Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Organic Synthesis via Renewable Heterogeneous Nanocatalysts Based on Montmorillonite Clay

Author(s): Mustafa M.H. Al-Abayechi, Abbas Al-Nayili, Asim A. Balakit and Gamal A. El-Hiti*

Volume 28, Issue 3, 2024

Published on: 26 January, 2024

Page: [213 - 221] Pages: 9

DOI: 10.2174/0113852728294884240105073842

Price: $65

Abstract

Synthetic organic molecules are vital for human life, serving as medications, pesticides, dyes, and food additives. Organic synthesis provides routes for the production of these molecules. The traditional methods of organic synthesis require energy, solvents, time, and certain conditions based on the nature of the reactions. To address the issues associated with conventional processes, various environmentally friendly (green) methodologies have been developed. Catalysts are crucial in many chemical methods. Chemists aim to develop catalysts that are cost-effective, easy to recover, and can be synthesized with high catalytic activity and renewability. Natural montmorillonite clay is an ideal material for efficient catalysts since it satisfies all these requirements. This review focuses on the recent advances in the development of renewable nanocatalysts made from montmorillonite to be used for the synthesis of various organic compounds.

Keywords: Montmorillonite, renewable, nanocatalyst, heterogeneous, organic synthesis, heterogeneous.

Graphical Abstract
[1]
Nagendrappa, G. Organic synthesis using clay catalysts. Resonance, 2002, 7(1), 64-77.
[http://dx.doi.org/10.1007/BF02836172]
[2]
Nasreen, A. Montmorillonite. Synlett, 2001, 2001(8), 1341-1342.
[http://dx.doi.org/10.1055/s-2001-16061]
[3]
Uddin, F. Montmorillonite: An Introduction to Properties and Utilization; IntechOpen, 2018.
[4]
Das, P.; Manna, S.; Behera, A.K.; Shee, M.; Basak, P.; Sharma, A.K. Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review. Environ. Res., 2022, 212(E), 113534.
[http://dx.doi.org/10.1016/j.envres.2022.113534]
[5]
Katti, K.S.; Jasuja, H.; Jaswandkar, S.V.; Mohanty, S.; Katti, D.R. Nanoclays in medicine: A new frontier of an ancient medical practice. Mater. Adv., 2022, 3(20), 7484-7500.
[http://dx.doi.org/10.1039/D2MA00528J] [PMID: 36324871]
[6]
Singh, N.B. Clays and clay minerals in the construction industry. Minerals, 2022, 12(3), 301.
[http://dx.doi.org/10.3390/min12030301]
[7]
Kumar, B.S.; Dhakshinamoorthy, A.; Pitchumani, K. K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Technol., 2014, 4(8), 2378-2396.
[http://dx.doi.org/10.1039/C4CY00112E]
[8]
Carniato, F.; Gatti, G.; Bisio, C. An overview of the recent synthesis and functionalization methods of saponite clay. New J. Chem., 2020, 44(24), 9969-9980.
[http://dx.doi.org/10.1039/D0NJ00253D]
[9]
Fatimah, I.; Fadillah, G.; Yanti, I.; Doong, R. Clay-supported metal oxide nanoparticles in catalytic advanced oxidation processes: A review. Nanomaterials, 2022, 12(5), 825.
[http://dx.doi.org/10.3390/nano12050825] [PMID: 35269318]
[10]
Sultana, S.; Borah, G.; Gogoi, P.K. Mont-K10 supported Fe(II) Schiff-base complex as an efficient catalyst for hydrogenation of ketones. Catal. Lett., 2019, 149(8), 2142-2157.
[http://dx.doi.org/10.1007/s10562-019-02810-x]
[11]
Marvi, O.; Talakoubi, M. K-10 and KSF clays as green and recyclable heterogeneous catalysts for the Cannizzaro reaction using DABCO under MWI and solvent-free conditions. Orient. J. Chem., 2016, 32(1), 359-365.
[http://dx.doi.org/10.13005/ojc/320140]
[12]
Wan, C.; Li, G.; Wang, J.; Xu, L.; Cheng, D.; Chen, F.; Asakura, Y.; Kang, Y.; Yamauchi, Y. Modulating electronic metal-support interactions to boost visible-light-driven hydrolysis of ammonia borane: Nickel-platinum nanoparticles supported on phosphorus-doped titania. Angew. Chem. Int. Ed., 2023, 62(40), e202305371.
[http://dx.doi.org/10.1002/anie.202305371] [PMID: 37291046]
[13]
Wan, C.; Liu, X.; Wang, J.; Chen, F.; Cheng, D.G. Heterostructuring 2D Co2P nanosheets with 0D CoP via a salt-assisted strategy for boosting hydrogen evolution from ammonia borane hydrolysis. Nano Res., 2023, 16(5), 6260-6269.
[http://dx.doi.org/10.1007/s12274-023-5388-5]
[14]
Wan, C.; Liang, Y.; Zhou, L.; Huang, J.; Wang, J.; Chen, F.; Zhan, X.; Cheng, D. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis. Green Energy Environm., 2024, 9(2), 333-343.
[http://dx.doi.org/10.1016/j.gee.2022.06.007]
[15]
Appaturi, J.N.; Ratti, R.; Phoon, B.L.; Batagarawa, S.M.; Din, I.U.; Selvaraj, M.; Ramalingam, R.J. A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation. Dalton Trans., 2021, 50(13), 4445-4469.
[http://dx.doi.org/10.1039/D1DT00456E] [PMID: 33720238]
[16]
Jambhulkar, D.K.; Ugwekar, R.P.; Bhanvase, B.A.; Barai, D.P. A review on solid base heterogeneous catalysts: Preparation, characterization and applications. Chem. Eng. Commun., 2022, 209(4), 433-484.
[http://dx.doi.org/10.1080/00986445.2020.1864623]
[17]
Feng, H.; Zhang, Y.; Liu, J.; Liu, D. Towards heterogeneous catalysis: A review on recent advances of depositing nanocatalysts in continuous-flow microreactors. Molecules, 2022, 27(22), 8052.
[http://dx.doi.org/10.3390/molecules27228052] [PMID: 36432155]
[18]
Smith, K.; El-Hiti, G. Regioselective control of electrophilic aromatic substitution reactions. Curr. Org. Synth., 2004, 1(3), 253-274.
[http://dx.doi.org/10.2174/1570179043366747]
[19]
Smith, K.; El-Hiti, G. Regioselective electrophilic aromatic substitution reactions over reusable zeolites. Curr. Org. Chem., 2006, 10(13), 1603-1625.
[http://dx.doi.org/10.2174/138527206778249685]
[20]
El-Hiti, G.A.; Smith, K.; Hegazy, A.S. Catalytic, green and regioselective Friedel-Crafts acylation of simple aromatics and heterocycles over zeolites. Curr. Org. Chem., 2015, 19(7), 585-598.
[http://dx.doi.org/10.2174/1385272819666150211002257]
[21]
Smith, K.; El-Hiti, G.A. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem., 2011, 13(7), 1579-1608.
[http://dx.doi.org/10.1039/c0gc00689k]
[22]
Liu, Y.H.; Liu, Q.S.; Zhang, Z.H. An efficient Friedel-Crafts alkylation of nitrogen heterocycles catalyzed by antimony trichloride/montmorillonite K-10. Tetrahedron Lett., 2009, 50(8), 916-921.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.022]
[23]
Li, T.S.; Zhang, Z.H.; Fu, C.G. Montmorillonite clay catalysis V1: An efficient and facile procedure for deprotection of 1,1-diacetates. Tetrahedron Lett., 1997, 38(18), 3285-3288.
[http://dx.doi.org/10.1016/S0040-4039(97)00586-8]
[24]
Smith, K.; Ajarim, M.D.; El-Hiti, G.A.; Peters, C. Catalytic mononitration of phenol using iso-propyl nitrate over acidic zeolite catalysts. Top. Catal., 2009, 52(12), 1696-1700.
[http://dx.doi.org/10.1007/s11244-009-9304-3]
[25]
Smith, K.; Ajarim, M.D.; El-Hiti, G.A. Regioselective nitration of deactivated aromatics using acyl nitrates over reusable acidic zeolite catalysts. Catal. Lett., 2010, 134(3–4), 270-278.
[http://dx.doi.org/10.1007/s10562-009-0258-7]
[26]
Smith, K.; Alotaibi, M.H.; El-Hiti, G.A. Highly regioselective dinitration of toluene over reusable zeolite Hβ. J. Catal., 2013, 297, 244-247.
[http://dx.doi.org/10.1016/j.jcat.2012.10.017]
[27]
Smith, K.; Alotaibi, M.H.; El-Hiti, G.A. Regioselective dinitration of simple aromatics over zeolite Hβ/nitric acid/acid anhydride systems. ARKIVOC, 2014, 2014(4), 107-123.
[http://dx.doi.org/10.3998/ark.5550190.p008.527]
[28]
Smith, K.; Alotaibi, M.H.; El-Hiti, G.A. Regioselective nitration of 2- and 4-nitrotoluenes over systems comprising nitric acid, an acid anhydride and a zeolite. ARKIVOC, 2014, 2014(5), 301-309.
[http://dx.doi.org/10.3998/ark.5550190.p008.788]
[29]
Smith, K.; El-Hiti, G.A.; Hammond, M.E.W.; Bahzad, D.; Li, Z.; Siquet, C. Highly efficient and selective electrophilic and free radical catalytic bromination reactions of simple aromatic compounds in the presence of reusable zeolites. J. Chem. Soc., Perkin Trans. 1, 2000, (16), 2745-2752.
[http://dx.doi.org/10.1039/b002157l]
[30]
Smith, K.; Al-Khalaf, A.K.H.; Berkil Akar, K.; Al-Badri, D.J.K.; Kariuki, B.M.; El-Hiti, G.A. Effects of structured solids on regioselectivity of dibromination of naphthalene. Catalysts, 2021, 11(5), 540.
[http://dx.doi.org/10.3390/catal11050540]
[31]
Smith, K.; Al-Khalaf, A.K.H.; Akar, K.B.; Kariuki, B.M.; El-Hiti, G.A. Polybromination of naphthalene using bromine over a montmorillonite clay and regioselective synthesis of 2,6-dibromonaphthalene. ARKIVOC, 2022, 2022(5), 46-59.
[http://dx.doi.org/10.24820/ark.5550190.p011.717]
[32]
Smith, K.; Roberts, S.D.; El-Hiti, G.A. Study of regioselective dialkylation of naphthalene in the presence of reusable zeolite catalysts. Org. Biomol. Chem., 2003, 1(9), 1552-1559.
[http://dx.doi.org/10.1039/b212775j] [PMID: 12926286]
[33]
Smith, K.; Al-Khalaf, A.K.H.; El-Hiti, G.A.; Pattisson, S. Highly regioselective di-tert-amylation of naphthalene over reusable H-mordenite zeolite. Green Chem., 2012, 14(4), 1103-1110.
[http://dx.doi.org/10.1039/c2gc16443d]
[34]
Smith, K.; El-Hiti, G.A.; Jayne, A.J.; Butters, M. Acylation of aromatic ethers over solid acid catalysts: Scope of the reaction with more complex acylating agents. Org. Biomol. Chem., 2003, 1(13), 2321-2325.
[http://dx.doi.org/10.1039/b303906d] [PMID: 12945704]
[35]
Smith, K.; El-Hiti, G.A.; Jayne, A.J.; Butters, M. Acetylation of aromatic ethers using acetic anhydride over solid acid catalysts in a solvent-free system. Scope of the reaction for substituted ethers. Org. Biomol. Chem., 2003, 1(9), 1560-1564.
[http://dx.doi.org/10.1039/b301260c] [PMID: 12926287]
[36]
Smith, K.; Ewart, G.M.; El-Hiti, G.A.; Randles, K.R. Study of regioselective methanesulfonylation of simple aromatics with methanesulfonic anhydride in the presence of zeolite catalysts. Org. Biomol. Chem., 2004, 2(21), 3150-3154.
[http://dx.doi.org/10.1039/b409922b] [PMID: 15505721]
[37]
Wang, B.; Gu, Y.; Luo, C.; Yang, T.; Yang, L.; Suo, J. Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste. Tetrahedron Lett., 2004, 45(17), 3369-3372.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.017]
[38]
Krishnan, J.; Ranjithkumar, K.; Dhakshinamoorthy, A. Synthesis of 4-styrylquinazolines using copper-based porous solid catalyst. Mol. Cataly., 2022, 533, 112760.
[http://dx.doi.org/10.1016/j.mcat.2022.112760]
[39]
Mukhtar, A.; Saqib, S.; Lin, H.; Hassan Shah, M.U.; Ullah, S.; Younas, M.; Rezakazemi, M.; Ibrahim, M.; Mahmood, A.; Asif, S.; Bokhari, A. Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew. Sustain. Energy Rev., 2022, 157, 112012.
[http://dx.doi.org/10.1016/j.rser.2021.112012]
[40]
Su, F.; Guo, Y. Advancements in solid acid catalysts for biodiesel production. Green Chem., 2014, 16(6), 2934-2957.
[http://dx.doi.org/10.1039/C3GC42333F]
[41]
Vasić, K.; Hojnik Podrepšek, G.; Knez, Ž.; Leitgeb, M. Biodiesel production using solid acid catalysts based on metal oxides. Catalysts, 2020, 10(2), 237.
[http://dx.doi.org/10.3390/catal10020237]
[42]
Guan, W.; Tsang, C.W.; Lin, C.S.K.; Len, C.; Hu, H.; Liang, C. A review on high catalytic efficiency of solid acid catalysts for lignin valorization. Bioresour. Technol., 2020, 298, 122432.
[http://dx.doi.org/10.1016/j.biortech.2019.122432] [PMID: 31767425]
[43]
Liu, Y.; Wang, B.; Kang, L.; Stamatopoulos, A.; Gu, H.; Wang, F.R. Polyphenylene-based solid acid as an efficient catalyst for activation and hydration of alkynes. Chem. Mater., 2020, 32(10), 4375-4382.
[http://dx.doi.org/10.1021/acs.chemmater.0c01763] [PMID: 32581424]
[44]
Jothiramalingam, R.; Wang, M.K. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind. Eng. Chem. Res., 2009, 48(13), 6162-6172.
[http://dx.doi.org/10.1021/ie801872t]
[45]
Axelsson, B.; Easton, G. Industrial Networks (Routledge Revivals): A New View of Reality, 1st ed.; Routledge, 2016.
[http://dx.doi.org/10.4324/9781315629629]
[46]
Sheldon, R.A.; Downing, R.S. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A Gen., 1999, 189(2), 163-183.
[http://dx.doi.org/10.1016/S0926-860X(99)00274-4]
[47]
Ganesh, K.N.; Zhang, D.; Miller, S.J.; Rossen, K.; Chirik, P.J.; Kozlowski, M.C.; Zimmerman, J.B.; Brooks, B.W.; Savage, P.E.; Allen, D.T.; Voutchkova-Kostal, A.M. Green chemistry: A framework for a sustainable future. Org. Process Res. Dev., 2021, 25(7), 1455-1459.
[http://dx.doi.org/10.1021/acs.oprd.1c00216]
[48]
Casti, F.; Basoccu, F.; Mocci, R.; De Luca, L.; Porcheddu, A.; Cuccu, F. Appealing renewable materials in green chemistry. Molecules, 2022, 27(6), 1988.
[http://dx.doi.org/10.3390/molecules27061988] [PMID: 35335350]
[49]
Wale, T.; Suryavanshi, S.; Wavare, V.; Phalke, P.; Sharmale, M. Review on green chemistry. J. Drug Deliv. Ther., 2023, 13(7), 190-193.
[http://dx.doi.org/10.22270/jddt.v13i7.5919]
[50]
Miceli, M.; Frontera, P.; Macario, A.; Malara, A. Recovery/reuse of heterogeneous supported spent catalysts. Catalysts, 2021, 11(5), 591.
[http://dx.doi.org/10.3390/catal11050591]
[51]
Hara, M.; Nakajima, K.; Kamata, K. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Sci. Technol. Adv. Mater., 2015, 16(3), 034903.
[http://dx.doi.org/10.1088/1468-6996/16/3/034903] [PMID: 27877800]
[52]
Ajala, E.O.; Ajala, M.A.; Ayinla, I.K.; Sonusi, A.D.; Fanodun, S.E. Nano-synthesis of solid acid catalysts from waste-iron-filling for biodiesel production using high free fatty acid waste cooking oil. Sci. Rep., 2020, 10(1), 13256.
[http://dx.doi.org/10.1038/s41598-020-70025-x] [PMID: 32764702]
[53]
Bayramoğlu, M.; Korkut, İ.; Temur Ergan, B. Reusability and regeneration of solid catalysts used in ultrasound assisted biodiesel production. Turk. J. Chem., 2021, 45(2), 342-347.
[http://dx.doi.org/10.3906/kim-2008-33] [PMID: 34104048]
[54]
Kumar, A.; Thakur, A.K.; Gaurav, G.K.; Klemeڑ,, J.J.; Sandhwar, V.K.; Pant, K.K.; Kumar, R. A critical review on sustainable hazardous waste management strategies: A step towards a circular economy. Environ. Sci. Pollut. Res. Int., 2023, 30(48), 105030-105055.
[http://dx.doi.org/10.1007/s11356-023-29511-8] [PMID: 37725301]
[55]
Goh, H.Y.; Wong, W.W.C.; Ong, Y.Y. A study to reduce chemical waste generated in chemistry teaching laboratories. J. Chem. Educ., 2020, 97(1), 87-96.
[http://dx.doi.org/10.1021/acs.jchemed.9b00632]
[56]
Fazzo, L.; Minichilli, F.; Santoro, M.; Ceccarini, A.; Della Seta, M.; Bianchi, F.; Comba, P.; Martuzzi, M. Hazardous waste and health impact: A systematic review of the scientific literature. Environ. Health, 2017, 16(1), 107.
[http://dx.doi.org/10.1186/s12940-017-0311-8] [PMID: 29020961]
[57]
Somwanshi, S.B.; Somvanshi, S.B.; Kharat, P.B. Nanocatalyst: A brief review on synthesis to applications. J. Phys. Conf. Ser., 2020, 1644(1), 012046.
[http://dx.doi.org/10.1088/1742-6596/1644/1/012046]
[58]
Lach, D.; Zhdan, U.; Smolinski, A.; Polanski, J. Functional and material properties in nanocatalyst design: A data handling and sharing problem. Int. J. Mol. Sci., 2021, 22(10), 5176.
[http://dx.doi.org/10.3390/ijms22105176] [PMID: 34068386]
[59]
Momeni, S.; Ghorbani-Vaghei, R. Synthesis, properties, and application of the new nanocatalyst of double layer hydroxides in the one-pot multicomponent synthesis of 2-amino-3-cyanopyridine derivatives. Sci. Rep., 2023, 13(1), 1627.
[http://dx.doi.org/10.1038/s41598-023-27940-6] [PMID: 36709240]
[60]
Jiang, C.; Jia, J.; Zhai, S. Mechanistic understanding of toxicity from nanocatalysts. Int. J. Mol. Sci., 2014, 15(8), 13967-13992.
[http://dx.doi.org/10.3390/ijms150813967] [PMID: 25119861]
[61]
Seleci, M.; Ag, D.; Yalcinkaya, E.E.; Demirkol, D.O.; Guler, C.; Timur, S. Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications. RSC Adv., 2012, 2(5), 2112-2118.
[http://dx.doi.org/10.1039/c2ra01225a]
[62]
Virkutyte, J.; Varma, R.S. Veruclay - a new type of photo-adsorbent active in the visible light range: modification of montmorillonite surface with organic surfactant. RSC Adv., 2012, 2(21), 8128-8134.
[http://dx.doi.org/10.1039/c2ra20811c]
[63]
Granados-Oliveros, G.; Gómez-Vidales, V.; Nieto-Camacho, A.; Morales-Serna, J.A.; Cádenas, J.; Salmón, M. Photoproduction of H2O2 and hydroxyl radicals catalysed by natural and super acid-modified montmorillonite and its oxidative role in the peroxidation of lipids. RSC Adv., 2013, 3(3), 937-944.
[http://dx.doi.org/10.1039/C2RA22393G]
[64]
Kevadiya, B.D.; Bajaj, H.C. The layered silicate, montmorillonite (MMT) as a drug delivery carrier. Key Eng. Mater., 2013, 571, 111-132.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.571.111]
[65]
Varma, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron, 2002, 58(7), 1235-1255.
[http://dx.doi.org/10.1016/S0040-4020(01)01216-9]
[66]
Kloprogge, J.T.T.; Hartman, H. Clays and the origin of life: The experiments. Life, 2022, 12(2), 259.
[http://dx.doi.org/10.3390/life12020259] [PMID: 35207546]
[67]
Chen, G.F.; Xiao, N.; Yang, J.S.; Li, H.Y.; Chen, B.H.; Han, L.F. A simple and eco-friendly process catalyzed by montmorillonite K-10, with air as oxidant, for synthesis of 2-substituted benzothiazoles. Res. Chem. Intermed., 2015, 41(8), 5159-5166.
[http://dx.doi.org/10.1007/s11164-014-1619-4]
[68]
Safari, J.; Sadeghi, M. Montmorillonite K10: An effective catalyst for synthesis of 2-aminothiazoles. Res. Chem. Intermed., 2016, 42(12), 8175-8183.
[http://dx.doi.org/10.1007/s11164-016-2587-7]
[69]
Ravi, K.; Krishnakumar, B.; Swaminathan, M. BiCl3-loaded montmorillonite K10: A new solid acid catalyst for solvent-free synthesis of bis(indolyl)methanes. Res. Chem. Intermed., 2015, 41(8), 5353-5364.
[http://dx.doi.org/10.1007/s11164-014-1636-3]
[70]
Kalbende, P.; Jadhav, N. K-10 montmorillonite catalysed solvent free synthesis of coumarins via pechmann condensation. Int. J. Sci. Res. Chem. Sci., 2020, 7(5), 15-21.
[71]
Takabatake, M.; Motokura, K. Montmorillonite-based heterogeneous catalysts for efficient organic reactions. Nano Express, 2022, 3(1), 014004.
[http://dx.doi.org/10.1088/2632-959X/ac5ac3]
[72]
Huang, W.J.; Liu, J.H.; She, Q.M.; Zhong, J.Q.; Christidis, G.E.; Zhou, C.H. Recent advances in engineering montmorillonite into catalysts and related catalysis. Catal. Rev., Sci. Eng., 2023, 65(3), 929-985.
[http://dx.doi.org/10.1080/01614940.2021.1995163]
[73]
Comin, A.B.; Zaccaron, A.; de Souza Nandi, V.; Inocente, J.M.; Muller, T.G.; Dal Bó, A.G; Bernardin, A.M; Peterson, M. َMeasurement of apparent sintering activation energy for densification of clays. Clay Miner., 2021, 56(4), 299-305.
[http://dx.doi.org/10.1180/clm.2022.11]
[74]
Phukan, A.; Borah, S.J.; Bordoloi, P.; Sharma, K.; Borah, B.J.; Sarmah, P.P.; Dutta, D.K. An efficient and robust heterogeneous mesoporous montmorillonite clay catalyst for the Biginelli type reactions. Adv. Powder Technol., 2017, 28(6), 1585-1592.
[http://dx.doi.org/10.1016/j.apt.2017.03.030]
[75]
Maeno, Z.; Yamada, S.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K. Effective management of polyethers through depolymerization to symmetric and unsymmetric glycol diesters using a proton-exchanged montmorillonite catalyst. Green Chem., 2017, 19(11), 2612-2619.
[http://dx.doi.org/10.1039/C7GC00817A]
[76]
Shah, A.K.; Park, S.; Khan, H.A.; Bhatti, U.H.; Kumar, P.; Bhutto, A.W.; Park, Y.H. Citronellal cyclisation over heteropoly acid supported on modified montmorillonite catalyst: Effects of acidity and pore structure on catalytic activity. Res. Chem. Intermed., 2018, 44(4), 2405-2423.
[http://dx.doi.org/10.1007/s11164-017-3237-4]
[77]
Zeynizadeh, B.; Rahmani, S.; Ilkhanizadeh, S. Strongly proton exchanged montmorillonite K10 (H+-Mont) as a solid acid catalyst for highly efficient and environmental benign synthesis of biscoumarins via tandem Knoevenagel-Michael reaction. Polyhedron, 2019, 168, 48-56.
[http://dx.doi.org/10.1016/j.poly.2019.04.034]
[78]
Kumaresan, M.; Karthika, V.; Selvakumar, K.; Sami, P. Green synthesis of naphtho[2,3-f]quinolin-13-one and naphtho[2,3-a]acridin-1(2H)-one derivatives catalyzed by heteropoly acid supported montmorillonite K-10 clay. Synth. Commun., 2019, 49(21), 1-13.
[http://dx.doi.org/10.1080/00397911.2019.1646287]
[79]
Mashhadinezhad, M.; Shirini, F.; Mamaghani, M.; Rassa, M. Green synthesis of dihydropyrimidine annulated heterocyclic systems catalyzed by nanoporous Na+-montmorillonite perchloric acid and evaluation of their biological activities. Polycycl. Aromat. Compd., 2020, 40(5), 1417-1433.
[http://dx.doi.org/10.1080/10406638.2018.1553197]
[80]
Aher, D.S.; Khillare, K.R.; Chavan, L.D.; Shankarwar, S.G. Quaternary vanado‐molybdotungstophosphoric acid [H5PW6Mo4V2O40] over natural montmorillonite as a heterogeneous catalyst for the synthesis 4H‐pyran and polyhydroquinoline derivatives. ChemistrySelect, 2020, 5(25), 7320-7331.
[http://dx.doi.org/10.1002/slct.202001065]
[81]
Vrbková, E.; Šímová, A.; Vyskočilová, E.; Lhotka, M.; Červený, L. Acid treated montmorillonite-eco-friendly clay as catalyst in carvone isomerization to carvacrol. Reactions, 2021, 2(4), 486-498.
[http://dx.doi.org/10.3390/reactions2040031]
[82]
Vrbková, E.; Vaňková, M.; Lhotka, M.; Vyskočilová, E. Acid treated montmorillonite - efficient catalyst in Prins reaction of alpha-methylstyrene with paraldehyde. Mol. Cataly., 2023, 542, 113143.
[http://dx.doi.org/10.1016/j.mcat.2023.113143]
[83]
Sahraei, S.; Rafiee, E.; Moradi, G. Deep extractive oxidative desulfurization of model oil/crude oil using different keggin heteropoly acids supported on K10 montmorillonite. J. Chem. Pet. Eng., 2023, 57, 167-178.
[http://dx.doi.org/10.22059/jchpe.2023.351323.1416]
[84]
Loganathan, R.K.; Ramachandra, S.N. Shekharappa, Sureshbabu, V.V. Montmorillonite K‐10‐supported palladium nanoparticles for copper‐free acyl sonogashira reaction. ChemistrySelect, 2017, 2(26), 8059-8062.
[http://dx.doi.org/10.1002/slct.201701150]
[85]
Lang, W.; Yang, Q.; Song, X.; Yin, M.; Zhou, L. Cu nanoparticles immobilized on montmorillonite by biquaternary ammonium salts: A highly active and stable heterogeneous catalyst for cascade sequence to indole-2-carboxylic esters. RSC Adv., 2017, 7(23), 13754-13759.
[http://dx.doi.org/10.1039/C6RA25861A]
[86]
Khorshidi, A.; Tabatabaeian, K.; Azizi, H.; Aghaei-Hashjin, M.; Abbaspour-Gilandeh, E. Efficient one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by a new heterogeneous catalyst based on Co-functionalized Na+-montmorillonite. RSC Adv., 2017, 7(29), 17732-17740.
[http://dx.doi.org/10.1039/C7RA00794A]
[87]
Ahmadzadeh, M.; Zarnegar, Z.; Safari, J. Sonochemical synthesis of methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones using SnII-montmorillonite. Green Chem. Lett. Rev., 2018, 11(2), 78-85.
[http://dx.doi.org/10.1080/17518253.2018.1434564]
[88]
Rahmani, S.; Zeynizadeh, B. Ni0 NPs anchored on acid-activated montmorillonite (Ni0-Mont) as a highly efficient and reusable nanocatalyst for synthesis of biscoumarins and bisdimedones. Res. Chem. Intermed., 2019, 45(3), 1227-1248.
[http://dx.doi.org/10.1007/s11164-018-3671-y]
[89]
Safari, J.; Hosseini Nasab, N. Fe3O4 magnetic nanoparticles in the layers of montmorillonite as a valuable heterogeneous nanocatalyst for the one-pot synthesis of indeno[1,2-b]indolone derivatives in aqueous media. Res. Chem. Intermed., 2019, 45(3), 1025-1038.
[http://dx.doi.org/10.1007/s11164-018-3659-7]
[90]
Zeynizadeh, B.; Rahmani, S. Sulfonyl-bridged (copper-immobilized nickel ferrite) with activated montmorillonite, [(NiFe2O4@Cu)SO2(MMT)]: A new class of magnetically separable clay nanocomposite systems towards Hantzsch synthesis of coumarin-based 1,4-dihydropyridines. RSC Adv., 2019, 9(14), 8002-8015.
[http://dx.doi.org/10.1039/C9RA00177H] [PMID: 35521208]
[91]
Zeynizadeh, B.; Rahmani, S.; Tizhoush, H. The immobilized Cu nanoparticles on magnetic montmorillonite (MMT@Fe3O4@Cu): As an efficient and reusable nanocatalyst for reduction and reductive-acetylation of nitroarenes with NaBH4. Polyhedron, 2020, 175, 114201.
[http://dx.doi.org/10.1016/j.poly.2019.114201]
[92]
Atarod, M.; Safari, J. Comparative study of CuO, Fe3O4 and CuFe2O4/CuO over montmorillonite clay: Green synthesis, characterization and catalytic activity. ChemistrySelect, 2020, 5(28), 8394-8404.
[http://dx.doi.org/10.1002/slct.202001849]
[93]
Tandon, N.; Patil, S.M.; Tandon, R.; Kumar, P. Magnetically recyclable silica-coated ferrite magnetite-K10 montmorillonite nanocatalyst and its applications in O, N, and S-acylation reaction under solvent-free conditions. RSC Adv., 2021, 11(35), 21291-21300.
[http://dx.doi.org/10.1039/D1RA02222A] [PMID: 35478786]
[94]
Ahmadzadeh, M.; Sadeghi, M.; Safari, J. Copper(II) Anchored on amine-functionalized MMT: A highly efficient catalytic system for the one-pot synthesis of bispyrano[2,3-c]pyrazole derivatives. J. Chem., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/1784142]
[95]
Wadhawa, G.C.; Valvi, A.K.; Mohite, R.D.; Patil, D.D.; Patil, B.; Gavit, H.J. An organo-heterogeneous catalyst for synthesis of benzimidazole derivatives using nanoparticles synthesized from plant extract and supported on Montmorillonite K10. Mater. Today Proc., 2022, 58, 764-768.
[http://dx.doi.org/10.1016/j.matpr.2022.03.100]
[96]
Pathak, C.; Borah, G. Cu2O/CuO@mont K10 promoted one-pot synthesis of 1,2,3-triazoles through azide-alkyne cycloaddition reaction. Chem. Zvesti, 2022, 76(8), 4749-4761.
[http://dx.doi.org/10.1007/s11696-022-02203-2]
[97]
Chen, Y.; Sun, K.; Zhang, T.; Zhou, J.; Liu, Y.; Zeng, M.; Ren, X.; Feng, R.; Yang, Z.; Zhang, P.; Wang, B.; Cao, X. TiO2-Modified montmorillonite-supported porous carbon-immobilized Pd species nanocomposite as an efficient catalyst for sonogashira reactions. Molecules, 2023, 28(5), 2399.
[http://dx.doi.org/10.3390/molecules28052399] [PMID: 36903644]
[98]
Patil, S.M.; Tandon, R.; Tandon, N.; Singh, I.; Bedre, A.; Gade, V. Magnetite-supported montmorillonite (K10) (nanocat-Fe-Si-K10): An efficient green catalyst for multicomponent synthesis of amidoalkyl naphthol. RSC Adv., 2023, 13(25), 17051-17061.
[http://dx.doi.org/10.1039/D3RA01522J] [PMID: 37288375]
[99]
Hassani Bagheri, F.; Khabazzadeh, H.; Fayazi, M.; Rezaeipour, M. Synthesis of CuO and Cu2O nanoparticles stabilized on the magnetic Fe3O4-Montmorillonite-K10 and comparison of their catalytic activity in A3 coupling reaction. J. Indian Chem. Soc., 2023, 20(6), 1439-1456.
[http://dx.doi.org/10.1007/s13738-023-02768-z]
[100]
Thanh, N.D.; Hai, D.S.; Huyen, L.T.; Thuy, V.T.T.; Tung, D.T.; Van, H.T.K.; Toan, V.N.; Giang, N.T.K.; Tri, N.M. Fe3O4-MNPs@MMT-K10: A reusable catalyst for synthesis of propargyl 4-aryl-4H-pyran-3-carboxyles via one-pot three-component reaction under microwave-assisted solvent-free conditions. Res. Chem. Intermed., 2023, 49(2), 525-555.
[http://dx.doi.org/10.1007/s11164-022-04911-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy