Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Enzyme Cocktails Catalyzed Bioconversion of Lignocellulosic Biomass into Bioethanol

Author(s): Tianlun Dai, Jinshu Huang, Hongguo Wu* and Hu Li*

Volume 28, Issue 1, 2024

Published on: 23 January, 2024

Page: [2 - 8] Pages: 7

DOI: 10.2174/0113852728286031240101074227

Price: $65

Abstract

Sustainable production of biofuels from lignocellulosic biomass (LBM) is considered one of the promising solutions to solve the current energy crisis caused by overreliance on fossil fuels. Enzymatic hydrolysis is a crucial step in determining the efficient conversion of biomass cellulose into biofuels as well as high value-added chemicals, and it has the characteristics of efficient reaction, economy, and environmental friendliness. With the advancement of enzyme engineering technology, enzymes have been endowed with more functions, such as mixed substrate utilization, inhibitor resistance and specific metabolism, called enzyme cocktails. This Paper introduces the typical procedure of enzymatic hydrolysis of LBM and discusses their applications in hybrid LBM hydrolysis. In addition, the challenges of enzymatic LBM hydrolysis and possible development directions are outlined to guide integrated enzymatic strategies in biorefinery processes.

Keywords: Lignocellulosic biomass, biofuels, enzyme cocktails, enzymatic hydrolysis, biorefinery processes, hybrid.

« Previous
Graphical Abstract
[1]
Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manage., 2011, 52(2), 858-875.
[http://dx.doi.org/10.1016/j.enconman.2010.08.013]
[2]
Choudhary, M.; Joshi, S.; Singh, P.; Srivastava, N. Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass; Kuila, A.; Sharma, V., Eds.; Elsevier, 2020, pp. 1-12.
[3]
Li, P.; Sakuragi, K.; Makino, H. Extraction techniques in sustainable biofuel production: A concise review. Fuel Process. Technol., 2019, 193, 295-303.
[http://dx.doi.org/10.1016/j.fuproc.2019.05.009]
[4]
Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem., 2015, 6(25), 4497-4559.
[http://dx.doi.org/10.1039/C5PY00263J]
[5]
Wang, Y.; Akbarzadeh, A.; Chong, L.; Du, J.; Tahir, N.; Awasthi, M.K. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Chemosphere, 2022, 297, 134181.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134181] [PMID: 35248592]
[6]
Wang, Q.; Wu, S.; Cui, D.; Zhou, H.; Wu, D.; Pan, S.; Xu, F.; Wang, Z. Cohydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. Sci. Total Environ., 2022, 850, 158034.
[http://dx.doi.org/10.1016/j.scitotenv.2022.158034] [PMID: 35970457]
[7]
Raj, T.; Chandrasekhar, K.; Naresh, K.A.; Kim, S.H. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach. Renew. Sustain. Energy Rev., 2022, 158(102), 112130.
[http://dx.doi.org/10.1016/j.rser.2022.112130]
[8]
Lee, K.; Jing, Y.; Wang, Y.; Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem., 2022, 6(9), 635-652.
[http://dx.doi.org/10.1038/s41570-022-00411-8] [PMID: 37117711]
[9]
Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res., 2022, 206(1), 112285.
[http://dx.doi.org/10.1016/j.envres.2021.112285] [PMID: 34710442]
[10]
Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. BioEnergy Res., 2022, 15(4), 1820-1841.
[http://dx.doi.org/10.1007/s12155-022-10401-9] [PMID: 35154558]
[11]
Carrillo-Nieves, D.; Rostro Alanís, M.J.; de la Cruz Quiroz, R.; Ruiz, H.A.; Iqbal, H.M.N.; Parra-Saldívar, R. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew. Sustain. Energy Rev., 2019, 102, 63-74.
[http://dx.doi.org/10.1016/j.rser.2018.11.031]
[12]
Ali, M.; Saleem, M.; Khan, Z.; Watson, I.A. Biomass, Biopolymer-Based Materials, and Bioenergy; Verma, D.; Fortunati, E.; Jain, S.; Zhang, X., Eds.; Woodhead Publishing, 2019, pp. 369-395.
[http://dx.doi.org/10.1016/B978-0-08-102426-3.00016-3]
[13]
Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M. Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev., 2018, 91, 665-694.
[http://dx.doi.org/10.1016/j.rser.2018.04.043]
[14]
Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol., 2018, 181, 215-232.
[http://dx.doi.org/10.1016/j.fuproc.2018.09.021]
[15]
Ikram, ul Haq; Qaisar, K.; Nawaz, A.; Akram, F.; Mukhtar, H.; Xin, Z.H.; Xu, Y.; Mumtaz, M.W.; Rashid, U.; Ghani, W.; Choong, T.S.Y. Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts, 2021, 11(3), 25.
[16]
Jatoi, A.S.; Abbasi, S.A.; Hashmi, Z.; Shah, A.K.; Alam, M.S.; Bhatti, Z.A.; Maitlo, G.; Hussain, S.; Khandro, G.A.; Usto, M.A.; Iqbal, A. Recent trends and future perspectives of lignocellulose biomass for biofuel production: A comprehensive review. Biomass Convers. Biorefin., 2021, 13(8), 3.
[17]
Dutta, S.K.; Chakraborty, S. Mixing effects on the kinetics and the dynamics of two-phase enzymatic hydrolysis of hemicellulose for biofuel production. Bioresour. Technol., 2018, 259, 276-285.
[http://dx.doi.org/10.1016/j.biortech.2018.03.042] [PMID: 29571171]
[18]
Yoo, C.G.; Meng, X.; Pu, Y.; Ragauskas, A.J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour. Technol., 2020, 301, 122784.
[http://dx.doi.org/10.1016/j.biortech.2020.122784] [PMID: 31980318]
[19]
De Bhowmick, G.; Sarmah, A.K.; Sen, R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour. Technol., 2018, 247, 1144-1154.
[http://dx.doi.org/10.1016/j.biortech.2017.09.163] [PMID: 28993055]
[20]
Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 2007, 315(5813), 804-807.
[http://dx.doi.org/10.1126/science.1137016] [PMID: 17289988]
[21]
Zabed, H.; Sahu, J.N.; Boyce, A.N.; Faruq, G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev., 2016, 66, 751-774.
[http://dx.doi.org/10.1016/j.rser.2016.08.038]
[22]
Aditiya, H.B.; Mahlia, T.M.I.; Chong, W.T.; Nur, H.; Sebayang, A.H. Second generation bioethanol production: A critical review. Renew. Sustain. Energy Rev., 2016, 66, 631-653.
[http://dx.doi.org/10.1016/j.rser.2016.07.015]
[23]
Bertacchi, S.; Jayaprakash, P.; Morrissey, J.P.; Branduardi, P. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Microb. Biotechnol., 2022, 15(3), 985-995.
[http://dx.doi.org/10.1111/1751-7915.13886] [PMID: 34289233]
[24]
Mezule, L.; Berzina, I.; Strods, M. The impact of substrate–enzyme proportion for efficient hydrolysis of hay. Energies, 2019, 12(18), 3526.
[http://dx.doi.org/10.3390/en12183526]
[25]
Vasić, K.; Knez, Ž.; Leitgeb, M. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules, 2021, 26(3), 753.
[http://dx.doi.org/10.3390/molecules26030753] [PMID: 33535536]
[26]
Rajinipriya, M.; Nagalakshmaiah, M.; Robert, M.; Elkoun, S. Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: A review. ACS Sustain. Chem. Eng., 2018, 6(3), 2807-2828.
[http://dx.doi.org/10.1021/acssuschemeng.7b03437]
[27]
Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for lignocellulosic biofuels. Science, 2010, 329(5993), 790-792.
[http://dx.doi.org/10.1126/science.1189268] [PMID: 20705851]
[28]
Wei, H.L.; Wang, Y.T.; Hong, Y.Y.; Zhu, M.J. Pretreatment of rice straw with recycled ionic liquids by phase‐separation process for low‐cost biorefinery. Biotechnol. Appl. Biochem., 2021, 68(4), 871-880.
[http://dx.doi.org/10.1002/bab.2007] [PMID: 32798236]
[29]
Zhao, Y.; Damgaard, A.; Liu, S.; Chang, H.; Christensen, T.H. Bioethanol from corn stover – Integrated environmental impacts of alternative biotechnologies. Resour. Conserv. Recycling, 2020, 155, 104652.
[http://dx.doi.org/10.1016/j.resconrec.2019.104652]
[30]
Zhao, W.; Huang, P.; Zhu, Z.; Chen, C.; Xu, X. Production of phenolic compounds and antioxidant activity via bioconversion of wheat straw by Inonotus obliquus under submerged fermentation with the aid of a surfactant. J. Sci. Food Agric., 2021, 101(3), 1021-1029.
[http://dx.doi.org/10.1002/jsfa.10710] [PMID: 32761948]
[31]
de Almeida, S.G.C.; de Mello, G.F.; do Santos, M.G.; da Silva, D.D.V.; Giese, E.C.; Hassanpour, M.; Zhang, Z.Y.; Dussan, K.J. Saccharification of acid-alkali pretreated sugarcane bagasse using immobilized enzymes from Phomopsis stipata. 3 Biotech, 2022, 12(1), 13.
[32]
Tongbuekeaw, T.; Sawangkeaw, R.; Chaiprapat, S.; Charnnok, B. Conversion of rubber wood waste to methane by ethanol organosolv pretreatment. Biomass Convers. Biorefin., 2021, 11(3), 999-1011.
[http://dx.doi.org/10.1007/s13399-020-00710-4]
[33]
Devi, A.; Singh, A.; Bajar, S.; Pant, D.; Din, Z.U. Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J. Environ. Chem. Eng., 2021, 9(5), 105798.
[http://dx.doi.org/10.1016/j.jece.2021.105798]
[34]
Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol., 2021, 334, 125235.
[http://dx.doi.org/10.1016/j.biortech.2021.125235] [PMID: 33957458]
[35]
Bay, M.S.; Karimi, K.; Mirmohamadsadeghi, S. Improved environmental and socio-economic impacts of ethanol production from rice straw. Biomass Convers. Biorefin., 2021, 11(5), 1909-1920.
[http://dx.doi.org/10.1007/s13399-019-00573-4]
[36]
Noppawan, P.; Lanctôt, A.G.; Magro, M.; Navarro, P.G.; Supanchaiyamat, N.; Attard, T.M.; Hunt, A.J. High pressure systems as sustainable extraction and pre-treatment technologies for a holistic corn stover biorefinery. BMC Chem., 2021, 15(1), 37.
[http://dx.doi.org/10.1186/s13065-021-00762-1] [PMID: 34051832]
[37]
Ursachi, V.F.; Gutt, G. Production of cellulosic ethanol from enzymatically hydrolysed wheat straws. Appl. Sci., 2020, 10(21), 7638.
[http://dx.doi.org/10.3390/app10217638]
[38]
de Souza, A.P.; Leite, D.C.C.; Pattathil, S.; Hahn, M.G.; Buckeridge, M.S. Composition and structure of sugarcane cell wall polysaccharides: Implications for second-generation bioethanol production. BioEnergy Res., 2013, 6(2), 564-579.
[http://dx.doi.org/10.1007/s12155-012-9268-1]
[39]
Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol., 2005, 96(6), 673-686.
[http://dx.doi.org/10.1016/j.biortech.2004.06.025] [PMID: 15588770]
[40]
Ponnusamy, V.K.; Nguyen, D.D.; Dharmaraja, J.; Shobana, S.; Banu, J.R.; Saratale, R.G.; Chang, S.W.; Kumar, G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol., 2019, 271, 462-472.
[http://dx.doi.org/10.1016/j.biortech.2018.09.070] [PMID: 30270050]
[41]
Velásquez-Arredondo, H.I.; Ruiz-Colorado, A.A.; De Oliveira Jr., S. Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis. Energy, 2010, 35(7), 3081-3087.
[http://dx.doi.org/10.1016/j.energy.2010.03.052]
[42]
Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv., 2009, 27(2), 185-194.
[http://dx.doi.org/10.1016/j.biotechadv.2008.11.001] [PMID: 19100826]
[43]
Chandel, A.; Chan, E.; Rudravaram, R.; Narasu, M.; Linga, V.; Ravindra, P. Economics and environmental impact of bioethanol production technologies: An appraisal. Biotechnol. Mol. Biol. Rev., 2007, 2, 14-32.
[44]
Shuai, L.; Luterbacher, J. Organic solvent effects in biomass conversion reactions. ChemSusChem, 2016, 9(2), 133-155.
[http://dx.doi.org/10.1002/cssc.201501148] [PMID: 26676907]
[45]
Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci., 2018, 18(11), 768-778.
[http://dx.doi.org/10.1002/elsc.201800039] [PMID: 32624871]
[46]
Dutta, S.K.; Chakraborty, S. Multiscale dynamics of hemicellulose hydrolysis for biofuel production. Ind. Eng. Chem. Res., 2019, 58(21), 8963-8978.
[http://dx.doi.org/10.1021/acs.iecr.9b01276]
[47]
Li, X.; Wang, M.; Qiao, J.; Huang, H. Computer-assisted enzyme-cocktail approach highly improves bioethanol yield. ACS Sustain. Chem. Eng., 2021, 9(42), 14277-14287.
[http://dx.doi.org/10.1021/acssuschemeng.1c05543]
[48]
Taha, M.; Foda, M.; Shahsavari, E.; Aburto-Medina, A.; Adetutu, E.; Ball, A. Commercial feasibility of lignocellulose biodegradation: Possibilities and challenges. Curr. Opin. Biotechnol., 2016, 38, 190-197.
[http://dx.doi.org/10.1016/j.copbio.2016.02.012] [PMID: 27011055]
[49]
Ting, C.L.; Makarov, D.E.; Wang, Z.G. A kinetic model for the enzymatic action of cellulase. J. Phys. Chem. B, 2009, 113(14), 4970-4977.
[http://dx.doi.org/10.1021/jp810625k] [PMID: 19292431]
[50]
Chakraborty, S.; Paul, S.K. Interaction of reactions and transport in lignocellulosic biofuel production. Curr. Opin. Chem. Eng., 2020, 29, 104-121.
[http://dx.doi.org/10.1016/j.coche.2020.08.001]
[51]
Joy, J.; Jose, C.; Mathew, P.L.; Thomas, S.; Khalaf, M. Biological delignification of biomass. In: Green Polymers and Environmental Pollution Control, 1st ed.; Apple Academic Press, 2015.
[52]
Li, M.; Pu, Y.; Ragauskas, A.J. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem., 2016, 4, 45.
[http://dx.doi.org/10.3389/fchem.2016.00045] [PMID: 27917379]
[53]
Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol., 2010, 1(1), 36-50.
[PMID: 21968746]
[54]
Nielsen, F.; Galbe, M.; Zacchi, G.; Wallberg, O. The effect of mixed agricultural feedstocks on steam pretreatment, enzymatic hydrolysis, and cofermentation in the lignocellulose-to-ethanol process. Biomass Convers. Biorefin., 2020, 10(2), 253-266.
[http://dx.doi.org/10.1007/s13399-019-00454-w]
[55]
Kuhn, E.M.; Chen, X.; Tucker, M.P. Deacetylation and mechanical refining (DMR) and deacetylation and dilute acid (DDA) pretreatment of corn stover, switchgrass, and a 50:50 corn stover/switchgrass blend. ACS Sustain. Chem. Eng., 2020, 8(17), 6734-6743.
[http://dx.doi.org/10.1021/acssuschemeng.0c00894]
[56]
Gaona, A.; Lawryshyn, Y.; Saville, B. Enhancing biomass hydrolysis for biofuel production through hydrodynamic modeling and reactor design. Energy Sci. Eng., 2019, 7(5), 1823-1837.
[http://dx.doi.org/10.1002/ese3.394]
[57]
Pino, M.S.; Rodríguez-Jasso, R.M.; Michelin, M.; Flores-Gallegos, A.C.; Morales-Rodriguez, R.; Teixeira, J.A.; Ruiz, H.A. Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem. Eng. J., 2018, 347, 119-136.
[http://dx.doi.org/10.1016/j.cej.2018.04.057]
[58]
Oni, O.D.; Oke, M.A.; Sani, A. Mixing of Prosopis africana pods and corn cob exerts contrasting effects on the production and quality of Bacillus thuringiensis crude endoglucanase. Prep. Biochem. Biotechnol., 2020, 50(7), 735-744.
[http://dx.doi.org/10.1080/10826068.2020.1734939] [PMID: 32129150]
[59]
Rastogi, M.; Shrivastava, S. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew. Sustain. Energy Rev., 2017, 80, 330-340.
[http://dx.doi.org/10.1016/j.rser.2017.05.225]
[60]
Chen, X.; Zhai, R.; Li, Y.; Yuan, X.; Liu, Z.H.; Jin, M. Understanding the structural characteristics of water-soluble phenolic compounds from four pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation. Biotechnol. Biofuels, 2020, 13(1), 44.
[http://dx.doi.org/10.1186/s13068-020-01686-z] [PMID: 32175010]
[61]
Modenbach, A.A.; Nokes, S.E. Enzymatic hydrolysis of biomass at high-solids loadings – A review. Biomass Bioenergy, 2013, 56, 526-544.
[http://dx.doi.org/10.1016/j.biombioe.2013.05.031]
[62]
Lei, Z.; Chen, X.; Cao, F.; Guo, Q.; Wang, J. Efficient saccharification of Lycium barbarum leaf biomass by using enzyme cocktails produced by a novel fungus Aspergillus costaricensis LS18. J. Environ. Manage., 2022, 321, 115969.
[http://dx.doi.org/10.1016/j.jenvman.2022.115969] [PMID: 36104882]
[63]
de Oliveira Rodrigues, P.; Moreira, F.S.; Cardoso, V.L.; Santos, L.D.; Gurgel, L.V.A.; Pasquini, D.; Baffi, M.A. Combination of high solid load, on-site enzyme cocktails and surfactant in the hydrolysis of hydrothermally pretreated sugarcane bagasse and ethanol production. Waste Biomass Valoriz., 2022, 13(6), 3085-3094.
[http://dx.doi.org/10.1007/s12649-022-01685-1]
[64]
Cunha, M.; Romaní, A.; Carvalho, M.; Domingues, L. Boosting bioethanol production from Eucalyptus wood by whey incorporation. Bioresour. Technol., 2018, 250, 256-264.
[http://dx.doi.org/10.1016/j.biortech.2017.11.023] [PMID: 29174903]
[65]
Cunha, J.T.; Gomes, D.G.; Romaní, A.; Inokuma, K.; Hasunuma, T.; Kondo, A.; Domingues, L. Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production. Energy Convers. Manage., 2021, 243, 114359.
[http://dx.doi.org/10.1016/j.enconman.2021.114359]
[66]
Rajak, R.C.; Banerjee, R. An innovative approach of mixed enzymatic venture for 2G ethanol production from lignocellulosic feedstock. Energy Convers. Manage., 2020, 207, 112504.
[http://dx.doi.org/10.1016/j.enconman.2020.112504]
[67]
Maehara, L.; Pereira, S.C.; Silva, A.J.; Farinas, C.S. One‐pot strategy for on‐site enzyme production, biomass hydrolysis, and ethanol production using the whole solid‐state fermentation medium of mixed filamentous fungi. Biotechnol. Prog., 2018, 34(3), 671-680.
[http://dx.doi.org/10.1002/btpr.2619] [PMID: 29388389]
[68]
Wilkinson, S.; Smart, K.A.; James, S.; Cook, D.J. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. BioEnergy Res., 2017, 10(1), 146-157.
[http://dx.doi.org/10.1007/s12155-016-9782-7] [PMID: 32269706]
[69]
Liu, H.; Wang, X.; Liu, Y.; Kang, Z.; Lu, J.; Ye, Y.; Wang, Z.; Zhuang, X.; Tian, S. An accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation. Bioresour. Bioprocess., 2022, 9(1), 101.
[http://dx.doi.org/10.1186/s40643-022-00585-5]
[70]
Guigou, M.; Moure, S.; Bermúdez, F.; Clavijo, L.; Cabrera, M.N.; Xavier, L.; Ferrari, M.D.; Lareo, C. Ethanol production from eucalyptus sawdust following sequential alkaline thermochemical pretreatment with recovery of extractives. Bioenerg. Res., 2023.
[http://dx.doi.org/10.1007/s12155-023-10619-1]
[71]
Digaitis, R.; Thybring, E.E.; Thygesen, L.G. Investigating the role of mechanics in lignocellulosic biomass degradation during hydrolysis: Part II. Biotechnol. Prog., 2021, 37(1), e3083.
[http://dx.doi.org/10.1002/btpr.3083] [PMID: 32935452]
[72]
Huynh, N.; Nithyanandam, R.; Chong, C.H. Krishnaiah, a reviw on using membrane reactors in enzymatic hydrolysis of cellulose. J. Eng. Sci. Technol., 2017, 12(4), 1129-1152.
[73]
Gavlighi, H.A.; Meyer, A.S.; Mikkelsen, J.D. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal. Biotechnol. Lett., 2013, 35(2), 205-212.
[http://dx.doi.org/10.1007/s10529-012-1067-4] [PMID: 23076365]
[74]
Stickel, J.J.; Adhikari, B.; Sievers, D.A.; Pellegrino, J. Continuous enzymatic hydrolysis of lignocellulosic biomass in a membrane‐reactor system. J. Chem. Technol. Biotechnol., 2018, 93(8), 2181-2190.
[http://dx.doi.org/10.1002/jctb.5559]
[75]
Jørgensen, H.; Pinelo, M. Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod. Biorefin., 2017, 11(1), 150-167.
[http://dx.doi.org/10.1002/bbb.1724]
[76]
Gautam, A.; Menkhaus, T.J. Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate. J. Membr. Sci., 2014, 451, 252-265.
[http://dx.doi.org/10.1016/j.memsci.2013.09.042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy