Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Development of an Indirect ELISA for the Detection of Lactoferrin in Type 2 Diabetes Plasma: A Novel Approach

Author(s): Amani Alhalwani*

Volume 20, Issue 3, 2024

Published on: 09 February, 2024

Page: [209 - 216] Pages: 8

DOI: 10.2174/0115734110298646240206061830

Abstract

Background: In biological systems, lactoferrin (LF) is a crucial protein for protecting the body against diseases and pathogens that can affect both humans and animals. LF is a multifunction protein that binds to different surface receptors to stimulate the innate immune system. In diabetes, lactoferrin has a direct association with inflammation. The effects of inflammation interaction are unknown but reasonably could include changes in LF, a body protein whose changed concentration correlates with type 2 diabetes (T2D). The LF content in plasma has been used as a disease biomarker, and there is a need for convenient and reliable assays.

Method: An innovative indirect enzyme-linked immunosorbent assay (ELISA) was developed and applied to measure circulating lactoferrin levels as an inflammation marker in human samples, including healthy and type 2 diabetes.

Results: Under optimized conditions, the proposed indirect ELISA was evaluated and linearly responded to LF standards in a 0.05–0.5 μgmL−1 range. The limit of detection (LOD) was 0.05 μgmL−1, and a reliable limit of quantification (LOQ) was 0.240 μgmL−1.

Conclusion: The developed assay showed both specificity and reproducibility, indicating the utility of this indirect ELISA in LF monitoring. This study provides a definitive indirect ELISA protocol to detect various lactoferrin antigens with accurate, reliable, and reproducible data, and it could be applied for diagnosing lactoferrin-related diseases, such as type 2 diabetes. Our innovative approach provides a relatively cost-effective, sensitive, and precise way to assess LF in various human plasmas.

Keywords: Enzyme-linked immunosorbent assay (ELISA), plasma, immunoassay, lactoferrin (LF), inflammation, type 2 diabetes (T2D).

« Previous
Graphical Abstract
[1]
Jenssen, H.; Hancock, R. Antimicrobial properties of lactoferrin. Biochimie, 2009, 91(1), 19-29.
[http://dx.doi.org/10.1016/j.biochi.2008.05.015] [PMID: 18573312]
[2]
González-Chávez, S.A.; Arévalo-Gallegos, S.; Rascón-Cruz, Q. Lactoferrin: Structure, function and applications. Int. J. Antimicrob. Agents, 2009, 33(4), 301.e1-301.e8.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.07.020] [PMID: 18842395]
[3]
Kijlstra, A.; Kuizenga, A. Analysis and function of the human tear proteins. Adv. Exp. Med. Biol., 1994, 350, 299-308.
[http://dx.doi.org/10.1007/978-1-4615-2417-5_51] [PMID: 8030492]
[4]
Vorland, L.H. Lactoferrin: A multifunctional glycoprotein. Acta Pathol. Microbiol. Scand. Suppl., 1999, 107(7-12), 971-981.
[http://dx.doi.org/10.1111/j.1699-0463.1999.tb01499.x] [PMID: 10598868]
[5]
Adlerova, L.; Bartoskova, A.; Faldyna, M. Lactoferrin: A review. Vet. Med., 2008, 53(9), 457-468.
[http://dx.doi.org/10.17221/1978-VETMED]
[6]
Kanyshkova, T.G.; Buneva, V.N.; Nevinsky, G.A. Lactoferrin and its biological functions. Biochemistry, 2001, 66(1), 1-7.
[http://dx.doi.org/10.1023/A:1002817226110] [PMID: 11240386]
[7]
Narmuratova, Z.; Hentati, F.; Girardet, J.M.; Narmuratova, M.; Cakir-Kiefer, C. Equine lactoferrin: Antioxidant properties related to divalent metal chelation. Lebensm. Wiss. Technol., 2022, 161, 113426.
[http://dx.doi.org/10.1016/j.lwt.2022.113426]
[8]
Alhalwani, A.Y.; Davey, R.L.; Kaul, N.; Barbee, S.A.; Alex Huffman, J. Modification of lactoferrin by peroxynitrite reduces its antibacterial activity and changes protein structure. Proteins, 2020, 88(1), 166-174.
[http://dx.doi.org/10.1002/prot.25782] [PMID: 31295370]
[9]
van der Strate, B.W.A.; Beljaars, L.; Molema, G.; Harmsen, M.C.; Meijer, D.K.F. Antiviral activities of lactoferrin. Antiviral Res., 2001, 52(3), 225-239.
[http://dx.doi.org/10.1016/S0166-3542(01)00195-4] [PMID: 11675140]
[10]
Alhalwani, A.Y. A review of lactoferrin inflammatory role in type 2 diabetes mellitus with neutrophil dysfunction. J. Pharm. Res. Int., 2021, 33, 377-390.
[http://dx.doi.org/10.9734/jpri/2021/v33i58A34129]
[11]
El Amrousy, D.; El-Afify, D.; Elsawy, A.; Elsheikh, M.; Donia, A.; Nassar, M. Lactoferrin for iron-deficiency anemia in children with inflammatory bowel disease: A clinical trial. Pediatr. Res., 2022, 92(3), 762-766.
[http://dx.doi.org/10.1038/s41390-022-02136-2] [PMID: 35681097]
[12]
González-Sánchez, M.; Bartolome, F.; Antequera, D.; Puertas-Martín, V.; González, P.; Gómez-Grande, A.; Llamas-Velasco, S.; Herrero-San Martín, A.; Pérez-Martínez, D.; Villarejo-Galende, A.; Atienza, M.; Palomar-Bonet, M.; Cantero, J.L.; Perry, G.; Orive, G.; Ibañez, B.; Bueno, H.; Fuster, V.; Carro, E. Decreased salivary lactoferrin levels are specific to Alzheimer’s disease. EBioMedicine, 2020, 57, 102834.
[http://dx.doi.org/10.1016/j.ebiom.2020.102834] [PMID: 32586758]
[13]
Yanwei, L.; Wei, Z.; Yu, Z. The relationship between dry eye and lactoferrin levels in tears. Asian Biomed., 2012, 6(1), 81-85.
[14]
Moreno-Navarrete, J.M.; Ortega, F.J.; Bassols, J.; Ricart, W.; Fernández-Real, J.M. Decreased circulating lactoferrin in insulin resistance and altered glucose tolerance as a possible marker of neutrophil dysfunction in type 2 diabetes. J. Clin. Endocrinol. Metab., 2009, 94(10), 4036-4044.
[http://dx.doi.org/10.1210/jc.2009-0215] [PMID: 19584176]
[15]
Zhang, Y.; Lu, C.; Zhang, J. Lactoferrin and its detection methods: A review. Nutrients, 2021, 13(8), 2492.
[http://dx.doi.org/10.3390/nu13082492] [PMID: 34444652]
[16]
Vengen, I.T.; Dale, A.C.; Wiseth, R.; Midthjell, K.; Videm, V. Lactoferrin is a novel predictor of fatal ischemic heart disease in diabetes mellitus type 2: Long-term follow-up of the HUNT 1 study. Atherosclerosis, 2010, 212(2), 614-620.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.06.008] [PMID: 20598696]
[17]
Lamb, C.A.; Mansfield, J.C. Measurement of faecal calprotectin and lactoferrin in inflammatory bowel disease. Frontline Gastroenterol., 2011, 2(1), 13-18. [PMID: 23904968
[18]
Mohandas, S.; Milan, K.L.; Anuradha, M.; Ramkumar, K.M. Exploring Lactoferrin as a novel marker for disease pathology and ferroptosis regulation in gestational diabetes. J. Reprod. Immunol., 2024, 161, 104182.
[http://dx.doi.org/10.1016/j.jri.2023.104182] [PMID: 38159430]
[19]
Shi, Y.; Zhang, Y.; Hu, Y.; Moreddu, R.; Fan, Z.; Jiang, N.; Yetisen, A.K. Smartphone-based fluorescent sensing platforms for point-of-care ocular lactoferrin detection. Sens. Actuators B Chem., 2023, 378, 133128.
[http://dx.doi.org/10.1016/j.snb.2022.133128]
[20]
Kaur, H.; Bhagwat, S.R.; Sharma, T.K.; Kumar, A. Analytical techniques for characterization of biological molecules – proteins and aptamers/oligonucleotides. Bioanalysis, 2019, 11(2), 103-117.
[http://dx.doi.org/10.4155/bio-2018-0225] [PMID: 30475073]
[21]
Mishra, M.; Tiwari, S.; Gomes, A.V. Protein purification and analysis: Next generation Western blotting techniques. Expert Rev. Proteomics, 2017, 14(11), 1037-1053.
[http://dx.doi.org/10.1080/14789450.2017.1388167] [PMID: 28974114]
[22]
Clark, M.F.; Lister, R.M.; Bar-Joseph, M. ELISA techniques. In: Methods in enzymology; Elsevier, 1986; pp. 742-766.
[23]
Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 2015, 72, 4-15.
[http://dx.doi.org/10.1016/j.peptides.2015.04.012] [PMID: 25908411]
[24]
Engvall, E. The ELISA, enzyme-linked immunosorbent assay. Clin. Chem., 2010, 56(2), 319-320.
[http://dx.doi.org/10.1373/clinchem.2009.127803] [PMID: 19850633]
[25]
Chen, Z.; Li, H.; Jia, W.; Liu, X.; Li, Z.; Wen, F.; Zheng, N.; Jiang, J.; Xu, D. Bivalent aptasensor based on silver-enhanced fluorescence polarization for rapid detection of lactoferrin in milk. Anal. Chem., 2017, 89(11), 5900-5908.
[http://dx.doi.org/10.1021/acs.analchem.7b00261] [PMID: 28467701]
[26]
Huang, J.; He, Z.; Cao, J.; Hong, J.; Wu, Z.; Gao, H.; Liao, X. Electrochemical immunosensor detection for lactoferrin in milk powder. Int. J. Electrochem. Sci., 2018, 13(8), 7816-7826.
[http://dx.doi.org/10.20964/2018.08.47]
[27]
Kijlstra, A.; Kuizenga, A.; van der Velde, M.; van Haeringen, N.J. Gel electrophoresis of human tears reveals various forms of tear lactoferrin. Curr. Eye Res., 1989, 8(6), 581-588.
[http://dx.doi.org/10.3109/02713688908995757] [PMID: 2743797]
[28]
Palmano, K.P.; Elgar, D.F. Detection and quantitation of lactoferrin in bovine whey samples by reversed-phase high-performance liquid chromatography on polystyrene–divinylbenzene. J. Chromatogr. A, 2002, 947(2), 307-311.
[http://dx.doi.org/10.1016/S0021-9673(01)01563-1] [PMID: 11883664]
[29]
Gill, B.D.; Indyk, H.E.; Woollard, D.C. Current methods for the analysis of selected novel nutrients in infant formulas and adult nutritionals. J. AOAC Int., 2016, 99(1), 30-41.
[http://dx.doi.org/10.5740/jaoacint.15-0247] [PMID: 26821684]
[30]
Nunes, N.M.; de Paula, H.M.C.; Coelho, Y.L.; da Silva, L.H.M.; Pires, A.C.S. Surface plasmon resonance study of interaction between lactoferrin and naringin. Food Chem., 2019, 297, 125022.
[http://dx.doi.org/10.1016/j.foodchem.2019.125022] [PMID: 31253281]
[31]
Li, J.; Ding, X.; Chen, Y.; Song, B.; Zhao, S.; Wang, Z. Determination of bovine lactoferrin in infant formula by capillary electrophoresis with ultraviolet detection. J. Chromatogr. A, 2012, 1244, 178-183.
[http://dx.doi.org/10.1016/j.chroma.2012.05.004] [PMID: 22613574]
[32]
Alhalwani, A.Y. The Investigation of Lactoferrin Nitration: Quantification; Function, and Inhibitionand Inhibition, Electronic Theses and Dissertations, 2018.
[33]
Halli, G.; Rajasekariah, R.; Kay, G.; Russell, N.; Smithyman, A. Assessment of assay sensitivity and precision in a malaria antibody ELISA. J. Immunoassay Immunochem., 2003, 24(1), 89-112.
[http://dx.doi.org/10.1081/IAS-120018471] [PMID: 12680609]
[34]
Wong, R.C.W.; Favaloro, E.J.; Pollock, W.; Wilson, R.J.; Hendle, M.J.; Adelstein, S.; Baumgart, K.; Homes, P.; Smith, S.; Steele, R.H.; Sturgess, A.; Gillis, D. A multi-centre evaluation of the intra-assay and inter-assay variation of commercial and in-house anti-cardiolipin antibody assays. Pathology, 2004, 36(2), 182-192.
[http://dx.doi.org/10.1080/00313020410001672037] [PMID: 15203756]
[35]
Malekdar, F.; Mahravani, H.; Sedeigh, A.; Akbarzadegan, M. Development of an indirect enzyme-linked immunosorbent assay to detect antibodies against serotype A2013 of foot and mouth disease virus in cattle. Arch. Razi Inst., 2019, 74(2), 143-155. [PMID: 31232564
[36]
Rautenberg, W.; Neumann, S.; Gunzer, G.; Lang, H.; Jochum, M.; Fritz, H. Quantifizierung von human lactoferrin als entzündungsparameter mittels enzymimmunoassay vom sandwich-Typ (ELISA). Fresenius Z. Anal. Chem., 1986, 324(3-4), 364.
[http://dx.doi.org/10.1007/BF00487997]
[37]
Lin, A.V. Indirect ELISA. Methods Mol. Biol., 2015, 1318, 51-59.
[http://dx.doi.org/10.1007/978-1-4939-2742-5_5]
[38]
Ascoli, C.A.; Aggeler, B. Overlooked benefits of using polyclonal antibodies. Biotechniques, 2018, 65(3), 127-136.
[http://dx.doi.org/10.2144/btn-2018-0065] [PMID: 30089399]
[39]
Anderson, L.J.; Godfrey, E.; McIntosh, K.; Hierholzer, J.C. Comparison of a monoclonal antibody with a polyclonal serum in an enzyme-linked immunosorbent assay for detecting adenovirus. J. Clin. Microbiol., 1983, 18(3), 463-468.
[http://dx.doi.org/10.1128/jcm.18.3.463-468.1983] [PMID: 6630433]
[40]
Minic, R.; Zivkovic, I. Optimization, validation and standardization of ELISA. In: Norovirus; IntechOpen, 2020; pp. 9-28.
[41]
Fahrbach, K.M.; Malykhina, O.; Stieh, D.J.; Hope, T.J. Differential binding of IgG and IgA to mucus of the female reproductive tract. PLoS One, 2013, 8(10), e76176.
[http://dx.doi.org/10.1371/journal.pone.0076176] [PMID: 24098437]
[42]
de la Rosa, G.; Yang, D.; Tewary, P.; Varadhachary, A.; Oppenheim, JJ. Lactoferrin acts as an alarmin to promote the recruitment and activation of APCs and antigen-specific immune responses. J. Immunol., 2008, 180(10), 6868-6876.
[http://dx.doi.org/10.4049/jimmunol.180.10.6868]
[43]
Alhalwani, A.Y.; Repine, J.E.; Knowles, M.K.; Huffman, J.A. Development of a sandwich ELISA with potential for selective quantification of human lactoferrin protein nitrated through disease or environmental exposure. Anal. Bioanal. Chem., 2018, 410(4), 1389-1396.
[http://dx.doi.org/10.1007/s00216-017-0779-7] [PMID: 29214534]
[44]
Goldberg, M.E.; Djavadi-Ohaniance, L. Methods for measurement of antibody/antigen affinity based on ELISA and RIA. Curr. Opin. Immunol., 1993, 5(2), 278-281.
[http://dx.doi.org/10.1016/0952-7915(93)90018-N] [PMID: 8507406]
[45]
Satué-Gracia, M.T.; Frankel, E.N.; Rangavajhyala, N.; German, J.B. Lactoferrin in infant formulas: Effect on oxidation. J. Agric. Food Chem., 2000, 48(10), 4984-4990.
[http://dx.doi.org/10.1021/jf0002490] [PMID: 11052766]
[46]
Hetherington, S.V.; Spitznagel, J.K.; Quie, P.G. An enzyme-linked immunoassay (ELISA) for measurement of lactoferrin. J. Immunol. Methods, 1983, 65(1-2), 183-190.
[http://dx.doi.org/10.1016/0022-1759(83)90314-9] [PMID: 6317755]
[47]
Chen, P.W.; Mao, F.C. Detection of lactoferrin in bovine and goat milk by enzyme-linked immunosorbent assay. Yao Wu Shi Pin Fen Xi, 2004, 12(2), 9.
[48]
Brown, R.D.; Rickard, K.A.; Kronenberg, H. Immunoradiometric assay of plasma lactoferrin. Pathology, 1983, 15(1), 27-31.
[http://dx.doi.org/10.3109/00313028309061398] [PMID: 6856340]
[49]
Mayeur, S.; Veilleux, A.; Pouliot, Y.; Lamarche, B.; Beaulieu, J.F.; Hould, F.S.; Richard, D.; Tchernof, A.; Levy, E. Plasma lactoferrin levels positively correlate with insulin resistance despite an inverse association with total adiposity in lean and severely obese patients. PLoS One, 2016, 11(11), e0166138.
[http://dx.doi.org/10.1371/journal.pone.0166138] [PMID: 27902700]

© 2024 Bentham Science Publishers | Privacy Policy