Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

PPT1促进口腔鳞状细胞癌细胞生长并抑制铁下垂

卷 24, 期 10, 2024

发表于: 30 January, 2024

页: [1047 - 1060] 页: 14

弟呕挨: 10.2174/0115680096294098240123104657

价格: $65

摘要

背景:口腔鳞状细胞癌(OSCC)是头颈部最常见的恶性肿瘤之一,预后较差。阐明OSCC发生和发展的分子机制对治疗具有重要意义。棕榈酰化相关酶的失调已在几种癌症中报道,但OSCC除外。 目的:探讨棕榈酰蛋白硫酯酶1 (PPT1)在OSCC中的作用。 方法:通过不同的在线数据库筛选和构建正常口腔上皮组织和OSCC组织之间的差异表达基因(DEGs)和相关蛋白相互作用网络。我们对70例OSCC患者的肿瘤样本进行了PPT1表达水平与患者临床特征的关系评估。通过MTT、集落形成、EdU结合和transwell等功能实验研究PPT1在OSCC增殖转移中的作用。以慢病毒为基础的构建体用于操纵基因表达。铁橙探针和丙二醛法检测铁下垂。采用异种移植小鼠模型研究了OSCC细胞在体内的生长情况。 结果:共获得555个DEG,拓扑分析显示PPT1和GPX4可能在OSCC中起关键作用。发现PPT1表达升高与OSCC患者预后不良相关。PPT1能有效促进OSCC细胞的增殖、迁移和侵袭,抑制其铁下垂。PPT1影响谷胱甘肽过氧化物酶4 (GPX4)的表达。 结论:PPT1促进OSCC细胞生长,抑制铁下垂。PPT1可能是OSCC治疗的潜在靶点。

关键词: 口腔鳞状细胞癌,差异表达基因,棕榈酰蛋白硫酯酶1,增殖,谷胱甘肽过氧化物酶4,铁下垂。

图形摘要
[1]
Chow, L.Q.M. Head and neck cancer. N. Engl. J. Med., 2020, 382(1), 60-72.
[http://dx.doi.org/10.1056/NEJMra1715715] [PMID: 31893516]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Tan, Y.; Wang, Z.; Xu, M.; Li, B.; Huang, Z.; Qin, S.; Nice, E.C.; Tang, J.; Huang, C. Oral squamous cell carcinomas: State of the field and emerging directions. Int. J. Oral Sci., 2023, 15(1), 44.
[http://dx.doi.org/10.1038/s41368-023-00249-w] [PMID: 37736748]
[4]
Nokovitch, L.; Maquet, C.; Crampon, F.; Taihi, I.; Roussel, L.M.; Obongo, R.; Virard, F.; Fervers, B.; Deneuve, S. Oral cavity squamous cell carcinoma risk factors: State of the art. J. Clin. Med., 2023, 12(9), 3264.
[http://dx.doi.org/10.3390/jcm12093264] [PMID: 37176704]
[5]
Badwelan, M.; Muaddi, H.; Ahmed, A.; Lee, K.T.; Tran, S.D. Oral squamous cell carcinoma and concomitant primary tumors, what do we know? A review of the literature. Curr. Oncol., 2023, 30(4), 3721-3734.
[http://dx.doi.org/10.3390/curroncol30040283] [PMID: 37185396]
[6]
Ford, P.J.; Rich, A.M. Tobacco use and oral health. Addiction, 2021, 116(12), 3531-3540.
[http://dx.doi.org/10.1111/add.15513] [PMID: 33822437]
[7]
Imbesi Bellantoni, M.; Picciolo, G.; Pirrotta, I.; Irrera, N.; Vaccaro, M.; Vaccaro, F.; Squadrito, F.; Pallio, G. Oral cavity squamous cell carcinoma: An update of the pharmacological treatment. Biomedicines, 2023, 11(4), 1112.
[http://dx.doi.org/10.3390/biomedicines11041112] [PMID: 37189730]
[8]
Dewenter, I.; Kumbrink, J.; Poxleitner, P.; Smolka, W.; Liokatis, P.; Fliefel, R.; Otto, S.; Obermeier, K.T. New insights into redox-related risk factors and therapeutic targets in oral squamous cell carcinoma. Oral Oncol., 2023, 147, 106573.
[http://dx.doi.org/10.1016/j.oraloncology.2023.106573] [PMID: 37951115]
[9]
Biswal, S.; Panda, M.; Sahoo, R.K.; Tripathi, S.K.; Biswal, B.K. Tumour microenvironment and aberrant signaling pathways in cisplatin resistance and strategies to overcome in oral cancer. Arch. Oral Biol., 2023, 151, 105697.
[http://dx.doi.org/10.1016/j.archoralbio.2023.105697] [PMID: 37079976]
[10]
Shi, S.; Yu, Z.L.; Jia, J. The roles of exosomes in the diagnose, development and therapeutic resistance of oral squamous cell carcinoma. Int. J. Mol. Sci., 2023, 24(3), 1968.
[http://dx.doi.org/10.3390/ijms24031968] [PMID: 36768288]
[11]
Caponio, V.C.A.; Zhurakivska, K.; Lo Muzio, L.; Troiano, G.; Cirillo, N. The immune cells in the development of oral squamous cell carcinoma. Cancers, 2023, 15(15), 3779.
[http://dx.doi.org/10.3390/cancers15153779] [PMID: 37568595]
[12]
Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[13]
Wang, Z.; Ying, J.; Zhang, X.; Miao, C.; Xiao, Y.; Zou, J.; Chen, B. Small-molecule modulation of protein lipidation: From chemical probes to therapeutics. ChemBioChem, 2023, 24(14), e202300071.
[http://dx.doi.org/10.1002/cbic.202300071] [PMID: 37059689]
[14]
Gulhane, P.; Singh, S. Unraveling the post-translational modifications and therapeutical approach in NSCLC pathogenesis. Transl. Oncol., 2023, 33, 101673.
[http://dx.doi.org/10.1016/j.tranon.2023.101673] [PMID: 37062237]
[15]
Pan, S.; Chen, R. Pathological implication of protein post-translational modifications in cancer. Mol. Aspects Med., 2022, 86, 101097.
[http://dx.doi.org/10.1016/j.mam.2022.101097] [PMID: 35400524]
[16]
A Heieis, G.; Everts, B. O-GlcNAcylation at the center of antitumor immunity. Curr. Opin. Biotechnol., 2023, 84, 103009.
[http://dx.doi.org/10.1016/j.copbio.2023.103009] [PMID: 37863017]
[17]
Wu, X.; Xu, M.; Geng, M.; Chen, S.; Little, P.J.; Xu, S.; Weng, J. Targeting protein modifications in metabolic diseases: Molecular mechanisms and targeted therapies. Signal Transduct. Target. Ther., 2023, 8(1), 220.
[http://dx.doi.org/10.1038/s41392-023-01439-y] [PMID: 37244925]
[18]
Zhou, B.; Hao, Q.; Liang, Y.; Kong, E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol. Oncol., 2023, 17(1), 3-26.
[http://dx.doi.org/10.1002/1878-0261.13308] [PMID: 36018061]
[19]
Qu, M.; Zhou, X.; Wang, X.; Li, H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int. J. Biol. Sci., 2021, 17(15), 4223-4237.
[http://dx.doi.org/10.7150/ijbs.64046] [PMID: 34803494]
[20]
Cai, J.; Cui, J.; Wang, L. S-palmitoylation regulates innate immune signaling pathways: Molecular mechanisms and targeted therapies. Eur. J. Immunol., 2023, 53(10), 2350476.
[http://dx.doi.org/10.1002/eji.202350476] [PMID: 37369620]
[21]
Yamaguchi, H.; Hsu, J.M.; Yang, W.H.; Hung, M.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol., 2022, 19(5), 287-305.
[http://dx.doi.org/10.1038/s41571-022-00601-9] [PMID: 35132224]
[22]
Yu, F.; Qian, Z. Mechanisms for regulation of RAS palmitoylation and plasma membrane trafficking in hematopoietic malignancies. J. Clin. Invest., 2023, 133(12), e171104.
[http://dx.doi.org/10.1172/JCI171104] [PMID: 37317974]
[23]
Liu, Z.; Xiao, M.; Mo, Y.; Wang, H.; Han, Y.; Zhao, X.; Yang, X.; Liu, Z.; Xu, B. Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. Int. J. Biol. Sci., 2022, 18(8), 3447-3457.
[http://dx.doi.org/10.7150/ijbs.72244] [PMID: 35637973]
[24]
Brun, S.; Bestion, E.; Raymond, E.; Bassissi, F.; Jilkova, Z.M.; Mezouar, S.; Rachid, M.; Novello, M.; Tracz, J.; Hamaï, A.; Lalmanach, G.; Vanderlynden, L.; Legouffe, R.; Stauber, J.; Schubert, T.; Plach, M.G.; Courcambeck, J.; Drouot, C.; Jacquemot, G.; Serdjebi, C.; Roth, G.; Baudoin, J.P.; Ansaldi, C.; Decaens, T.; Halfon, P. GNS561, a clinical-stage PPT1 inhibitor, is efficient against hepatocellular carcinoma via modulation of lysosomal functions. Autophagy, 2022, 18(3), 678-694.
[http://dx.doi.org/10.1080/15548627.2021.1988357] [PMID: 34740311]
[25]
Rebecca, V.W.; Nicastri, M.C.; Fennelly, C.; Chude, C.I.; Barber-Rotenberg, J.S.; Ronghe, A.; McAfee, Q.; McLaughlin, N.P.; Zhang, G.; Goldman, A.R.; Ojha, R.; Piao, S.; Noguera-Ortega, E.; Martorella, A.; Alicea, G.M.; Lee, J.J.; Schuchter, L.M.; Xu, X.; Herlyn, M.; Marmorstein, R.; Gimotty, P.A.; Speicher, D.W.; Winkler, J.D.; Amaravadi, R.K. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov., 2019, 9(2), 220-229.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0706] [PMID: 30442709]
[26]
Sharma, G.; Ojha, R.; Noguera-Ortega, E.; Rebecca, V.W.; Attanasio, J.; Liu, S.; Piao, S.; Lee, J.J.; Nicastri, M.C.; Harper, S.L.; Ronghe, A.; Jain, V.; Winkler, J.D.; Speicher, D.W.; Mastio, J.; Gimotty, P.A.; Xu, X.; Wherry, E.J.; Gabrilovich, D.I.; Amaravadi, R.K. PPT1 inhibition enhances the antitumor activity of anti–PD-1 antibody in melanoma.. JCI Insight, 2022, 7(20), e165688.
[http://dx.doi.org/10.1172/jci.insight.165688] [PMID: 36278493]
[27]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[28]
Zhang, R.; Chen, J.; Wang, S.; Zhang, W.; Zheng, Q.; Cai, R. Ferroptosis in cancer progression. Cells, 2023, 12(14), 1820.
[http://dx.doi.org/10.3390/cells12141820] [PMID: 37508485]
[29]
Maru, D.; Hothi, A.; Bagariya, C.; Kumar, A. Targeting ferroptosis pathways: A novel strategy for cancer therapy. Curr. Cancer Drug Targets, 2022, 22(3), 234-244.
[http://dx.doi.org/10.2174/1568009622666220211122745] [PMID: 35152865]
[30]
Dar, N.J.; John, U.; Bano, N.; Khan, S.; Bhat, S.A. Oxytosis/ferroptosis in neurodegeneration: The underlying role of master regulator glutathione peroxidase 4 (GPX4). Mol. Neurobiol., 2023.
[http://dx.doi.org/10.1007/s12035-023-03646-8] [PMID: 37725216]
[31]
Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421.
[http://dx.doi.org/10.1016/j.cell.2022.06.003] [PMID: 35803244]
[32]
Hadian, K.; Stockwell, B.R. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat. Rev. Drug Discov., 2023, 22(9), 723-742.
[http://dx.doi.org/10.1038/s41573-023-00749-8] [PMID: 37550363]
[33]
Lee, J.; Roh, J.L. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett., 2023, 559, 216119.
[http://dx.doi.org/10.1016/j.canlet.2023.216119] [PMID: 36893895]
[34]
Liu, Y.; Wan, Y.; Jiang, Y.; Zhang, L.; Cheng, W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim. Biophys. Acta Rev. Cancer, 2023, 1878(3), 188890.
[http://dx.doi.org/10.1016/j.bbcan.2023.188890] [PMID: 37001616]
[35]
Xie, Y.; Kang, R.; Klionsky, D.J.; Tang, D. GPX4 in cell death, autophagy, and disease. Autophagy, 2023, 19(10), 2621-2638.
[http://dx.doi.org/10.1080/15548627.2023.2218764] [PMID: 37272058]
[36]
Zhang, X.D.; Liu, Z.Y.; Wang, M.S.; Guo, Y.X.; Wang, X.K.; Luo, K.; Huang, S.; Li, R.F. Mechanisms and regulations of ferroptosis. Front. Immunol., 2023, 14, 1269451.
[http://dx.doi.org/10.3389/fimmu.2023.1269451] [PMID: 37868994]
[37]
Li, D.; Wang, Y.; Dong, C.; Chen, T.; Dong, A.; Ren, J.; Li, W.; Shu, G.; Yang, J.; Shen, W.; Qin, L.; Hu, L.; Zhou, J. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene, 2023, 42(2), 83-98.
[http://dx.doi.org/10.1038/s41388-022-02537-x] [PMID: 36369321]
[38]
Cai, S.; Ding, Z.; Liu, X.; Zeng, J. Trabectedin induces ferroptosis via regulation of HIF-1α/IRP1/TFR1 and Keap1/Nrf2/GPX4 axis in non-small cell lung cancer cells. Chem. Biol. Interact., 2023, 369, 110262.
[http://dx.doi.org/10.1016/j.cbi.2022.110262] [PMID: 36396105]
[39]
Green, Y.S.; Ferreira dos Santos, M.C.; Fuja, D.G.; Reichert, E.C.; Campos, A.R.; Cowman, S.J.; Acuña Pilarte, K.; Kohan, J.; Tripp, S.R.; Leibold, E.A.; Sirohi, D.; Agarwal, N.; Liu, X.; Koh, M.Y. ISCA2 inhibition decreases HIF and induces ferroptosis in clear cell renal carcinoma. Oncogene, 2022, 41(42), 4709-4723.
[http://dx.doi.org/10.1038/s41388-022-02460-1] [PMID: 36097192]
[40]
Wang, H.; Luo, Q.; Feng, X.; Zhang, R.; Li, J.; Chen, F. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer, 2018, 18(1), 500.
[http://dx.doi.org/10.1186/s12885-018-4403-9] [PMID: 29716544]
[41]
Cao, T.; Zhang, H.; Zhou, L.; Wang, Y.; Du, G.; Yao, H.; Wang, Y.; Luo, Q.; Chen, F.; Wang, W.; Tang, G. In vitro cell culture system optimization of keratinocytes from oral lichen planus ( OLP ) patients. Oral Dis., 2017, 23(2), 225-232.
[http://dx.doi.org/10.1111/odi.12599] [PMID: 27763705]
[42]
Qin, X.; Yan, M.; Zhang, J.; Wang, X.; Shen, Z.; Lv, Z.; Li, Z.; Wei, W.; Chen, W. TGFβ3-mediated induction of Periostin facilitates head and neck cancer growth and is associated with metastasis. Sci. Rep., 2016, 6(1), 20587.
[http://dx.doi.org/10.1038/srep20587] [PMID: 26857387]
[43]
Zhu, L.; Luo, Q.; Bi, J.; Ding, J.; Ge, S.; Chen, F. Galangin inhibits growth of human head and neck squamous carcinoma cells in vitro and in vivo. Chem. Biol. Interact., 2014, 224, 149-156.
[http://dx.doi.org/10.1016/j.cbi.2014.10.027] [PMID: 25450235]
[44]
dos Santos, A.F.; Fazeli, G.; Xavier da Silva, T.N.; Friedmann Angeli, J.P. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol., 2023, 33(12), 1062-1076.
[http://dx.doi.org/10.1016/j.tcb.2023.04.005] [PMID: 37230924]
[45]
Luo, Q.; Li, X.; Gan, G.; Yang, M.; Chen, X.; Chen, F. PPT1 reduction contributes to erianin-induced growth inhibition in oral squamous carcinoma cells. Front. Cell Dev. Biol., 2021, 9, 764263.
[http://dx.doi.org/10.3389/fcell.2021.764263] [PMID: 35004674]
[46]
de Morais, E.F.; Almangush, A.; Salo, T.; da Silva, S.D.; Kujan, O.; Coletta, R.D. Emerging histopathological parameters in the prognosis of oral squamous cell carcinomas. Histol. Histopathol., 2023, 18634.
[PMID: 37310089]
[47]
Woodley, K.T.; Collins, M.O. S-acylated Golga7b stabilises DHHC 5 at the plasma membrane to regulate cell adhesion. EMBO Rep., 2019, 20(10), e47472.
[http://dx.doi.org/10.15252/embr.201847472] [PMID: 31402609]
[48]
Aramsangtienchai, P.; Spiegelman, N.A.; Cao, J.; Lin, H. S-palmitoylation of junctional adhesion molecule C regulates its tight junction localization and cell migration. J. Biol. Chem., 2017, 292(13), 5325-5334.
[http://dx.doi.org/10.1074/jbc.M116.730523] [PMID: 28196865]
[49]
Heiler, S.; Mu, W.; Zöller, M.; Thuma, F. The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun. Signal., 2015, 13(1), 29.
[http://dx.doi.org/10.1186/s12964-015-0105-y] [PMID: 26054340]
[50]
Fröhlich, M.; Dejanovic, B.; Kashkar, H.; Schwarz, G.; Nussberger, S. S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis. Cell Death Dis., 2014, 5(2), e1057.
[http://dx.doi.org/10.1038/cddis.2014.17] [PMID: 24525733]
[51]
Yuan, M.; Chen, X.; Sun, Y.; Jiang, L.; Xia, Z.; Ye, K.; Jiang, H.; Yang, B.; Ying, M.; Cao, J.; He, Q. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm. Sin. B, 2020, 10(8), 1426-1439.
[http://dx.doi.org/10.1016/j.apsb.2020.03.008] [PMID: 32963941]
[52]
Kwon, H.; Choi, M.; Ahn, Y.; Jang, D.; Pak, Y. Flotillin-1 palmitoylation turnover by APT-1 and ZDHHC-19 promotes cervical cancer progression by suppressing IGF-1 receptor desensitization and proteostasis. Cancer Gene Ther., 2023, 30(2), 302-312.
[http://dx.doi.org/10.1038/s41417-022-00546-2] [PMID: 36257975]
[53]
Sharma, G.; Ojha, R.; Noguera-Ortega, E.; Rebecca, V.W.; Attanasio, J.; Liu, S.; Piao, S.; Lee, J.J.; Nicastri, M.C.; Harper, S.L.; Ronghe, A.; Jain, V.; Winkler, J.D.; Speicher, D.W.; Mastio, J.; Gimotty, P.A.; Xu, X.; Wherry, E.J.; Gabrilovich, D.I.; Amaravadi, R.K. PPT1 inhibition enhances the antitumor activity of anti–PD-1 antibody in melanoma. JCI Insight, 2020, 5(17), e133225.
[http://dx.doi.org/10.1172/jci.insight.133225] [PMID: 32780726]
[54]
Xu, J.; Su, Z.; Cheng, X.; Hu, S.; Wang, W.; Zou, T.; Zhou, X.; Song, Z.; Xia, Y.; Gao, Y.; Zheng, Q. High PPT1 expression predicts poor clinical outcome and PPT1 inhibitor DC661 enhances sorafenib sensitivity in hepatocellular carcinoma. Cancer Cell Int., 2022, 22(1), 115.
[http://dx.doi.org/10.1186/s12935-022-02508-y] [PMID: 35277179]
[55]
Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 2011, 334(6056), 678-683.
[http://dx.doi.org/10.1126/science.1207056] [PMID: 22053050]
[56]
Torii, S.; Shintoku, R.; Kubota, C.; Yaegashi, M.; Torii, R.; Sasaki, M.; Suzuki, T.; Mori, M.; Yoshimoto, Y.; Takeuchi, T.; Yamada, K. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J., 2016, 473(6), 769-777.
[http://dx.doi.org/10.1042/BJ20150658] [PMID: 26759376]
[57]
Alu, A.; Han, X.; Ma, X.; Wu, M.; Wei, Y.; Wei, X. The role of lysosome in regulated necrosis. Acta Pharm. Sin. B, 2020, 10(10), 1880-1903.
[http://dx.doi.org/10.1016/j.apsb.2020.07.003] [PMID: 33163342]
[58]
Deng, S.; Li, J.; Li, L.; Lin, S.; Yang, Y.; Liu, T.; Zhang, T.; Xie, G.; Wu, D.; Xu, Y. Quercetin alleviates lipopolysaccharide‑induced acute lung injury by inhibiting ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. Int. J. Mol. Med., 2023, 52(6), 118.
[http://dx.doi.org/10.3892/ijmm.2023.5321] [PMID: 37888753]
[59]
Akiyama, H.; Zhao, R.; Ostermann, L.B.; Li, Z.; Tcheng, M.; Yazdani, S.J.; Moayed, A.; Pryor, M.L., II; Slngh, S.; Baran, N.; Ayoub, E.; Nishida, Y.; Mak, P.Y.; Ruvolo, V.R.; Carter, B.Z.; Schimmer, A.D.; Andreeff, M.; Ishizawa, J. Mitochondrial regulation of GPX4 inhibition–mediated ferroptosis in acute myeloid leukemia. Leukemia, 2023.
[http://dx.doi.org/10.1038/s41375-023-02117-2] [PMID: 38148395]
[60]
Zhao, H.; Tang, C.; Wang, M.; Zhao, H.; Zhu, Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front. Immunol., 2023, 14, 1260839.
[http://dx.doi.org/10.3389/fimmu.2023.1260839] [PMID: 37928554]
[61]
Sun, K.; Zhi, Y.; Ren, W.; Li, S.; Zhou, X.; Gao, L.; Zhi, K. The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed. Pharmacother., 2023, 169, 115892.
[http://dx.doi.org/10.1016/j.biopha.2023.115892] [PMID: 37976895]
[62]
Patanè, G.T.; Putaggio, S.; Tellone, E.; Barreca, D.; Ficarra, S.; Maffei, C.; Calderaro, A.; Laganà, G. Ferroptosis: Emerging role in diseases and potential implication of bioactive compounds. Int. J. Mol. Sci., 2023, 24(24), 17279.
[http://dx.doi.org/10.3390/ijms242417279] [PMID: 38139106]
[63]
Baruah, P.; Moorthy, H.; Ramesh, M.; Padhi, D.; Govindaraju, T. A natural polyphenol activates and enhances GPX4 to mitigate amyloid-β induced ferroptosis in Alzheimer’s disease. Chem. Sci., 2023, 14(35), 9427-9438.
[http://dx.doi.org/10.1039/D3SC02350H] [PMID: 37712018]
[64]
Xu, Z.; Wang, X.; Sun, W.; Xu, F.; Kou, H.; Hu, W.; Zhang, Y.; Jiang, Q.; Tang, J.; Xu, Y. RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol., 2023, 68, 102952.
[http://dx.doi.org/10.1016/j.redox.2023.102952] [PMID: 37944384]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy