Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Elucidating the Role of Pro-renin Receptors in Pancreatic Ductal Adenocarcinoma Progression: A Novel Therapeutic Target in Cancer Therapy

Author(s): Mohsen Aliakbarian, Gordon A. Ferns, Mahmoud Mohamadzadeh Shabestari, Amir Mahmoud Ahmadzadeh, Aref Abdollahzade, Hoda Rahimi, Rozita Khodashahi and Mohammad-Hassan Arjmand*

Volume 24, Issue 9, 2024

Published on: 25 January, 2024

Page: [881 - 889] Pages: 9

DOI: 10.2174/0115680096279288231205105904

Price: $65

Abstract

Pancreatic cancer is a highly aggressive malignancy with a very poor prognosis. The 5- year survival in these patients is very low, and most patients develop drug resistance to current therapies, so additional studies are needed to identify the potential role of new drug targets for the treatment of pancreatic cancer. Recent investigations have been performed regarding the roles of pro-renin receptors (PRR) in the initiation and development of cancers. PRR is a component of the local renin-angiotensin system (RAS). Local tissue RAS has been known in diverse organ systems, including the pancreas. Various investigations have implicated that PRRs are associated with the upregulation of various signaling pathways, like the renin-angiotensin system pathway, PI3K/Akt/mTOR, and the Wnt-signaling pathways, to contribute to pathological conditions, including cancer. In this review, we presented an overview of the role of PRR in the progression of pancreatic adenocarcinoma.

Keywords: Renin-angiotensin system, pro-renin receptor, pancreatic ductal adenocarcinoma, target therapy, molecular signaling pathways, pathways, angiotensin convert enzyme.

Next »
Graphical Abstract
[1]
Peach, M.J. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol. Rev., 1977, 57(2), 313-370.
[http://dx.doi.org/10.1152/physrev.1977.57.2.313] [PMID: 191856]
[2]
Kurdi, M.; Mello, W.C.D.; Booz, G.W. Working outside the system: an update on the unconventional behavior of the renin–angiotensin system components. Int. J. Biochem. Cell Biol., 2005, 37(7), 1357-1367.
[http://dx.doi.org/10.1016/j.biocel.2005.01.012] [PMID: 15833268]
[3]
Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev., 2006, 86(3), 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[4]
Leung, P.; Science, P. The peptide hormone angiotensin II: its new functions in tissues and organs. Curr. Protein Pept. Sci., 2004, 5(4), 267-273.
[http://dx.doi.org/10.2174/1389203043379693] [PMID: 15320733]
[5]
Hollenberg, N.K.J.C.H.R. Pivotal role of the renin/protein receptor in angiotensin II production and cellular responses to renin. Curr. Hypertens. Rep., 2003, 5(2), 98-99.
[PMID: 12696559]
[6]
Cruciat, C.M.; Ohkawara, B.; Acebron, S.P.; Karaulanov, E.; Reinhard, C.; Ingelfinger, D.; Boutros, M.; Niehrs, C. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science, 2010, 327(5964), 459-463.
[http://dx.doi.org/10.1126/science.1179802] [PMID: 20093472]
[7]
Delforce, S.J.; Lumbers, E.R.; Corbisier de Meaultsart, C.; Wang, Y.; Proietto, A.; Otton, G.; Scurry, J.; Verrills, N.M.; Scott, R.J.; Pringle, K.G. Expression of renin–angiotensin system (RAS) components in endometrial cancer. Endocr. Connect., 2017, 6(1), 9-19.
[http://dx.doi.org/10.1530/EC-16-0082] [PMID: 27956412]
[8]
Krop, M.; Lu, X.; Danser, A.H.J.; Meima, M.E. The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch., 2013, 465(1), 87-97.
[http://dx.doi.org/10.1007/s00424-012-1105-z] [PMID: 22543358]
[9]
Arundhathi, A. Prorenin receptor acts as a potential molecular target for pancreatic ductal adenocarcinoma diagnosis. Oncotarget., 2016, 7(34), 55437-55448.
[http://dx.doi.org/10.18632/oncotarget.10583]
[10]
Shibayama, Y.; Fujimori, T.; Nguyen, G.; Hirose, T.; Totsune, K.; Ichihara, A.; Kitada, K.; Nakano, D.; Kobori, H.; Kohno, M.; Masaki, T.; Suzuki, Y.; Yachida, S.; Nishiyama, A. (Pro)renin receptor is crucial for Wnt/β-catenin-dependent genesis of pancreatic ductal adenocarcinoma. Sci. Rep., 2015, 5(1), 8854.
[http://dx.doi.org/10.1038/srep08854] [PMID: 25747895]
[11]
Larrinaga, G.; Calvete-Candenas, J.; Solano-Iturri, J.D.; Martín, A.M.; Pueyo, A.; Nunes-Xavier, C.E.; Pulido, R.; Dorado, J.F.; López, J.I.; Angulo, J.C. (Pro)renin Receptor Is a Novel Independent Prognostic Marker in Invasive Urothelial Carcinoma of the Bladder. Cancers (Basel), 2021, 13(22), 5642.
[http://dx.doi.org/10.3390/cancers13225642] [PMID: 34830803]
[12]
Duffy, M.J.; Sturgeon, C.; Lamerz, R.; Haglund, C.; Holubec, V.L.; Klapdor, R.; Nicolini, A.; Topolcan, O.; Heinemann, V. Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report. Ann. Oncol., 2010, 21(3), 441-447.
[http://dx.doi.org/10.1093/annonc/mdp332] [PMID: 19690057]
[13]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[14]
Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet, 2020, 395(10242), 2008-2020.
[http://dx.doi.org/10.1016/S0140-6736(20)30974-0] [PMID: 32593337]
[15]
Mueller, S.; Engleitner, T.; Maresch, R.; Zukowska, M.; Lange, S.; Kaltenbacher, T.; Konukiewitz, B.; Öllinger, R.; Zwiebel, M.; Strong, A.; Yen, H.Y.; Banerjee, R.; Louzada, S.; Fu, B.; Seidler, B.; Götzfried, J.; Schuck, K.; Hassan, Z.; Arbeiter, A.; Schönhuber, N.; Klein, S.; Veltkamp, C.; Friedrich, M.; Rad, L.; Barenboim, M.; Ziegenhain, C.; Hess, J.; Dovey, O.M.; Eser, S.; Parekh, S.; Constantino-Casas, F.; de la Rosa, J.; Sierra, M.I.; Fraga, M.; Mayerle, J.; Klöppel, G.; Cadiñanos, J.; Liu, P.; Vassiliou, G.; Weichert, W.; Steiger, K.; Enard, W.; Schmid, R.M.; Yang, F.; Unger, K.; Schneider, G.; Varela, I.; Bradley, A.; Saur, D.; Rad, R. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 2018, 554(7690), 62-68.
[http://dx.doi.org/10.1038/nature25459] [PMID: 29364867]
[16]
Grünwald, B.T.; Devisme, A.; Andrieux, G.; Vyas, F.; Aliar, K.; McCloskey, C.W.; Macklin, A.; Jang, G.H.; Denroche, R.; Romero, J.M.; Bavi, P.; Bronsert, P.; Notta, F.; O’Kane, G.; Wilson, J.; Knox, J.; Tamblyn, L.; Udaskin, M.; Radulovich, N.; Fischer, S.E.; Boerries, M.; Gallinger, S.; Kislinger, T.; Khokha, R. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell, 2021, 184(22), 5577-5592.e18.
[http://dx.doi.org/10.1016/j.cell.2021.09.022] [PMID: 34644529]
[17]
Cousin, C.; Bracquart, D.; Contrepas, A.; Corvol, P.; Muller, L.; Nguyen, G. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension, 2009, 53(6), 1077-1082.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.127258] [PMID: 19380613]
[18]
Nguyen, G. Renin, (pro)renin and receptor: an update. Clin. Sci. (Lond.), 2011, 120(5), 169-178.
[http://dx.doi.org/10.1042/CS20100432] [PMID: 21087212]
[19]
Costoya, J.A.; Pandolfi, P.P. The role of promyelocytic leukemia zinc finger and promyelocytic leukemia in leukemogenesis and development. Curr. Opin. Hematol., 2001, 8(4), 212-217.
[http://dx.doi.org/10.1097/00062752-200107000-00006] [PMID: 11561158]
[20]
Chappell, M.C.; Millsted, A.; Diz, D.I.; Brosnihan, K.B.; Ferrario, C.M. Evidence for an intrinsic angiotensin system in the canine pancreas. J. Hypertens., 1991, 9(8), 751-759.
[http://dx.doi.org/10.1097/00004872-199108000-00008] [PMID: 1655885]
[21]
Chappell, M.C.; Diz, D.I.; Jacobsen, D.W. Pharmacological characterization of angiotensin II binding sites in the canine pancreas. Peptides, 1992, 13(2), 313-318.
[http://dx.doi.org/10.1016/0196-9781(92)90114-I] [PMID: 1409010]
[22]
Graus-Nunes, F.; Souza-Mello, V. The renin-angiotensin system as a target to solve the riddle of endocrine pancreas homeostasis. Biomed. Pharmacother., 2019, 109, 639-645.
[http://dx.doi.org/10.1016/j.biopha.2018.10.191] [PMID: 30404071]
[23]
Wang, L.; Leung, P.S. The role of renin-angiotensin system in cellular differentiation: Implications in pancreatic islet cell development and islet transplantation. Mol. Cell. Endocrinol., 2013, 381(1-2), 261-271.
[http://dx.doi.org/10.1016/j.mce.2013.08.008] [PMID: 23994025]
[24]
Skipworth, J.R.A.; Szabadkai, G.; Olde Damink, S.W.M.; Leung, P.S.; Humphries, S.E.; Montgomery, H.E. Review article: pancreatic renin-angiotensin systems in health and disease. Aliment. Pharmacol. Ther., 2011, 34(8), 840-852.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04810.x] [PMID: 21851372]
[25]
Leung, P.S. Roles of the renin–angiotensin system and its blockade in pancreatic inflammation. Int. J. Biochem. Cell Biol., 2005, 37(1), 237-238.
[http://dx.doi.org/10.1016/j.biocel.2004.07.004] [PMID: 15381165]
[26]
Leung, P.S. The physiology of a local renin–angiotensin system in the pancreas. J. Physiol., 2007, 580(1), 31-37.
[http://dx.doi.org/10.1113/jphysiol.2006.126193] [PMID: 17218353]
[27]
Wang, J. The (pro)renin receptor: A novel biomarker and potential therapeutic target for various cancers. Cell Commun Signal., 2020, 18(1), 39.
[28]
Ichihara, A.; Sakoda, M.; Kurauchi-Mito, A.; Kaneshiro, Y.; Itoh, H. Renin, prorenin and the kidney: a new chapter in an old saga. J. Nephrol., 2009, 22(3), 306-311.
[PMID: 19557706]
[29]
Shimizu, K. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. J. Gastroenterol., 2008, 43(11), 823-832.
[http://dx.doi.org/10.1007/s00535-008-2249-7] [PMID: 19012035]
[30]
Khakoo, A.Y.; Sidman, R.L.; Pasqualini, R.; Arap, W. Does the renin-angiotensin system participate in regulation of human vasculogenesis and angiogenesis? Cancer Res., 2008, 68(22), 9112-9115.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0851] [PMID: 19010879]
[31]
Kuno, A.; Yamada, T.; Masuda, K.; Ogawa, K.; Sogawa, M.; Nakamura, S.; Nakazawa, T.; Ohara, H.; Nomura, T.; Joh, T.; Shirai, T.; Itoh, M. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology, 2003, 124(4), 1010-1019.
[http://dx.doi.org/10.1053/gast.2003.50147] [PMID: 12671898]
[32]
Masamune, A.; Hamada, S.; Kikuta, K.; Takikawa, T.; Miura, S.; Nakano, E.; Shimosegawa, T. The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scand. J. Gastroenterol., 2013, 48(5), 602-609.
[http://dx.doi.org/10.3109/00365521.2013.777776] [PMID: 23477656]
[33]
Zhang, A.; Ding, G.; Huang, S.; Wu, Y.; Pan, X.; Guan, X.; Chen, R.; Yang, T. c-Jun NH 2 -terminal kinase mediation of angiotensin II-induced proliferation of human mesangial cells. Am. J. Physiol. Renal Physiol., 2005, 288(6), F1118-F1124.
[http://dx.doi.org/10.1152/ajprenal.00220.2004] [PMID: 15701817]
[34]
Amaya, K.; Ohta, T.; Kitagawa, H.; Kayahara, M.; Takamura, H.; Fujimura, T.; Nishimura, G.; Shimizu, K.; Miwa, K. Angiotensin II activates MAP kinase and NF-kappaB through angiotensin II type I receptor in human pancreatic cancer cells. Int. J. Oncol., 2004, 25(4), 849-856.
[PMID: 15375532]
[35]
Schmidt, D.; Textor, B.; Pein, O.T.; Licht, A.H.; Andrecht, S.; Sator-Schmitt, M.; Fusenig, N.E.; Angel, P.; Schorpp-Kistner, M. Critical role for NF-κB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO J., 2007, 26(3), 710-719.
[http://dx.doi.org/10.1038/sj.emboj.7601539] [PMID: 17255940]
[36]
Müerköster, S.; Arlt, A.; Sipos, B.; Witt, M.; Großmann, M.; Klöppel, G.; Kalthoff, H.; Fölsch, U.R.; Schäfer, H. Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res., 2005, 65(4), 1316-1324.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1626] [PMID: 15735017]
[37]
Cox, A.D.; Der, C.J.J.B.B.A-R.C. Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim. Biophys. Acta, 1997, 1333(1), F51-F71.
[PMID: 9294018]
[38]
Zavadil, J.; Böttinger, E.P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene, 2005, 24(37), 5764-5774.
[http://dx.doi.org/10.1038/sj.onc.1208927] [PMID: 16123809]
[39]
Shirakihara, T.; Saitoh, M.; Miyazono, K. Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-β. Mol. Biol. Cell, 2007, 18(9), 3533-3544.
[http://dx.doi.org/10.1091/mbc.e07-03-0249] [PMID: 17615296]
[40]
Massagué, J. Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev., 2003, 17(24), 2993-2997.
[http://dx.doi.org/10.1101/gad.1167003] [PMID: 14701870]
[41]
Tsang, S.W.; Ip, S.P.; Leung, P.S. Prophylactic and therapeutic treatments with AT1 and AT2 receptor antagonists and their effects on changes in the severity of pancreatitis. Int. J. Biochem. Cell Biol., 2004, 36(2), 330-339.
[http://dx.doi.org/10.1016/S1357-2725(03)00257-7] [PMID: 14643897]
[42]
Hsieh, Y.C.; Wu, P.S.; Lin, Y.T.; Huang, Y.H.; Hou, M.C.; Lee, K.C.; Lin, H.C. (Pro)renin receptor inhibition attenuated liver steatosis, inflammation, and fibrosis in mice with steatohepatitis. FASEB J., 2022, 36(10), e22526.
[http://dx.doi.org/10.1096/fj.202200594R] [PMID: 36063123]
[43]
Zhang, Y. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer cell, 2017, 31(6), 820-832.
[44]
Cheng, J.Q.; Ruggeri, B.; Klein, W.M.; Sonoda, G.; Altomare, D.A.; Watson, D.K.; Testa, J.R. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc. Natl. Acad. Sci. USA, 1996, 93(8), 3636-3641.
[http://dx.doi.org/10.1073/pnas.93.8.3636] [PMID: 8622988]
[45]
Bellizzi, A.M.; Bloomston, M.; Zhou, X.P.; Iwenofu, O.H.; Frankel, W.L. The mTOR pathway is frequently activated in pancreatic ductal adenocarcinoma and chronic pancreatitis. Appl. Immunohistochem. Mol. Morphol., 2010, 18(5), 442-447.
[http://dx.doi.org/10.1097/PAI.0b013e3181de115b] [PMID: 20661135]
[46]
Peng, H.; Li, W.; Seth, D.M.; Nair, A.R.; Francis, J.; Feng, Y. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells. PLoS One, 2013, 8(3), e58339.
[http://dx.doi.org/10.1371/journal.pone.0058339] [PMID: 23516464]
[47]
Griendling, K.K.; Ushio-Fukai, M.; Lassègue, B.; Alexander, R.W. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension, 1997, 29(1), 366-370.
[http://dx.doi.org/10.1161/01.HYP.29.1.366] [PMID: 9039129]
[48]
Berk, B.C.J.J.A.S.N.J. Angiotensin II signal transduction in vascular smooth muscle: pathways activated by specific tyrosine kinases. J. Am. Soc. Nephrol., 1999, 10(Suppl. 11), S62-S68.
[PMID: 9892142]
[49]
Eguchi, S.; Inagami, T. Signal transduction of angiotensin II type 1 receptor through receptor tyrosine kinase. Regul. Pept., 2000, 91(1-3), 13-20.
[http://dx.doi.org/10.1016/S0167-0115(00)00126-9] [PMID: 10967198]
[50]
Liu, G.; Hitomi, H.; Hosomi, N.; Shibayama, Y.; Nakano, D.; Kiyomoto, H.; Ma, H.; Yamaji, Y.; Kohno, M.; Ichihara, A.; Itoh, H.; Nishiyama, A. Prorenin induces vascular smooth muscle cell proliferation and hypertrophy via epidermal growth factor receptor- mediated extracellular signal-regulated kinase and Akt activation pathway. J. Hypertens., 2011, 29(4), 696-705.
[http://dx.doi.org/10.1097/HJH.0b013e328343c62b] [PMID: 21252698]
[51]
Conway, J.R.W.; Herrmann, D.; Evans, T.R.J.; Morton, J.P.; Timpson, P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut, 2019, 68(4), 742-758.
[http://dx.doi.org/10.1136/gutjnl-2018-316822] [PMID: 30396902]
[52]
Rahman, A.; Matsuyama, M.; Ebihara, A.; Shibayama, Y.; Hasan, A.U.; Nakagami, H.; Suzuki, F.; Sun, J.; Kobayashi, T.; Hayashi, H.; Nakano, D.; Kobara, H.; Masaki, T.; Nishiyama, A. Antiproliferative Effects of Monoclonal Antibodies against (Pro)Renin Receptor in Pancreatic Ductal Adenocarcinoma. Mol. Cancer Ther., 2020, 19(9), 1844-1855.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0228] [PMID: 32669314]
[53]
Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol., 2004, 20(1), 781-810.
[http://dx.doi.org/10.1146/annurev.cellbio.20.010403.113126] [PMID: 15473860]
[54]
Clevers, H. Wnt/β-catenin signaling in development and disease. Cell, 2006, 127(3), 469-480.
[http://dx.doi.org/10.1016/j.cell.2006.10.018] [PMID: 17081971]
[55]
Fodde, R.; Brabletz, T. Wnt/β-catenin signaling in cancer stemness and malignant behavior. Curr. Opin. Cell Biol., 2007, 19(2), 150-158.
[http://dx.doi.org/10.1016/j.ceb.2007.02.007] [PMID: 17306971]
[56]
Arensman, M.D.; Kovochich, A.N.; Kulikauskas, R.M.; Lay, A.R.; Yang, P-T.; Li, X.; Donahue, T.; Major, M.B.; Moon, R.T.; Chien, A.J.; Dawson, D.W. WNT7B mediates autocrine Wnt/β- catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene, 2014, 33(7), 899-908.
[http://dx.doi.org/10.1038/onc.2013.23] [PMID: 23416978]
[57]
Zeng, G.; Germinaro, M.; Micsenyi, A.; Monga, N.K.; Bell, A.; Sood, A.; Malhotra, V.; Sood, N.; Midda, V.; Monga, D.K.; Kokkinakis, D.M.; Monga, S.P.S. Aberrant Wnt/β-catenin signaling in pancreatic adenocarcinoma. Neoplasia, 2006, 8(4), 279-289.
[http://dx.doi.org/10.1593/neo.05607] [PMID: 16756720]
[58]
Yu, M.; Ting, D.T.; Stott, S.L.; Wittner, B.S.; Ozsolak, F.; Paul, S.; Ciciliano, J.C.; Smas, M.E.; Winokur, D.; Gilman, A.J.; Ulman, M.J.; Xega, K.; Contino, G.; Alagesan, B.; Brannigan, B.W.; Milos, P.M.; Ryan, D.P.; Sequist, L.V.; Bardeesy, N.; Ramaswamy, S.; Toner, M.; Maheswaran, S.; Haber, D.A. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature, 2012, 487(7408), 510-513.
[http://dx.doi.org/10.1038/nature11217] [PMID: 22763454]
[59]
Ram Makena, M.; Gatla, H.; Verlekar, D.; Sukhavasi, S.; K Pandey, M.; C Pramanik, K. Wnt/β-catenin signaling: the culprit in pancreatic carcinogenesis and therapeutic resistance. Int. J. Mol. Sci., 2019, 20(17), 4242.
[http://dx.doi.org/10.3390/ijms20174242] [PMID: 31480221]
[60]
Chen, Y.; Chen, Z.; Tang, Y.; Xiao, Q. The involvement of noncanonical Wnt signaling in cancers. Biomed. Pharmacother., 2021, 133, 110946.
[http://dx.doi.org/10.1016/j.biopha.2020.110946] [PMID: 33212376]
[61]
Xiao, Q.; Chen, Z.; Jin, X.; Mao, R.; Chen, Z. The many postures of noncanonical Wnt signaling in development and diseases. Biomed. Pharmacother., 2017, 93, 359-369.
[http://dx.doi.org/10.1016/j.biopha.2017.06.061] [PMID: 28651237]
[62]
Schwartz, A.L.; Malgor, R.; Dickerson, E.; Weeraratna, A.T.; Slominski, A.; Wortsman, J.; Harii, N.; Kohn, A.D.; Moon, R.T.; Schwartz, F.L.; Goetz, D.J.; Kohn, L.D.; McCall, K.D. Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin. Cancer Res., 2009, 15(12), 4114-4122.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0005] [PMID: 19470740]
[63]
Wu, D.; Jiang, Y.; He, R.; Tao, L.; Yang, M.; Fu, X.; Yang, J.; Zhu, K. High expression of WNT7A predicts poor prognosis and promote tumor metastasis in pancreatic ductal adenocarcinoma. Sci. Rep., 2018, 8(1), 15792.
[http://dx.doi.org/10.1038/s41598-018-34094-3] [PMID: 30361522]
[64]
Buechling, T.; Bartscherer, K.; Ohkawara, B.; Chaudhary, V.; Spirohn, K.; Niehrs, C.; Boutros, M. Wnt/Frizzled signaling requires dPRR, the Drosophila homolog of the prorenin receptor. Curr. Biol., 2010, 20(14), 1263-1268.
[http://dx.doi.org/10.1016/j.cub.2010.05.028] [PMID: 20579883]
[65]
Hermle, T.; Saltukoglu, D.; Grünewald, J.; Walz, G.; Simons, M. Regulation of Frizzled-dependent planar polarity signaling by a V-ATPase subunit. Curr. Biol., 2010, 20(14), 1269-1276.
[http://dx.doi.org/10.1016/j.cub.2010.05.057] [PMID: 20579879]
[66]
Advani, A. The (Pro) renin receptor: Site-specific and functional linkage to the vacuolar H+-ATPase in the kidney. Hypertension., 2009, 54(2), 261-9.
[67]
Balakumar, P.; Jagadeesh, G. Potential cross-talk between (pro)renin receptors and Wnt/frizzled receptors in cardiovascular and renal disorders. Hypertens. Res., 2011, 34(11), 1161-1170.
[http://dx.doi.org/10.1038/hr.2011.113] [PMID: 21796133]
[68]
Wang, J.; Ding, Y.; Li, D.; Zhu, N.; Nishiyama, A.; Yuan, Y. (Pro)renin receptor promotes colorectal cancer progression through inhibiting the NEDD4L-mediated Wnt3 ubiquitination and modulating gut microbiota. Cell Commun. Signal., 2023, 21(1), 2.
[http://dx.doi.org/10.1186/s12964-022-01015-x] [PMID: 36597142]
[69]
Solano-Iturri, J.D.; Echevarría, E.; Unda, M.; Loizaga-Iriarte, A.; Pérez-Fernández, A.; Angulo, J.C.; López, J.I.; Larrinaga, G. Clinical implications of (Pro) renin receptor (prr) expression in renal tumours. Diagnostics (Basel), 2021, 11(2), 272.
[http://dx.doi.org/10.3390/diagnostics11020272] [PMID: 33578778]
[70]
Mohammad, A.H.; Assadian, S.; Couture, F.; Lefebvre, K.J.; El-Assaad, W.; Barrès, V.; Ouellet, V.; Boulay, P.L.; Yang, J.; Latour, M.; Furic, L.; Muller, W.; Sonenberg, N.; Mes-Masson, A.M.; Saad, F.; Day, R.; Teodoro, J.G. V-ATPase-associated prorenin receptor is upregulated in prostate cancer after PTEN loss. Oncotarget, 2019, 10(48), 4923-4936.
[http://dx.doi.org/10.18632/oncotarget.27075] [PMID: 31452834]
[71]
Wang, J.; Shibayama, Y.; Zhang, A.; Ohsaki, H.; Asano, E.; Suzuki, Y.; Kushida, Y.; Kobara, H.; Masaki, T.; Wang, Z.; Nishiyama, A. (Pro)renin receptor promotes colorectal cancer through the Wnt/beta-catenin signalling pathway despite constitutive pathway component mutations. Br. J. Cancer, 2019, 120(2), 229-237.
[http://dx.doi.org/10.1038/s41416-018-0350-0] [PMID: 30555158]
[72]
Beitia, M.; Solano-Iturri, J.D.; Errarte, P.; Calvete-Candenas, J.; Loizate, A.; Etxezarraga, M.C.; Sanz, B.; Larrinaga, G. (Pro)renin Receptor Expression Increases throughout the Colorectal Adenoma—Adenocarcinoma Sequence and It Is Associated with Worse Colorectal Cancer Prognosis. Cancers (Basel), 2019, 11(6), 881.
[http://dx.doi.org/10.3390/cancers11060881] [PMID: 31238566]
[73]
Kouchi, M.; Shibayama, Y.; Ogawa, D.; Miyake, K.; Nishiyama, A.; Tamiya, T. (Pro)renin receptor is crucial for glioma development via the Wnt/β-catenin signaling pathway. J. Neurosurg., 2017, 127(4), 819-828.
[http://dx.doi.org/10.3171/2016.9.JNS16431] [PMID: 28059652]
[74]
Ohba, K.; Suzuki, T.; Nishiyama, H.; Kaneko, K.; Hirose, T.; Totsune, K.; Sasano, H.; Takahashi, K. Expression of (pro)renin receptor in breast cancers and its effect on cancercell proliferation. Biomed. Res., 2014, 35(2), 117-126.
[http://dx.doi.org/10.2220/biomedres.35.117] [PMID: 24759179]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy