Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Purple Carrot Extract Exhibits a Neuroprotective Profile in th e Nigrostriatal Pathway in the Reserpine-induced Model of Parkinson ’s Disease

Author(s): Ana Claudia Custódio-Silva, Jose Ivo Araújo Beserra-Filho, Beatriz Soares-Silva, Amanda Maria-Macêdo, Suellen Silva-Martins, Sara Pereira Silva, José Ronaldo Santos, Regina Helena Silva, Daniel Araki Ribeiro and Alessandra Mussi Ribeiro*

Volume 24, Issue 2, 2024

Published on: 25 January, 2024

Page: [196 - 205] Pages: 10

DOI: 10.2174/0118715249260445231226112021

Price: $65

Abstract

Background: Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Even with scientific and technological advances, the therapeutic approaches used for the treatment of PD have shown to be largely ineffective in controlling the progression of symptoms in the long term. There is a growing demand for the development of novel therapeutic strategies for PD treatment. Different herbs and supplements have been considered as adjuvant to treat the symptoms of Parkinsonism. The carrot is one of the most consumed vegetable species worldwide, and its root is known for its content of anthocyanins, which possess antioxidant and antiinflammatory properties. This study evaluated the neuroprotective effect of purple carrot extract (CAR) in rats on the reserpine (RES)-induced progressive parkinsonism model.

Methods: Male rats (6-month-old) received orally the CAR (400 mg/kg) or vehicle and subcutaneously RES (0.01 mg/kg) or vehicle for 28 days (Preventive Phase). From the 29th day, rats received CAR or vehicle daily and RES (0.1 mg/kg) or vehicle every other day (for 23 days, Protective phase). Behavioral tests were conducted throughout the treatment. Upon completion, the animals’ brain were processed for tyrosine hydroxylase (TH) immunohistochemical assessment.

Results: Our results showed that the chronic treatment of CAR protected against motor disabilities, reducing the time of catalepsy behavior and decreasing the frequency of oral movements, possibly by preserving TH levels in the Ventral Tegmental Area (VTA) and SNpc.

Conclusion: CAR extract is effective to attenuate motor symptoms in rats associated with increased TH+ levels in the Ventral Tegmental Area (VTA) and SNpc, indicating the potential nutraceutical benefits of CAR extract in a progressive parkinsonism model induced by RES.

Keywords: Natural products, nutraceuticals, parkinson’s disease, neurodegenerative disease, neuroprotection, motor behavior.

Graphical Abstract
[1]
Krokidis, M.G. Identification of biomarkers associated with Parkinson’s disease by gene expression profiling studies and bioinformatics analysis. AIMS Neurosci., 2019, 6, 333-345.
[http://dx.doi.org/10.3934/Neuroscience.2019.4.333]
[2]
Moisan, F.; Kab, S.; Mohamed, F.; Canonico, M.; Le Guern, M.; Quintin, C.; Carcaillon, L.; Nicolau, J.; Duport, N.; Singh-Manoux, A.; Boussac-Zarebska, M.; Elbaz, A. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2016, 87(9), 952-957.
[http://dx.doi.org/10.1136/jnnp-2015-312283] [PMID: 26701996]
[3]
Riedel, O.; Bitters, D.; Amann, U.; Garbe, E.; Langner, I. Estimating the prevalence of Parkinson’s disease (PD) and proportions of patients with associated dementia and depression among the older adults based on secondary claims data. Int. J. Geriatr. Psychiatry, 2016, 31(8), 938-943.
[http://dx.doi.org/10.1002/gps.4414] [PMID: 26764603]
[4]
Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D.L. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord., 2014, 29(13), 1583-1590.
[http://dx.doi.org/10.1002/mds.25945] [PMID: 24976103]
[5]
Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E.; Ioannidis, J.P.A. Environmental risk factors and Parkinson’s disease: An umbrella review of meta-analyses. Parkinsonism Relat. Disord., 2016, 23, 1-9.
[http://dx.doi.org/10.1016/j.parkreldis.2015.12.008] [PMID: 26739246]
[6]
Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol., 2016, 15(12), 1257-1272.
[http://dx.doi.org/10.1016/S1474-4422(16)30230-7] [PMID: 27751556]
[7]
Zesiewicz, T.A. Parkinson disease. Continuum, 2019, 25(4), 896-918.
[http://dx.doi.org/10.1212/CON.0000000000000764] [PMID: 31356286]
[8]
Leggio, L.; Vivarelli, S.; L’Episcopo, F.; Tirolo, C.; Caniglia, S.; Testa, N.; Marchetti, B.; Iraci, N. MicroRNAs in parkinson’s disease: From pathogenesis to novel diagnostic and therapeutic approaches. Int. J. Mol. Sci., 2017, 18(12), 2698.
[http://dx.doi.org/10.3390/ijms18122698] [PMID: 29236052]
[9]
Vicente Miranda, H. Szegő, É.M.; Oliveira, L.M.A.; Breda, C.; Darendelioglu, E.; de Oliveira, R.M.; Ferreira, D.G.; Gomes, M.A.; Rott, R.; Oliveira, M.; Munari, F.; Enguita, F.J.; Simões, T.; Rodrigues, E.F.; Heinrich, M.; Martins, I.C.; Zamolo, I.; Riess, O.; Cordeiro, C.; Ponces-Freire, A.; Lashuel, H.A.; Santos, N.C.; Lopes, L.V.; Xiang, W.; Jovin, T.M.; Penque, D.; Engelender, S.; Zweckstetter, M.; Klucken, J.; Giorgini, F.; Quintas, A.; Outeiro, T.F. Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain, 2017, 140(5), 1399-1419.
[http://dx.doi.org/10.1093/brain/awx056] [PMID: 28398476]
[10]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3(1), 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[11]
Pradhan, S.S.; Salinas, K.; Garduno, A.C.; Johansson, J.U.; Wang, Q.; Manning-Bog, A.; Andreasson, K.I. Anti-inflammatory and neuroprotective effects of PGE2 EP4 signaling in models of parkinson’s Disease. J. Neuroimmune Pharmacol., 2017, 12(2), 292-304.
[http://dx.doi.org/10.1007/s11481-016-9713-6] [PMID: 27734267]
[12]
Sharma, A.; Szeto, K.; Desilets, A.R. Efficacy and safety of deep brain stimulation as an adjunct to pharmacotherapy for the treatment of Parkinson disease. Ann. Pharmacother., 2012, 46(2), 248-254.
[http://dx.doi.org/10.1345/aph.1Q508] [PMID: 22234991]
[13]
Mattavelli, G.; Barvas, E.; Longo, C.; Zappini, F.; Ottaviani, D.; Malaguti, M.C. Facial expressions recognition and discrimination in Parkinson’s disease. J. Neuropsychol., 2020, 15(1), 46-68.
[http://dx.doi.org/10.1111/jnp.12209] [PMID: 32319735]
[14]
Mack, J.M.; Schamne, M.G.; Sampaio, T.B.; Pértile, R.A.N.; Fernandes, P.A.C.M.; Markus, R.P.; Prediger, R.D. Melatoninergic system in parkinson’s disease: From neuroprotection to the management of motor and nonmotor symptoms. Oxid. Med. Cell. Longev., 2016, 2016, 1-31.
[http://dx.doi.org/10.1155/2016/3472032] [PMID: 27829983]
[15]
Bastide, M.F.; Meissner, W.G.; Picconi, B.; Fasano, S.; Fernagut, P.O.; Feyder, M.; Francardo, V.; Alcacer, C.; Ding, Y.; Brambilla, R.; Fisone, G.; Jon Stoessl, A.; Bourdenx, M.; Engeln, M.; Navailles, S.; De Deurwaerdère, P.; Ko, W.K.D.; Simola, N.; Morelli, M.; Groc, L.; Rodriguez, M.C.; Gurevich, E.V.; Quik, M.; Morari, M.; Mellone, M.; Gardoni, F.; Tronci, E.; Guehl, D.; Tison, F.; Crossman, A.R.; Kang, U.J.; Steece-Collier, K.; Fox, S.; Carta, M.; Angela Cenci, M.; Bézard, E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog. Neurobiol., 2015, 132, 96-168.
[http://dx.doi.org/10.1016/j.pneurobio.2015.07.002] [PMID: 26209473]
[16]
Pinna, A; Serra, M; Morelli, M; Simola, N. Role of adenosine A2A receptors in motor control: Relevance to Parkinson’s disease and dyskinesia. J. Neural Transm., 2018, 125, 1273-1286.
[http://dx.doi.org/10.1007/s00702-018-1848-6]
[17]
Aarsland, D.; Påhlhagen, S.; Ballard, C.G.; Ehrt, U.; Svenningsson, P. Depression in Parkinson disease—epidemiology, mechanisms and management. Nat. Rev. Neurol., 2012, 8(1), 35-47.
[http://dx.doi.org/10.1038/nrneurol.2011.189] [PMID: 22198405]
[18]
Simola, N.; Pinna, A.; Fenu, S. Pharmacological therapy of Parkinson’s disease: Current options and new avenues. Recent Patents CNS Drug Discov., 2010, 5(3), 221-238.
[http://dx.doi.org/10.2174/157488910793362421] [PMID: 20726838]
[19]
Heumann, R.; Moratalla, R.; Herrero, M.T.; Chakrabarty, K.; Drucker-Colín, R.; Garcia-Montes, J.R.; Simola, N.; Morelli, M. Dyskinesia in Parkinson’s disease: Mechanisms and current non-pharmacological interventions. J. Neurochem., 2014, 130(4), 472-489.
[http://dx.doi.org/10.1111/jnc.12751] [PMID: 24773031]
[20]
Farajdokht, F.; Sadigh-Eteghad, S.; Majdi, A.; Pashazadeh, F.; Vatandoust, S.M.; Ziaee, M.; Safari, F.; Karimi, P.; Mahmoudi, J. Serotonergic system modulation holds promise for L-DOPA-induced dyskinesias in hemiparkinsonian rats: A systematic review. EXCLI J., 2020, 19, 268-295.
[http://dx.doi.org/10.17179/excli2020-1024] [PMID: 32327954]
[21]
Fernandez, H.H.; Merello, M. Pramipexole for depression and motor symptoms in Parkinson’s disease: Can we kill two birds with one stone? Lancet Neurol., 2010, 9, 556-557.
[http://dx.doi.org/10.1016/S1474-4422(10)70114-9]
[22]
Carrera, I.; Cacabelos, R. Current drugs and potential future neuroprotective compounds for Parkinson’s Disease. Curr. Neuropharmacol., 2019, 17(3), 295-306.
[http://dx.doi.org/10.2174/1570159X17666181127125704] [PMID: 30479218]
[23]
Leão, A.H.F.F.; Sarmento-Silva, A.J.; Santos, J.R.; Ribeiro, A.M.; Silva, R.H. Molecular, neurochemical, and behavioral hallmarks of reserpine as a model for Parkinson’s Disease: New perspectives to a long-standing model. Brain Pathol., 2015, 25(4), 377-390.
[http://dx.doi.org/10.1111/bpa.12253] [PMID: 25726735]
[24]
McQUEEN, E.G.; Doyle, A.E.; Smirk, F.H. Mechanism of hypotensive action of reserpine, an alkaloid of Rauwolfia serpentina. Nature, 1954, 174(4439), 1015.
[http://dx.doi.org/10.1038/1741015b0] [PMID: 13214063]
[25]
Strawbridge, R.; Javed, R.R.; Cave, J.; Jauhar, S.; Young, A.H. The effects of reserpine on depression: A systematic review. J. Psychopharmacol., 2023, 37(3), 248-260.
[http://dx.doi.org/10.1177/02698811221115762] [PMID: 36000248]
[26]
Leão, A.H.F.F.; Meurer, Y.S.R.; da Silva, A.F.; Medeiros, A.M.; Campêlo, C.L.C.; Abílio, V.C.; Engelberth, R.C.G.K.; Cavalcante, J.S.; Izídio, G.S.; Ribeiro, A.M.; Silva, R.H. Spontaneously hypertensive rats (SHR) are resistant to a reserpine-induced progressive model of Parkinson’s disease: Differences in motor behavior, tyrosine hydroxylase and α-synuclein expression. Front. Aging Neurosci., 2017, 9, 78.
[http://dx.doi.org/10.3389/fnagi.2017.00078] [PMID: 28396635]
[27]
Brandão, L.E.M.; Nôga, D.A.M.F.; Dierschnabel, A.L.; Campêlo, C.L.C.; Meurer, Y.S.R.; Lima, R.H.; Engelberth, R.C.G.J.; Cavalcante, J.S.; Lima, C.A.; Marchioro, M.; Estevam, C.S.; Santos, J.R.; Silva, R.H.; Ribeiro, A.M. Passiflora cincinnata extract delays the development of motor signs and prevents dopaminergic loss in a mice model of parkinson’s disease. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/8429290] [PMID: 28835767]
[28]
Fernandes, V.S.; Santos, J.R.; Leão, A.H.F.F.; Medeiros, A.M.; Melo, T.G.; Izídio, G.S.; Cabral, A.; Ribeiro, R.A.; Abílio, V.C.; Ribeiro, A.M.; Silva, R.H. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson’s disease. Behav. Brain Res., 2012, 231(1), 154-163.
[http://dx.doi.org/10.1016/j.bbr.2012.03.008] [PMID: 22446059]
[29]
Beserra-Filho, J.I.A.; de Macêdo, A.M.; Leão, A.H.F.F.; Bispo, J.M.M.; Santos, J.R.; de Oliveira-Melo, A.J.; Menezes, P.D.P.; Duarte, M.C.; de Souza Araújo, A.A.; Silva, R.H.; Quintans-Júnior, L.J.; Ribeiro, A.M. Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson’s disease. Food Chem. Toxicol., 2019, 124, 17-29.
[http://dx.doi.org/10.1016/j.fct.2018.11.056] [PMID: 30481574]
[30]
Campêlo, C.L.C.; Santos, J.R.; Silva, A.F.; Dierschnabel, A.L.; Pontes, A.; Cavalcante, J.S.; Ribeiro, A.M.; Silva, R.H. Exposure to an enriched environment facilitates motor recovery and prevents short-term memory impairment and reduction of striatal BDNF in a progressive pharmacological model of parkinsonism in mice. Behav. Brain Res., 2017, 328, 138-148.
[http://dx.doi.org/10.1016/j.bbr.2017.04.028] [PMID: 28432010]
[31]
Santos, J.R.; Cunha, J.A.S.; Dierschnabel, A.L.; Campêlo, C.L.C.; Leão, A.H.F.F.; Silva, A.F.; Engelberth, R.C.G.J.; Izídio, G.S.; Cavalcante, J.S.; Abílio, V.C.; Ribeiro, A.M.; Silva, R.H. Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of parkinsonism induced by reserpine. Behav. Brain Res., 2013, 253, 68-77.
[http://dx.doi.org/10.1016/j.bbr.2013.06.031] [PMID: 23831411]
[32]
Dos Santos, T.F.O. de R Santos, E.; Bispo, J.M.M.; de Souza, M.F.; de Gois, A.M.; Lins, L.C.R.F.; Silva, R.H.; Ribeiro, A.M.; Marchioro, M.; Dos Santos, J.R. Balance alterations and reduction of pedunculopontine cholinergic neurons in early stages of parkinsonism in middle-aged rats. Exp. Gerontol., 2021, 145, 111198.
[http://dx.doi.org/10.1016/j.exger.2020.111198] [PMID: 33310153]
[33]
Lins, L.C.R.F.; Souza, M.F.; Bispo, J.M.M.; Gois, A.M.; Melo, T.C.S.; Andrade, R.A.S.; Quintans-Junior, L.J.; Ribeiro, A.M.; Silva, R.H.; Santos, J.R.; Marchioro, M. Carvacrol prevents impairments in motor and neurochemical parameters in a model of progressive parkinsonism induced by reserpine. Brain Res. Bull., 2018, 139, 9-15.
[http://dx.doi.org/10.1016/j.brainresbull.2018.01.017] [PMID: 29378222]
[34]
Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Rashid, S.M.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective strategies for neurological disorders by natural products: An update. Curr. Neuropharmacol., 2019, 17(3), 247-267.
[http://dx.doi.org/10.2174/1570159X16666180911124605] [PMID: 30207234]
[35]
Morgan, L.A.; Grundmann, O. Preclinical and potential applications of common western herbal supplements as complementary treatment in parkinson’s Disease. J. Diet. Suppl., 2017, 14(4), 453-466.
[http://dx.doi.org/10.1080/19390211.2016.1263710] [PMID: 28095073]
[36]
Alves-Silva, J.M.; Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Cardoso, S.M. New claims for wild carrot (Daucus carota subsp. carota) essential oil. Evid. Based Complement. Alternat. Med., 2016, 2016, 9045196.
[http://dx.doi.org/10.1155/2016/9045196]
[37]
Simon, P.W. Domestication, historical development, and modern breeding of carrot. Plant Breed. Rev., 2000, 19, 1-22.
[38]
da Silva, D.J.C. Nutritional and health benefits of carrots and their seed extracts. Food Nutr. Sci., 2014, 5(22), 2147-2156.
[http://dx.doi.org/10.4236/fns.2014.522227]
[39]
Soares, G.R.; de Moura, C.F.G.; Silva, M.J.D.; Vilegas, W.; Santamarina, A.B.; Pisani, L.P.; Estadella, D.; Ribeiro, D.A. Protective effects of purple carrot extract (Daucus carota) against rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Med. Oncol., 2018, 35(4), 54.
[http://dx.doi.org/10.1007/s12032-018-1114-7] [PMID: 29546679]
[40]
Zhang, H.; Hassan, Y.I.; Renaud, J.; Liu, R.; Yang, C.; Sun, Y.; Tsao, R. Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models. Mol. Nutr. Food Res., 2017, 61(10), 1600928.
[http://dx.doi.org/10.1002/mnfr.201600928] [PMID: 28691370]
[41]
Claudio, S.R.; Gollucke, A.P.B.; Yamamura, H.; Morais, D.R.; Bataglion, G.A.; Eberlin, M.N.; Peres, R.C.; Oshima, C.T.F.; Ribeiro, D.A. Purple carrot extract protects against cadmium intoxication in multiple organs of rats: Genotoxicity, oxidative stress and tissue morphology analyses. J. Trace Elem. Med. Biol., 2016, 33, 37-47.
[http://dx.doi.org/10.1016/j.jtemb.2015.08.006] [PMID: 26653742]
[42]
Afzal, M.; Kazmi, I.; Kaur, R.; Ahmad, A.; Pravez, M.; Anwar, F. Comparison of protective and curative potential of Daucus carota root extract on renal ischemia reperfusion injury in rats. Pharm. Biol., 2013, 51(7), 856-862.
[http://dx.doi.org/10.3109/13880209.2013.767840] [PMID: 23627465]
[43]
Singh, K.; Singh, N.; Chandy, A.; Manigauha, A. In vivo antioxidant and hepatoprotective activity of methanolic extracts of Daucus carota seeds in experimental animals. Asian Pac. J. Trop. Biomed., 2012, 2(5), 385-388.
[http://dx.doi.org/10.1016/S2221-1691(12)60061-6] [PMID: 23569935]
[44]
Hasler, C.M.; Bloch, A.S.; Thomson, C.A.; Enrione, E.; Manning, C. Position of the American dietetic association: Functional foods. J. Am. Diet. Assoc., 2004, 104(5), 814-826.
[http://dx.doi.org/10.1016/j.jada.2004.03.015] [PMID: 15127071]
[45]
Manouchehrabadi, M.; Farhadi, M.; Azizi, Z.; Torkaman-Boutorabi, A. Carvacrol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro models of parkinson’s disease. Neurotox. Res., 2020, 37(1), 156-170.
[http://dx.doi.org/10.1007/s12640-019-00088-w] [PMID: 31364033]
[46]
Salamone, J.D.; Mayorga, A.J.; Trevitt, J.T.; Cousins, M.S.; Conlan, A.; Nawab, A. Tremulous jaw movements in rats: A model of parkinsonian tremor. Prog. Neurobiol., 1998, 56(6), 591-611.
[http://dx.doi.org/10.1016/S0301-0082(98)00053-7] [PMID: 9871939]
[47]
Faivre, F.; Joshi, A.; Bezard, E.; Barrot, M. The hidden side of Parkinson’s disease: Studying pain, anxiety and depression in animal models. Neurosci. Biobehav. Rev., 2019, 96, 335-352.
[http://dx.doi.org/10.1016/j.neubiorev.2018.10.004] [PMID: 30365972]
[48]
George, P.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 7th ed; Elsevier, 2013.
[49]
Kaur, S.; Starr, M.S. Differential effects of intrastriatal and intranigral injections of glutamate antagonists on motor behaviour in the reserpine-treated rat. Neuroscience, 1997, 76(2), 345-354.
[http://dx.doi.org/10.1016/S0306-4522(96)00407-1] [PMID: 9015320]
[50]
Luft, A.R.; Schwarz, S. Dopaminergic signals in primary motor cortex. Int. J. Dev. Neurosci., 2009, 27(5), 415-421.
[http://dx.doi.org/10.1016/j.ijdevneu.2009.05.004] [PMID: 19446627]
[51]
Alberico, S.L.; Cassell, M.D.; Narayanan, N.S. The vulnerable ventral tegmental area in Parkinson’s disease. Basal Ganglia, 2015, 5(2-3), 51-55.
[http://dx.doi.org/10.1016/j.baga.2015.06.001] [PMID: 26251824]
[52]
Sesack, S.; Carr, D. Selective prefrontal cortex inputs to dopamine cells: Implications for schizophrenia. Physiol. Behav., 2002, 77(4-5), 513-517.
[http://dx.doi.org/10.1016/S0031-9384(02)00931-9] [PMID: 12526992]
[53]
Claudio, S.R.; Pidone, R.F.A.; De Lima, E.C.; Santamarina, A.B.; Pisani, L.P.; Pereira, C.S.D. The protective effect of grape skin or purple carrot extracts against cadmium intoxication in kidney of rats. Pathophysiology, 2020, 26(3-4), 263-269.
[http://dx.doi.org/10.1016/j.pathophys.2019.07.001] [PMID: 31924351]
[54]
Martinotti, S.; Bonsignore, G.; Patrone, M.R.E. Mediterranean diet polyphenols: Anthocyanins and their implications for health. Mini Rev. Med. Chem., 2020, 21(13), 1692-1700.
[http://dx.doi.org/10.2174/1389557521999201230200813] [PMID: 33390135]
[55]
Winter, A.N.; Bickford, P.C. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants, 2019, 8(9), 333.
[http://dx.doi.org/10.3390/antiox8090333] [PMID: 31443476]
[56]
Sies, H. Polyphenols and health: Update and perspectives. Arch. Biochem. Biophys., 2010, 501(1), 2-5.
[http://dx.doi.org/10.1016/j.abb.2010.04.006] [PMID: 20398620]
[57]
Zhang, Y.; Lian, F.; Zhu, Y.; Xia, M.; Wang, Q.; Ling, W.; Wang, X.D. Cyanidin-3-O-β-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IκBα phosphorylation in THP-1 cells. Inflamm. Res., 2010, 59(9), 723-730.
[http://dx.doi.org/10.1007/s00011-010-0183-7] [PMID: 20309718]
[58]
Domitrovic, R. The molecular basis for the pharmacological activity of anthocyans. Curr. Med. Chem., 2011, 18(29), 4454-4469.
[http://dx.doi.org/10.2174/092986711797287601] [PMID: 21864288]
[59]
Tang, G.; Guo, Y.; Zhang, L.; Wang, T.; Li, R.; Yang, J.; Wang, Y.; Liu, J. 5-HT1B receptors in the basolateral amygdaloid nucleus regulate anxiety-like behaviors through AC-PKA signal pathway in a rat model of Parkinson’s disease. Behav. Brain Res., 2023, 449, 114488.
[http://dx.doi.org/10.1016/j.bbr.2023.114488] [PMID: 37169129]
[60]
Cohen, H; Matar, MA; Joseph, Z Animal models of post-traumatic stress disorder. Curr. Protoc. Neurosci., 2013, 64, 9.45.1-9.45.18.
[http://dx.doi.org/10.1002/0471142301.ns0945s64z]
[61]
sola, P.; Krishnamurthy, P.T.; Kumari, M.; Byran, G.; Gangadharappa, H.V.; Garikapati, K.K. Neuroprotective approaches to halt Parkinson’s disease progression. Neurochem. Int., 2022, 158, 105380.
[http://dx.doi.org/10.1016/j.neuint.2022.105380] [PMID: 35718278]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy