020; 21(1): 7.
[http://dx.doi.org/10.1186/s12931-019-1269-6] [PMID: 31906942]
[17]
King TE Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014; 370(22): 2083-92.
[http://dx.doi.org/10.1056/NEJMoa1402582] [PMID: 24836312]
[18]
George PM, Patterson CM, Reed AK, Thillai M. Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med 2019; 7(3): 271-82.
[http://dx.doi.org/10.1016/S2213-2600(18)30502-2] [PMID: 30738856]
[19]
Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell 2022; 185(12): 2016-34.
[http://dx.doi.org/10.1016/j.cell.2022.04.021] [PMID: 35584701]
[20]
Liu X, Zhang Y, Zhou S, Dain L, Mei L, Zhu G. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release 2022; 348: 84-94.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.043] [PMID: 35649485]
[21]
Lyu J, Wang Y, Zheng Q, et al. Reduction of circular RNA expression associated with human retinoblastoma. Exp Eye Res 2019; 184: 278-85.
[http://dx.doi.org/10.1016/j.exer.2019.03.017] [PMID: 30917906]
[22]
Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics 2020; 10(8): 3503-17.
[http://dx.doi.org/10.7150/thno.42174] [PMID: 32206104]
[23]
Zhao X, Zhong Y, Wang X, Shen J, An W. Advances in circular RNA and its applications. Int J Med Sci 2022; 19(6): 975-85.
[http://dx.doi.org/10.7150/ijms.71840] [PMID: 35813288]
[24]
Zhao H, Zhou Q, Li X. Protein bait hypothesis: circRNA-encoded proteins competitively inhibit cognate functional isoforms. Trends Genet 2021; 37(7): 616-24.
[http://dx.doi.org/10.1016/j.tig.2021.04.002] [PMID: 33906770]
[25]
Chen CK, Cheng R, Demeter J, et al. Structured elements drive extensive circular RNA translation. Mol Cell 2021; 81(20): 4300-4318.e13.
[http://dx.doi.org/10.1016/j.molcel.2021.07.042] [PMID: 34437836]
[26]
Huang W, Ling Y, Zhang S, et al. TransCirc: An interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res 2021; 49(D1): D236-42.
[http://dx.doi.org/10.1093/nar/gkaa823] [PMID: 33074314]
[27]
Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 2022; 19(3): 188-206.
[http://dx.doi.org/10.1038/s41571-021-00585-y] [PMID: 34912049]
[28]
Mao X, Cao Y, Guo Z, Wang L, Xiang C. Biological roles and therapeutic potential of circular RNAs in osteoarthritis. Mol Ther Nucleic Acids 2021; 24: 856-67.
[http://dx.doi.org/10.1016/j.omtn.2021.04.006] [PMID: 34026329]
[29]
Yang L, Wilusz JE, Chen LL. Biogenesis and regulatory roles of circular RNAs. Annu Rev Cell Dev Biol 2022; 38(1): 263-89.
[http://dx.doi.org/10.1146/annurev-cellbio-120420-125117] [PMID: 35609906]
[30]
Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer 2021; 21(1): 22-36.
[http://dx.doi.org/10.1038/s41568-020-00306-0] [PMID: 33082563]
[31]
Wu C, Wang S, Cao T, et al. Newly discovered mechanisms that mediate tumorigenesis and tumour progression: CIRCRNA -encoded proteins. J Cell Mol Med 2023; 27(12): 1609-20.
[http://dx.doi.org/10.1111/jcmm.17751] [PMID: 37070530]
[32]
Li R, Wang Y, Song X, et al. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int J Mol Med 2018; 42(6): 3256-68.
[http://dx.doi.org/10.3892/ijmm.2018.3892] [PMID: 30272257]
[33]
Xu P, Zhang J, Wang M, et al. hnRNPL-activated circANKRD42 back-splicing and circANKRD42-mediated crosstalk of mechanical stiffness and biochemical signal in lung fibrosis. Mol Ther 2022; 30(6): 2370-87.
[http://dx.doi.org/10.1016/j.ymthe.2022.01.045] [PMID: 35278674]
[34]
Zhang S, Tu D, Liu W, et al. CIRCELP2 reverse-splicing biogenesis and function as a pro-fibrogenic factor by targeting mitochondrial quality control pathway. J Cell Mol Med 2023; jcmm.18098.
[http://dx.doi.org/10.1111/jcmm.18098] [PMID: 38159063]
[35]
Marchesini M, Ogoti Y, Fiorini E, et al. ILF2 is a regulator of RNA splicing and DNA damage response in 1q21-amplified multiple myeloma. Cancer Cell 2017; 32(1): 88-100.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.05.011] [PMID: 28669490]
[36]
Jia Y, Li X, Nan A, et al. Circular RNA 406961 interacts with ILF2 to regulate PM2.5-induced inflammatory responses in human bronchial epithelial cells via activation of STAT3/JNK pathways. Environ Int 2020; 141: 105755.
[http://dx.doi.org/10.1016/j.envint.2020.105755] [PMID: 32388272]
[37]
Wang S, Luo W, Huang J, et al. The combined effects of circular RNA methylation promote pulmonary fibrosis. Am J Respir Cell Mol Biol 2022; 66(5): 510-23.
[http://dx.doi.org/10.1165/rcmb.2021-0379OC] [PMID: 35213290]
[38]
Li H, Li J, Hu Y, et al. FOXO3 regulates Smad3 and Smad7 through SPON1 circular RNA to inhibit idiopathic pulmonary fibrosis. Int J Biol Sci 2023; 19(10): 3042-56.
[http://dx.doi.org/10.7150/ijbs.80140] [PMID: 37416778]
[39]
Cho SJ, Stout-Delgado HW. Aging and lung disease. Annu Rev Physiol 2020; 82(1): 433-59.
[http://dx.doi.org/10.1146/annurev-physiol-021119-034610] [PMID: 31730381]
[40]
Cui H, Xie N, Banerjee S, et al. CD38 mediates lung fibrosis by promoting alveolar epithelial cell aging. Am J Respir Crit Care Med 2022; 206(4): 459-75.
[http://dx.doi.org/10.1164/rccm.202109-2151OC] [PMID: 35687485]
[41]
Liang J, Huang G, Liu X, et al. Reciprocal interactions between alveolar progenitor dysfunction and aging promote lung fibrosis. eLife 2023; 12: e85415.
[http://dx.doi.org/10.7554/eLife.85415] [PMID: 37314162]
[42]
Zhang T, Yuan X, Jiang M, et al. Proteomic analysis reveals that aging contributes to pulmonary fibrogenesis. Aging 2023; 15: 15382-401.
[http://dx.doi.org/10.18632/aging.205355]
[43]
Wu H, Yu Y, Huang H, et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 2020; 180(1): 107-121.e17.
[http://dx.doi.org/10.1016/j.cell.2019.11.027] [PMID: 31866069]
[44]
Freeberg MAT, Perelas A, Rebman JK, Phipps RP, Thatcher TH, Sime PJ. Mechanical feed-forward loops contribute to idiopathic pulmonary fibrosis. Am J Pathol 2021; 191(1): 18-25.
[http://dx.doi.org/10.1016/j.ajpath.2020.09.008] [PMID: 33031756]
[45]
Mei S, Xu Q, Hu Y, et al. Integrin β3-PKM2 pathway-mediated aerobic glycolysis contributes to mechanical ventilation-induced pulmonary fibrosis. Theranostics 2022; 12(14): 6057-68.
[http://dx.doi.org/10.7150/thno.72328] [PMID: 36168620]
[46]
Zhang C, Yin X, Zhang J, Ao Q, Gu Y, Liu Y. Clinical observation of umbilical cord mesenchymal stem cell treatment of severe idiopathic pulmonary fibrosis: A case report. Exp Ther Med 2017; 13(5): 1922-6.
[http://dx.doi.org/10.3892/etm.2017.4222] [PMID: 28565787]
[47]
Zhang H, Zhu Q, Ji Y, et al. hucMSCs treatment prevents pulmonary fibrosis by reducing circANKRD42-YAP1-mediated mechanical stiffness. Aging 2023; 15(12): 5514-34.
[http://dx.doi.org/10.18632/aging.204805] [PMID: 37335082]
[48]
Obi P, Chen YG. The design and synthesis of circular RNAs. Methods 2021; 196: 85-103.
[http://dx.doi.org/10.1016/j.ymeth.2021.02.020] [PMID: 33662562]
[49]
Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 2018; 9(1): 2629.
[http://dx.doi.org/10.1038/s41467-018-05096-6] [PMID: 29980667]
[50]
Chen R, Wang SK, Belk JA, et al. Engineering circular RNA for enhanced protein production. Nat Biotechnol 2023; 41(2): 262-72.
[http://dx.doi.org/10.1038/s41587-022-01393-0] [PMID: 35851375]
[51]
Szabó GT, Mahiny AJ, Vlatkovic I. COVID-19 mRNA vaccines: Platforms and current developments. Mol Ther 2022; 30(5): 1850-68.
[http://dx.doi.org/10.1016/j.ymthe.2022.02.016] [PMID: 35189345]
[52]
Qu L, Yi Z, Shen Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 2022; 185(10): 1728-1744.e16.
[http://dx.doi.org/10.1016/j.cell.2022.03.044] [PMID: 35460644]
[53]
Bazdyrev E, Rusina P, Panova M, Novikov F, Grishagin I, Nebolsin V. Lung fibrosis after COVID-19: Treatment prospects. Pharmaceuticals 2021; 14(8): 807.
[http://dx.doi.org/10.3390/ph14080807] [PMID: 34451904]
[54]
Chang X, Liu C, Han YM, Li QL, Guo B, Jiang HL. Efficient transfected liposomes co-loaded with pNrf2 and pirfenidone improves safe delivery for enhanced pulmonary fibrosis reversion. Mol Ther Nucleic Acids 2023; 32: 415-31.
[http://dx.doi.org/10.1016/j.omtn.2023.04.006] [PMID: 37159604]
[55]
Zhang J, Wang H, Chen H, et al. ATF3 -activated accelerating effect of LINC00941/lncIAPF on fibroblast-to-myofibroblast differentiation by blocking autophagy depending on ELAVL1/HuR in pulmonary fibrosis. Autophagy 2022; 18(11): 2636-55.
[http://dx.doi.org/10.1080/15548627.2022.2046448] [PMID: 35427207]
[56]
Liang J, Zhang Y, Xie T, et al. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat Med 2016; 22(11): 1285-93.
[http://dx.doi.org/10.1038/nm.4192] [PMID: 27694932]
[57]
Sun B, Shi Y, Li Y, et al. Short-term PM2.5 exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. J Hazard Mater 2020; 385: 121566.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121566] [PMID: 31761645]
[58]
Qi F, Li Y, Yang X, Wu Y, Lin L, Liu X. Hsa_circ_0044226 knockdown attenuates progression of pulmonary fibrosis by inhibiting CDC27. Aging 2020; 12(14): 14808-18.
[http://dx.doi.org/10.18632/aging.103543] [PMID: 32710728]
[59]
Zeng H, Gao H, Zhang M, et al. Atractylon treatment attenuates pulmonary fibrosis via regulation of the mmu_circ_0000981/miR-211-5p/TGFBR2 axis in an ovalbumin-induced asthma mouse model. Inflammation 2021; 44(5): 1856-64.
[http://dx.doi.org/10.1007/s10753-021-01463-6] [PMID: 33855682]
[60]
Kathiriya JJ, Brumwell AN, Jackson JR, Tang X, Chapman HA. Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration. Cell Stem Cell 2020; 26(3): 346-358.e4.
[http://dx.doi.org/10.1016/j.stem.2019.12.014] [PMID: 31978363]
[61]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186(2): 243-78.
[http://dx.doi.org/10.1016/j.cell.2022.11.001] [PMID: 36599349]
[62]
LaCanna R, Liccardo D, Zhang P, et al. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J Clin Invest 2019; 129(5): 2107-22.
[http://dx.doi.org/10.1172/JCI125014] [PMID: 30985294]
[63]
Koo JH, Guan KL. Interplay between YAP/TAZ and Metabolism. Cell Metab 2018; 28(2): 196-206.
[http://dx.doi.org/10.1016/j.cmet.2018.07.010] [PMID: 30089241]
[64]
Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474(7350): 179-83.
[http://dx.doi.org/10.1038/nature10137] [PMID: 21654799]
[65]
Gao R, Kalathur RKR, Coto-Llerena M, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 2021; 13(12): e14351.
[http://dx.doi.org/10.15252/emmm.202114351] [PMID: 34664408]
[66]
Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev 2014; 94(4): 1287-312.
[http://dx.doi.org/10.1152/physrev.00005.2014] [PMID: 25287865]
[67]
Yui S, Azzolin L, Maimets M, et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 2018; 22(1): 35-49.e7.
[http://dx.doi.org/10.1016/j.stem.2017.11.001] [PMID: 29249464]
[68]
Noguchi S, Saito A, Nagase T. YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int J Mol Sci 2018; 19(11): 3674.
[http://dx.doi.org/10.3390/ijms19113674] [PMID: 30463366]
[69]
Pobbati AV, Hong W. A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics 2020; 10(8): 3622-35.
[http://dx.doi.org/10.7150/thno.40889] [PMID: 32206112]
[70]
Moya IM, Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 2019; 20(4): 211-26.
[http://dx.doi.org/10.1038/s41580-018-0086-y] [PMID: 30546055]
[71]
Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020; 588(7836): 124-9.
[http://dx.doi.org/10.1038/s41586-020-2975-4] [PMID: 33268865]
[72]
Yang JH, Hayano M, Griffin PT, et al. Loss of epigenetic information as a cause of mammalian aging. Cell 2023; 186(2): 305-326.e27.
[http://dx.doi.org/10.1016/j.cell.2022.12.027] [PMID: 36638792]
[73]
Pardo A, Selman M. Lung fibroblasts, aging, and idiopathic pulmonary fibrosis. Ann Am Thorac Soc 2016; 13 (Suppl. 5): S417-21.
[http://dx.doi.org/10.1513/AnnalsATS.201605-341AW] [PMID: 28005427]
[74]
Ahluwalia N, Shea BS, Tager AM. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. Am J Respir Crit Care Med 2014; 190(8): 867-78.
[http://dx.doi.org/10.1164/rccm.201403-0509PP] [PMID: 25090037]
[75]
Spagnolo P, Kropski JA, Jones MG, et al. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther 2021; 222: 107798.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107798] [PMID: 33359599]
[76]
Li J, Li P, Zhang G, Qin P, Zhang D, Zhao W. CircRNA TADA2A relieves idiopathic pulmonary fibrosis by inhibiting proliferation and activation of fibroblasts. Cell Death Dis 2020; 11(7): 553.
[http://dx.doi.org/10.1038/s41419-020-02747-9] [PMID: 32694556]
[77]
Liu J, Song C, Xiao Q, Hu G, Tao L, Meng J. Fluorofenidone attenuates TGF-β1-induced lung fibroblast activation via restoring the expression of caveolin-1. Shock 2015; 43(2): 201-7.
[http://dx.doi.org/10.1097/SHK.0000000000000273] [PMID: 25394239]
[78]
Almeida C, Jasmin J, Del Galdo F, Lisanti MP. Genetic ablation of caveolin-2 sensitizes mice to bleomycin-induced injury. Cell Cycle 2013; 12(14): 2248-54.
[http://dx.doi.org/10.4161/cc.25335] [PMID: 24067367]
[79]
Cheng Y, Luo W, Li Z, et al. CircRNA-012091/PPP1R13B–mediated lung fibrotic response in silicosis via endoplasmic reticulum stress and autophagy. Am J Respir Cell Mol Biol 2019; 61(3): 380-91.
[http://dx.doi.org/10.1165/rcmb.2019-0017OC] [PMID: 30908929]
[80]
Li C, Wang Z, Zhang J, et al. Crosstalk of mRNA, miRNA, lncRNA, and circRNA and their regulatory pattern in pulmonary fibrosis. Mol Ther Nucleic Acids 2019; 18: 204-18.
[http://dx.doi.org/10.1016/j.omtn.2019.08.018] [PMID: 31561125]
[81]
Zhang S, Chen H, Yue D, Blackwell TS, Lv C, Song X. Long non-coding RNAs: Promising new targets in pulmonary fibrosis. J Gene Med 2021; 23(3): e3318.
[http://dx.doi.org/10.1002/jgm.3318] [PMID: 33533071]
[82]
Kircali MF, Turanli B. Idiopathic pulmonary fibrosis molecular substrates revealed by competing endogenous RNA regulatory networks. OMICS 2023; 27(8): 381-92.
[http://dx.doi.org/10.1089/omi.2023.0072] [PMID: 37540140]
[83]
Zhang J, Lu J, Xie H, et al. circHIPK3 regulates lung fibroblast-to-myofibroblast transition by functioning as a competing endogenous RNA. Cell Death Dis 2019; 10(3): 182.
[http://dx.doi.org/10.1038/s41419-019-1430-7] [PMID: 30796204]
[84]
Chen X, Mao R, Su W, et al. Circular RNA circHIPK3 modulates autophagy via MIR124-3p -STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer. Autophagy 2020; 16(4): 659-71.
[http://dx.doi.org/10.1080/15548627.2019.1634945] [PMID: 31232177]
[85]
Zhang Y, Liu Q, Liao Q. CircHIPK3: A promising cancer-related circular RNA. Am J Transl Res 2020; 12(10): 6694-704.
[PMID: 33194066]
[86]
Yan B, Zhang Y, Liang C, et al. Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/ FOXO3a pathway. Theranostics 2020; 10(15): 6728-42.
[http://dx.doi.org/10.7150/thno.42259] [PMID: 32550900]
[87]
Wang Y, Zhao R, Liu W, et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev 2019; 2019: 1-28.
[http://dx.doi.org/10.1155/2019/7954657] [PMID: 31885817]
[88]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[89]
Zhang Q, Ban J, Chang S, Qu H, Chen J, Liu F. The aggravate role of exosomal circRNA11:120406118|12040782 on macrophage pyroptosis through miR-30b-5p/NLRP3 axis in silica-induced lung fibrosis. Int Immunopharmacol 2023; 114: 109476.
[http://dx.doi.org/10.1016/j.intimp.2022.109476] [PMID: 36450208]
[90]
Cully M. Exosome-based candidates move into the clinic. Nat Rev Drug Discov 2021; 20(1): 6-7.
[http://dx.doi.org/10.1038/d41573-020-00220-y] [PMID: 33311580]
[91]
Al-Qazazi R, Lima PDA, Prisco SZ, et al. Macrophage–NLRP3 activation promotes right ventricle failure in pulmonary arterial hypertension. Am J Respir Crit Care Med 2022; 206(5): 608-24.
[http://dx.doi.org/10.1164/rccm.202110-2274OC] [PMID: 35699679]
[92]
Wang J, Xu L, Xiang Z, et al. Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206+ M2-like macrophage polarization. Cell Death Dis 2020; 11(2): 136.
[http://dx.doi.org/10.1038/s41419-020-2329-z] [PMID: 32075954]
[93]
Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang CY. Macrophages: Friend or foe in idiopathic pulmonary fibrosis? Respir Res 2018; 19(1): 170.
[http://dx.doi.org/10.1186/s12931-018-0864-2] [PMID: 30189872]
[94]
Liu S, Lv X, Liu C, et al. Targeting degradation of the transcription factor C/EBPβ reduces lung fibrosis by restoring activity of the ubiquitin-editing enzyme A20 in macrophages. Immunity 2019; 51(3): 522-534.e7.
[http://dx.doi.org/10.1016/j.immuni.2019.06.014] [PMID: 31471107]
[95]
Wu Q, Jiao B, Zhang Q, Jin C, Yu H, Wang F. Identification of circRNA expression profiles and the potential role of hsa_circ_0006916 in silicosis and pulmonary fibrosis. Toxicology 2023; 483: 153384.
[http://dx.doi.org/10.1016/j.tox.2022.153384] [PMID: 36403901]
[96]
Yang X, Wang J, Zhou Z, et al. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J 2018; 32(6): 3264-77.
[http://dx.doi.org/10.1096/fj.201701118R] [PMID: 29401612]
[97]
de Rooij LPMH, Becker LM, Teuwen LA, et al. The pulmonary vasculature in lethal COVID-19 and idiopathic pulmonary fibrosis at single-cell resolution. Cardiovasc Res 2023; 119(2): 520-35.
[http://dx.doi.org/10.1093/cvr/cvac139] [PMID: 35998078]
[98]
Zhao W, Wang L, Wang Y, et al. Injured endothelial cell: A risk factor for pulmonary fibrosis. Int J Mol Sci 2023; 24(10): 8749.
[http://dx.doi.org/10.3390/ijms24108749] [PMID: 37240093]
[99]
Martin M, Zhang J, Miao Y, et al. Role of endothelial cells in pulmonary fibrosis via SREBP2 activation. JCI Insight 2021; 6(22): e125635.
[http://dx.doi.org/10.1172/jci.insight.125635] [PMID: 34806652]
[100]
Adams TS, Schupp JC, Poli S, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv 2020; 6: eaba1983.
[101]
Fang S, Guo H, Cheng Y, et al. circHECTD1 promotes the silica-induced pulmonary endothelial–mesenchymal transition via HECTD1. Cell Death Dis 2018; 9(3): 396.
[http://dx.doi.org/10.1038/s41419-018-0432-1] [PMID: 29540674]
[102]
Fukushima K, Satoh T, Sugihara F, et al. Dysregulated expression of the nuclear exosome targeting complex component Rbm7 in nonhematopoietic cells licenses the development of fibrosis. Immunity 2020; 52(3): 542-556.e13.
[http://dx.doi.org/10.1016/j.immuni.2020.02.007] [PMID: 32187520]
[103]
Hammad H, Lambrecht BN. Rbm7 in structural cells: A neat way to control fibrosis. Immunity 2020; 52(3): 429-31.
[http://dx.doi.org/10.1016/j.immuni.2020.02.008] [PMID: 32187513]
[104]
Bai J, Deng J, Han Z, et al. CircRNA_0026344 via exosomal miR-21 regulation of Smad7 is involved in aberrant cross-talk of epithelium-fibroblasts during cigarette smoke-induced pulmonary fibrosis. Toxicol Lett 2021; 347: 58-66.
[http://dx.doi.org/10.1016/j.toxlet.2021.04.017] [PMID: 33961985]
[105]
Zhou Z, Jiang R, Yang X, et al. circRNA mediates silica-induced macrophage activation via HECTD1/ZC3H12A-dependent ubiquitination. Theranostics 2018; 8(2): 575-92.
[http://dx.doi.org/10.7150/thno.21648] [PMID: 29290828]
[106]
Chu H, Wang W, Luo W, et al. CircHECTD1 mediates pulmonary fibroblast activation via HECTD1. Ther Adv Chronic Dis 2019; 10
[http://dx.doi.org/10.1177/2040622319891558] [PMID: 31832126]
[107]
Cheng Z, Zhang Y, Wu S, et al. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis. Ecotoxicol Environ Saf 2022; 236: 113451.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113451] [PMID: 35378401]
[108]
Kang JH, Jung MY, Yin X, Andrianifahanana M, Hernandez DM, Leof EB. Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF-β signaling. J Clin Invest 2017; 127(7): 2541-54.
[http://dx.doi.org/10.1172/JCI88696] [PMID: 28530637]
[109]
Horan GS, Wood S, Ona V, et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008; 177(1): 56-65.
[http://dx.doi.org/10.1164/rccm.200706-805OC] [PMID: 17916809]
[110]
Lu G, Zhang J, Liu X, et al. Regulatory network of two circRNAs and an miRNA with their targeted genes under astilbin treatment in pulmonary fibrosis. J Cell Mol Med 2019; 23(10): 6720-9.
[http://dx.doi.org/10.1111/jcmm.14550] [PMID: 31448882]
[111]
Zhao C, Bu E, Zhang C, et al. Deciphering the molecular mechanisms of Maxing Huoqiao Decoction in treating pulmonary fibrosis via transcriptional profiling and circRNA-miRNA-mRNA network analysis. Phytomedicine 2023; 115: 154754.
[http://dx.doi.org/10.1016/j.phymed.2023.154754] [PMID: 37087790]
[112]
Wu J, Song D, Li Z, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res 2020; 30(9): 794-809.
[http://dx.doi.org/10.1038/s41422-020-0354-1] [PMID: 32546764]
[113]
Ortiz LA, DuTreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007; 104(26): 11002-7.
[http://dx.doi.org/10.1073/pnas.0704421104] [PMID: 17569781]
[114]
Li R, Zhang H, Zhang J, et al. hucMSCs treatment ameliorated pulmonary fibrosis via downregulating the circFOXP1-HuR-EZH2/STAT1/FOXK1 autophagic axis. Stem Cells 2023; 41(10): 928-43.
[http://dx.doi.org/10.1093/stmcls/sxad053]
[115]
Hou L, Zhu Z, Jiang F, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles alleviated silica induced lung inflammation and fibrosis in mice via circPWWP2A/miR-223–3p/NLRP3 axis. Ecotoxicol Environ Saf 2023; 251: 114537.
[http://dx.doi.org/10.1016/j.ecoenv.2023.114537] [PMID: 36646008]
[116]
Dinh PUC, Paudel D, Brochu H, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun 2020; 11(1): 1064.
[http://dx.doi.org/10.1038/s41467-020-14344-7] [PMID: 32111836]
[117]
Li Y, Shen Z, Jiang X, et al. Mouse mesenchymal stem cell-derived exosomal miR-466f-3p reverses EMT process through inhibiting AKT/GSK3β pathway via c-MET in radiation-induced lung injury. J Exp Clin Cancer Res 2022; 41(1): 128.
[http://dx.doi.org/10.1186/s13046-022-02351-z] [PMID: 35392967]
[118]
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In vitro transcribed RNA-based platform vaccines: Past, present, and future. Vaccines 2023; 11(10): 1600.
[http://dx.doi.org/10.3390/vaccines11101600] [PMID: 37897003]
[119]
Li H, Peng K, Yang K, et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics 2022; 12(14): 6422-36.
[http://dx.doi.org/10.7150/thno.77350] [PMID: 36168634]
[120]
Hastings ML, Krainer AR. RNA therapeutics. RNA 2023; 29(4): 393-5.
[http://dx.doi.org/10.1261/rna.079626.123] [PMID: 36928165]
[121]
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics — challenges and potential solutions. Nat Rev Drug Discov 2021; 20(8): 629-51.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[122]
Huang D, Zhu X, Ye S, et al. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature 2024; 625(7995): 593-602.
[http://dx.doi.org/10.1038/s41586-023-06834-7] [PMID: 38093017]
[123]
Villanueva MT. Circular RNA vaccines expose cryptic peptides. Nat Rev Drug Discov 2024.
[http://dx.doi.org/10.1038/d41573-024-00013-7] [PMID: 38225388]
[124]
Yang J, Zhu J, Sun J, et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Mol Ther Nucleic Acids 2022; 30: 184-97.
[http://dx.doi.org/10.1016/j.omtn.2022.09.010] [PMID: 36156907]
[125]
Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem 2019; 120(7): 11022-32.
[http://dx.doi.org/10.1002/jcb.28380] [PMID: 30767300]
[126]
Tang R, Hu Y, Mei S, et al. Non-coding RNA alterations in extracellular vesicles from bronchoalveolar lavage fluid contribute to mechanical ventilation-induced pulmonary fibrosis. Front Immunol 2023; 14: 1141761.
[http://dx.doi.org/10.3389/fimmu.2023.1141761] [PMID: 36993978]
[127]
Liu X, Liu H, Jia X, He R, Zhang X, Zhang W. Changing expression profiles of messenger RNA, MicroRNA, Long Non-coding RNA, and circular RNA reveal the key regulators and interaction networks of competing endogenous RNA in pulmonary fibrosis. Front Genet 2020; 11: 558095.
[http://dx.doi.org/10.3389/fgene.2020.558095] [PMID: 33193637]
[128]
Li X, Su Y, Sun B, et al. An artificially designed interfering lncRNA expressed by oncolytic adenovirus competitively consumes oncomirs to exert antitumor efficacy in hepatocellular carcinoma. Mol Cancer Ther 2016; 15(7): 1436-51.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0096] [PMID: 27196772]
[129]
Gaffo E, Buratin A, Dal Molin A, Bortoluzzi S. Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2. Brief Bioinform 2022; 23(1): bbab418.
[http://dx.doi.org/10.1093/bib/bbab418] [PMID: 34698333]
[130]
Li S, Li X, Xue W, et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat Methods 2021; 18(1): 51-9.
[http://dx.doi.org/10.1038/s41592-020-01011-4] [PMID: 33288960]
[131]
Suresh BM, Li W, Zhang P, et al. A general fragment-based approach to identify and optimize bioactive ligands targeting RNA. Proc Natl Acad Sci USA 2020; 117(52): 33197-203.
[http://dx.doi.org/10.1073/pnas.2012217117] [PMID: 33318191]
[132]
Chen X, Zhang D, Su N, et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat Biotechnol 2019; 37(11): 1287-93.
[http://dx.doi.org/10.1038/s41587-019-0249-1] [PMID: 31548726]
[133]
Sun Y, Li T. Composition-tunable hollow au/ag sers nanoprobes coupled with target-catalyzed hairpin assembly for triple-amplification detection of miRNA. Anal Chem 2018; 90(19): 11614-21.
[http://dx.doi.org/10.1021/acs.analchem.8b03067] [PMID: 30175580]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy