Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Plasma Virome of HIV-infected Subjects on Suppressive Antiretroviral Therapy Reveals Association of Differentially Abundant Viruses with Distinct T-cell Phenotypes and Inflammation

Author(s): Tannu Bhagchandani, Mohammad M. Ul Haque, Shilpa Sharma, Md Zubbair Malik, Ashwini K. Ray, Urvinder S. Kaur, Ankita Rai, Anjali Verma, Kamal K. Sawlani, Rupesh Chaturvedi, Himanshu Dandu, Abhishek Kumar and Ravi Tandon*

Volume 25, Issue 2, 2024

Published on: 22 January, 2024

Page: [105 - 119] Pages: 15

DOI: 10.2174/0113892029279786240111052824

Price: $65

Abstract

Background: The plasma virome represents the overall composition of viral sequences present in it. Alteration in plasma virome has been reported in treatment naïve and immunocompromised (CD4 count < 200) people with HIV (PWH). However, the effect of ART on virome composition in PWH on ART with preserved CD4 counts is poorly understood.

Objectives: We aimed to assess the alterations in plasma virome in PWH on ART in comparison to HIV-negative uninfected controls and to further investigate possible associations of plasma viruses with inflammation and immune dysfunction, namely, immunosenescence and immune exhaustion.

Methods: Plasma viral DNA from PWH on ART and controls was used for sequencing on the Illumina Nextseq500 platform, followed by the identification of viral sequences using an automated pipeline, VIROMATCH. Multiplex cytokine assay was performed to measure the concentrations of various cytokines in plasma. Immunophenotyping was performed on PBMCs to identify T cell markers of immunosenescence and immune exhaustion.

Results: In our observational, cross-sectional pilot study, chronically infected PWH on ART had significantly different viral species compositions compared to controls. The plasma virome of PWH showed a significantly high relative abundance of species Human gammaherpesvirus 4, also known as Epstein-Barr virus (EBV). Moreover, EBV emerged as a significant viral taxon differentially enriched in PWH on ART, which further correlated positively with the exhaustion phenotype of T cells and significantly increased TNF-α in PWH on ART. Additionally, a significantly increased proportion of senescent T cells and IL-8 cytokine was detected in PWH on ART.

Conclusion: Altered plasma virome influenced the inflammatory response and T-cell phenotype in PWH on ART

Keywords: Plasma virome, HIV, ART, Human gammaherpesvirus 4, T cell exhaustion, inflammation.

Next »
Graphical Abstract
[1]
Wylie, K.M.; Weinstock, G.M.; Storch, G.A. Emerging view of the human virome. Transl. Res., 2012, 160(4), 283-290.
[http://dx.doi.org/10.1016/j.trsl.2012.03.006] [PMID: 22683423]
[2]
Haynes, M.; Rohwer, F. The human virome. In: Metagenomics of the Human Body; Nature Publishing Group, 2011; pp. 63-77.
[http://dx.doi.org/10.1007/978-1-4419-7089-3_4]
[3]
Cadwell, K. The virome in host health and disease. Immunity, 2015, 42(5), 805-813.
[http://dx.doi.org/10.1016/j.immuni.2015.05.003] [PMID: 25992857]
[4]
Virgin, H.W. The virome in mammalian physiology and disease. Cell, 2014, 157(1), 142-150.
[http://dx.doi.org/10.1016/j.cell.2014.02.032] [PMID: 24679532]
[5]
Koonin, E. V.; Dolja, V. V.; Krupovic, M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology, 2015, 2, 479-480.
[http://dx.doi.org/10.1016/j.virol.2015.02.039]
[6]
Liang, G.; Bushman, F.D. The human virome: Assembly, composition and host interactions. Nat. Rev. Microbiol., 2021, 19(8), 514-527.
[http://dx.doi.org/10.1038/s41579-021-00536-5] [PMID: 33785903]
[7]
Rai, K.R.; Shrestha, P.; Yang, B.; Chen, Y.; Liu, S.; Maarouf, M.; Chen, J.L. Acute infection of viral pathogens and their innate immune escape. Front. Microbiol., 2021, 12, 672026.
[http://dx.doi.org/10.3389/fmicb.2021.672026] [PMID: 34239508]
[8]
Virgin, H.W.; Wherry, E.J.; Ahmed, R. Redefining chronic viral infection. Cell, 2009, 138(1), 30-50.
[http://dx.doi.org/10.1016/j.cell.2009.06.036] [PMID: 19596234]
[9]
Koonin, E.V.; Dolja, V.V.; Krupovic, M. The healthy human virome: From virus-host symbiosis to disease. Curr. Opin. Virol., 2021, 47, 86-94.
[http://dx.doi.org/10.1016/j.coviro.2021.02.002] [PMID: 33652230]
[10]
Duerkop, B.A.; Hooper, L.V. Resident viruses and their interactions with the immune system. Nat. Immunol., 2013, 14(7), 654-659.
[http://dx.doi.org/10.1038/ni.2614] [PMID: 23778792]
[11]
Rascovan, N.; Duraisamy, R.; Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol., 2016, 70(1), 125-141.
[http://dx.doi.org/10.1146/annurev-micro-102215-095431] [PMID: 27607550]
[12]
Popgeorgiev, N.; Temmam, S.; Raoult, D.; Desnues, C. Describing the silent human virome with an emphasis on giant viruses. Intervirology, 2013, 56(6), 395-412.
[http://dx.doi.org/10.1159/000354561] [PMID: 24157886]
[13]
Wylie, K.M.; Mihindukulasuriya, K.A.; Zhou, Y.; Sodergren, E.; Storch, G.A.; Weinstock, G.M. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol., 2014, 12(1), 71.
[http://dx.doi.org/10.1186/s12915-014-0071-7] [PMID: 25212266]
[14]
Kumata, R.; Ito, J.; Takahashi, K.; Suzuki, T.; Sato, K. A tissue level atlas of the healthy human virome. BMC Biol., 2020, 18(1), 55.
[http://dx.doi.org/10.1186/s12915-020-00785-5] [PMID: 32493363]
[15]
Zhang, W.; Li, L.; Deng, X.; Blümel, J.; Nübling, C.M.; Hunfeld, A.; Baylis, S.A.; Delwart, E. Viral nucleic acids in human plasma pools. Transfusion, 2016, 56(9), 2248-2255.
[http://dx.doi.org/10.1111/trf.13692] [PMID: 27306718]
[16]
Moustafa, A.; Xie, C.; Kirkness, E.; Biggs, W.; Wong, E.; Turpaz, Y.; Bloom, K.; Delwart, E.; Nelson, K.E.; Venter, J.C.; Telenti, A. The blood DNA virome in 8,000 humans. PLoS Pathog., 2017, 13(3), e1006292.
[http://dx.doi.org/10.1371/journal.ppat.1006292] [PMID: 28328962]
[17]
De Vlaminck, I.; Khush, K.K.; Strehl, C.; Kohli, B.; Luikart, H.; Neff, N.F.; Okamoto, J.; Snyder, T.M.; Cornfield, D.N.; Nicolls, M.R.; Weill, D.; Bernstein, D.; Valantine, H.A.; Quake, S.R. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell, 2013, 155(5), 1178-1187.
[http://dx.doi.org/10.1016/j.cell.2013.10.034] [PMID: 24267896]
[18]
Segura-Wang, M.; Görzer, I.; Jaksch, P.; Puchhammer-Stöckl, E. Temporal dynamics of the lung and plasma viromes in lung transplant recipients. PLoS One, 2018, 13(7), e0200428.
[http://dx.doi.org/10.1371/journal.pone.0200428] [PMID: 29979780]
[19]
Okoye, A.A.; Picker, L.J. CD 4 + T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol. Rev., 2013, 254(1), 54-64.
[http://dx.doi.org/10.1111/imr.12066] [PMID: 23772614]
[20]
Zicari, S.; Sessa, L.; Cotugno, N.; Ruggiero, A.; Morrocchi, E.; Concato, C.; Rocca, S.; Zangari, P.; Manno, E.; Palma, P. Immune activation, inflammation, and non-AIDS Co-morbidities in HIV-infected patients under long-term ART. Viruses, 2019, 11(3), 200.
[http://dx.doi.org/10.3390/v11030200] [PMID: 30818749]
[21]
Douek, D. HIV disease progression: Immune activation, microbes, and a leaky gut. Top. HIV Med., 2007, 15(4), 114-117.
[PMID: 17720995]
[22]
Klatt, N.R.; Funderburg, N.T.; Brenchley, J.M. Microbial translocation, immune activation, and HIV disease. Trends Microbiol., 2013, 21(1), 6-13.
[http://dx.doi.org/10.1016/j.tim.2012.09.001] [PMID: 23062765]
[23]
Gori, A.; Tincati, C.; Rizzardini, G.; Torti, C.; Quirino, T.; Haarman, M.; Ben Amor, K.; van Schaik, J.; Vriesema, A.; Knol, J.; Marchetti, G.; Welling, G.; Clerici, M. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J. Clin. Microbiol., 2008, 46(2), 757-758.
[http://dx.doi.org/10.1128/JCM.01729-07] [PMID: 18094140]
[24]
Kaur, U.S.; Shet, A.; Rajnala, N.; Gopalan, B.P.; Moar, P.; D, H.; Singh, B.P.; Chaturvedi, R.; Tandon, R. High Abundance of genus Prevotella in the gut of perinatally HIV-infected children is associated with IP-10 levels despite therapy. Sci. Rep., 2018, 8(1), 17679.
[http://dx.doi.org/10.1038/s41598-018-35877-4] [PMID: 30518941]
[25]
Koay, W.L.A.; Siems, L.V.; Persaud, D. The microbiome and HIV persistence: Implications for viral remission and cure. Curr. Opin. HIV AIDS, 2018, 13(1), 61-68.
[http://dx.doi.org/10.1097/COH.0000000000000434] [PMID: 29135490]
[26]
Monaco, C.L.; Gootenberg, D.B.; Zhao, G.; Handley, S.A.; Ghebremichael, M.S.; Lim, E.S.; Lankowski, A.; Baldridge, M.T.; Wilen, C.B.; Flagg, M.; Norman, J.M.; Keller, B.C.; Luévano, J.M.; Wang, D.; Boum, Y.; Martin, J.N.; Hunt, P.W.; Bangsberg, D.R.; Siedner, M.J.; Kwon, D.S.; Virgin, H.W. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe, 2016, 19(3), 311-322.
[http://dx.doi.org/10.1016/j.chom.2016.02.011] [PMID: 26962942]
[27]
Li, L.; Deng, X.; Da Costa, A.C.; Bruhn, R.; Deeks, S.G.; Delwart, E. Virome analysis of antiretroviral-treated HIV patients shows no correlation between T-cell activation and anelloviruses levels. J. Clin. Virol., 2015, 72, 106-113.
[http://dx.doi.org/10.1016/j.jcv.2015.09.004] [PMID: 26479202]
[28]
Li, L.; Deng, X.; Linsuwanon, P.; Bangsberg, D.; Bwana, M.B.; Hunt, P.; Martin, J.N.; Deeks, S.G.; Delwart, E. AIDS alters the commensal plasma virome. J. Virol., 2013, 87(19), 10912-10915.
[http://dx.doi.org/10.1128/JVI.01839-13] [PMID: 23903845]
[29]
Li, S.K.; Leung, R.K-K.; Guo, H.X.; Wei, J.F.; Wang, J.H.; Kwong, K.T.; Lee, S.S.; Zhang, C.; Tsui, S.K.W. Detection and identification of plasma bacterial and viral elements in HIV/AIDS patients in comparison to healthy adults. Clin. Microbiol. Infect., 2012, 18(11), 1126-1133.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03690.x] [PMID: 22084916]
[30]
Deeks, S.G. HIV infection, inflammation, immunosenescence, and aging. Annu. Rev. Med., 2011, 62(1), 141-155.
[http://dx.doi.org/10.1146/annurev-med-042909-093756] [PMID: 21090961]
[31]
Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol., 2015, 15(8), 486-499.
[http://dx.doi.org/10.1038/nri3862] [PMID: 26205583]
[32]
Wylie, T.N.; Wylie, K.M. ViroMatch: A computational pipeline for the detection of viral sequences from complex metagenomic data. Microbiol. Resour. Announc., 2021, 10(9), e01468-20.
[http://dx.doi.org/10.1128/MRA.01468-20] [PMID: 33664143]
[33]
Cao, Y.; Dong, Q.; Wang, D.; Zhang, P.; Liu, Y.; Niu, C. microbiomeMarker: An R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics, 2022, 38(16), 4027-4029.
[http://dx.doi.org/10.1093/bioinformatics/btac438] [PMID: 35771644]
[34]
McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 2013, 8(4), e61217.
[http://dx.doi.org/10.1371/journal.pone.0061217] [PMID: 23630581]
[35]
Leo Lahti, S.S. Microbiome R Package. 2017. Available from:https://github.com/microbiome/microbiome
[36]
Finotello, F.; Mastrorilli, E.; Di Camillo, B. Measuring the diversity of the human microbiota with targeted next-generation sequencing. Brief. Bioinform., 2016, 19(4), bbw119.
[http://dx.doi.org/10.1093/bib/bbw119] [PMID: 28025179]
[37]
Wickham, H. Ggplot2: Elegant graphics for data analysis; Springer, 2016.
[38]
Jari Oksanen, F. Vegan: Community Ecology Package. R Package Version 2.5-7. 2020. Available from:https://cran.r-project.org/web/packages/vegan/index.html
[39]
Lin, H.; Peddada, S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun., 2020, 11(1), 3514.
[http://dx.doi.org/10.1038/s41467-020-17041-7] [PMID: 32665548]
[40]
Jr, F.E.H. Hmisc: Harrell Miscellaneous. R Package Version 4.6-0. 2021. Available from:https://cran.r-project.org/web/packages/Hmisc/index.html
[41]
Wei, Taiyun; Viliam Simko, R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.92). 2021. Available from:https://cran.r-project.org/web/packages/corrplot/corrplot.pdf
[42]
Corbeau, P.; Reynes, J. Immune reconstitution under antiretroviral therapy: The new challenge in HIV-1 infection. Blood, 2011, 117(21), 5582-5590.
[http://dx.doi.org/10.1182/blood-2010-12-322453] [PMID: 21403129]
[43]
Liu, K.; Li, Y.; Xu, R.; Zhang, Y.; Zheng, C.; Wan, Z.; Li, H.; Yang, Z.; Jin, X.; Hao, P.; Zhao, J.; Zhang, C. HIV-1 infection alters the viral composition of plasma in men who have sex with men. MSphere, 2021, 6(3), e00081-21.
[http://dx.doi.org/10.1128/mSphere.00081-21] [PMID: 33952659]
[44]
Li, Y.; Cao, L.; Ye, M.; Xu, R.; Chen, X.; Ma, Y.; Tian, R.R.; Liu, F.L.; Zhang, P.; Kuang, Y.Q.; Zheng, Y.T.; Zhang, C. Plasma virome reveals blooms and transmission of anellovirus in intravenous drug users with HIV-1, HCV, and/or HBV infections. Microbiol. Spectr., 2022, 10(4), e01447-22.
[http://dx.doi.org/10.1128/spectrum.01447-22] [PMID: 35758682]
[45]
Verdu-Bou, M.; Tapia, G.; Hernandez-Rodriguez, A.; Navarro, J.T. Clinical and therapeutic implications of epstein–barr virus in HIV-related lymphomas. Cancers, 2021, 13(21), 5534.
[http://dx.doi.org/10.3390/cancers13215534] [PMID: 34771697]
[46]
Fellner, M.D.; Durand, K.; Correa, R.M.; Redini, L.; Yampolsky, C.; Colobraro, A.; Sevlever, G.; Teyssié, A.R.; Benetucci, J.; Picconi, M.A. Circulating Epstein-Barr virus (EBV) in HIV-infected patients and its relation with primary brain lymphoma. Int. J. Infect. Dis., 2007, 11(2), 172-178.
[http://dx.doi.org/10.1016/j.ijid.2006.04.001] [PMID: 16931088]
[47]
Ling, P.D.; Vilchez, R.A.; Keitel, W.A.; Poston, D.G.; Peng, R.S.; White, Z.S.; Visnegarwala, F.; Lewis, D.E.; Butel, J.S. Epstein-Barr virus DNA loads in adult human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy. Clin. Infect. Dis., 2003, 37(9), 1244-1249.
[http://dx.doi.org/10.1086/378808] [PMID: 14557970]
[48]
Righetti, E.; Ballon, G.; Ometto, L.; Cattelan, A.M.; Menin, C.; Zanchetta, M.; Chieco-Bianchi, L.; De Rossi, A. Dynamics of Epstein-Barr virus in HIV-1-infected subjects on highly active antiretroviral therapy. AIDS, 2002, 16(1), 63-73.
[http://dx.doi.org/10.1097/00002030-200201040-00009] [PMID: 11741164]
[49]
Adesida, S.A.; Abioye, O.A.; Bamiro, B.S.; Amisu, K.O.; Badaru, S.O.; Coker, A.O. Staphylococcal bacteraemia among human immunodeficiency virus positive patients at a screening center in lagos, nigeria. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6, 112-117.
[http://dx.doi.org/10.1016/j.bjbas.2016.08.006]
[50]
Panigrahy, A.; Sinha, S.; Das, B.K.; Kapil, A.; Vishnubhatla, S.; Dhawan, B. Staphylococcus aureus colonisation in HIV-infected patients: Incidence, risk factors and subsequent skin- and soft-tissue infections. Indian J. Med. Microbiol., 2020, 38(3-4), 444-447.
[http://dx.doi.org/10.4103/ijmm.IJMM_20_5] [PMID: 33154260]
[51]
Barros, E.M.; Ceotto, H.; Bastos, M.C.F.; dos Santos, K.R.N.; Giambiagi-deMarval, M. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J. Clin. Microbiol., 2012, 50(1), 166-168.
[http://dx.doi.org/10.1128/JCM.05563-11] [PMID: 21976766]
[52]
Pain, M.; Hjerde, E.; Klingenberg, C.; Cavanagh, J.P. Comparative genomic analysis of staphylococcus haemolyticus reveals key to hospital adaptation and pathogenicity. Front. Microbiol., 2019, 10, 2096.
[http://dx.doi.org/10.3389/fmicb.2019.02096] [PMID: 31552006]
[53]
Camici, M.; Scarabello, A.; Del Nonno, F.; Colombo, D.; Gagliardini, R.; Antinori, A. Immune recovery folliculitis: Case reports in HIV naïve and experienced patients. IDCases, 2021, 26, e01324.
[http://dx.doi.org/10.1016/j.idcr.2021.e01324] [PMID: 34777994]
[54]
Arche Banzo, M.J.; Lozano Gómez, H.; Herrero García, S. Brain abscess due to Cutibacterium acnes in a patient with HIV infection. Med. Clin., 2021, 157(11), e339-e340.
[http://dx.doi.org/10.1016/j.medcli.2020.12.034] [PMID: 33775399]
[55]
Desai, S.; Landay, A. Early immune senescence in HIV disease. Curr. HIV/AIDS Rep., 2010, 7(1), 4-10.
[http://dx.doi.org/10.1007/s11904-009-0038-4] [PMID: 20425052]
[56]
Warren, J.A.; Clutton, G.; Goonetilleke, N. Harnessing CD8+ T cells under HIV antiretroviral therapy. Front. Immunol., 2019, 10, 291.
[http://dx.doi.org/10.3389/fimmu.2019.00291] [PMID: 30863403]
[57]
Hove-Skovsgaard, M.; Zhao, Y.; Tingstedt, J.L.; Hartling, H.J.; Thudium, R.F.; Benfield, T.; Afzal, S.; Nordestgaard, B.; Ullum, H.; Gerstoft, J.; Mocroft, A.; Nielsen, S.D. Impact of age and HIV status on immune activation, senescence and apoptosis. Front. Immunol., 2020, 11, 583569.
[http://dx.doi.org/10.3389/fimmu.2020.583569] [PMID: 33117394]
[58]
Pasquereau, S.; Kumar, A.; Herbein, G. Targeting TNF and TNF receptor pathway in HIV-1 infection: From immune activation to viral reservoirs. Viruses, 2017, 9(4), 64.
[http://dx.doi.org/10.3390/v9040064] [PMID: 28358311]
[59]
Hokello, J.; Sharma, A.L.; Dimri, M.; Tyagi, M. Insights into the HIV latency and the role of cytokines. Pathogens, 2019, 8(3), 137.
[http://dx.doi.org/10.3390/pathogens8030137] [PMID: 31487807]
[60]
Wada, N.I.; Jacobson, L.P.; Margolick, J.B.; Breen, E.C.; Macatangay, B.; Penugonda, S.; Martínez-Maza, O.; Bream, J.H. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS, 2015, 29(4), 463-471.
[http://dx.doi.org/10.1097/QAD.0000000000000545] [PMID: 25630041]
[61]
Ellwanger, J.H.; Valverde-Villegas, J.M.; Kaminski, V.L.; de Medeiros, R.M.; Almeida, S.E.M.; Santos, B.R.; de Melo, M.G.; Hackenhaar, F.S.; Chies, J.A.B. Increased IL-8 levels in HIV-infected individuals who initiated ART with CD4+ T cell counts <350 cells/mm3 - A potential hallmark of chronic inflammation. Microbes Infect., 2020, 22(9), 474-480.
[http://dx.doi.org/10.1016/j.micinf.2020.05.019] [PMID: 32534178]
[62]
Yamamoto, T.; Price, D.A.; Casazza, J.P.; Ferrari, G.; Nason, M.; Chattopadhyay, P.K.; Roederer, M.; Gostick, E.; Katsikis, P.D.; Douek, D.C.; Haubrich, R.; Petrovas, C.; Koup, R.A. Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection. Blood, 2011, 117(18), 4805-4815.
[http://dx.doi.org/10.1182/blood-2010-11-317297] [PMID: 21398582]
[63]
Tandon, R.; Chew, G.M.; Byron, M.M.; Borrow, P.; Niki, T.; Hirashima, M.; Barbour, J.D.; Norris, P.J.; Lanteri, M.C.; Martin, J.N.; Deeks, S.G.; Ndhlovu, L.C. Galectin-9 is rapidly released during acute HIV-1 infection and remains sustained at high levels despite viral suppression even in elite controllers. AIDS Res. Hum. Retroviruses, 2014, 30(7), 654-664.
[http://dx.doi.org/10.1089/aid.2014.0004] [PMID: 24786365]
[64]
Jensen, S.S.; Fomsgaard, A.; Larsen, T.K.; Tingstedt, J.L.; Gerstoft, J.; Kronborg, G.; Pedersen, C.; Karlsson, I. Initiation of Antiretroviral Therapy (ART) at different stages of HIV-1 disease is not associated with the proportion of exhausted CD8+ T cells. PLoS One, 2015, 10(10), e0139573.
[http://dx.doi.org/10.1371/journal.pone.0139573] [PMID: 26426913]
[65]
Fenwick, C.; Joo, V.; Jacquier, P.; Noto, A.; Banga, R.; Perreau, M.; Pantaleo, G. T-cell exhaustion in HIV infection. Immunol. Rev., 2019, 292(1), 149-163.
[http://dx.doi.org/10.1111/imr.12823] [PMID: 31883174]
[66]
Lang, F.; Pei, Y.; Lamplugh, Z.L.; Robertson, E.S. Molecular biology of EBV in relationship to HIV/AIDS-associated oncogenesis. Cancer Treat. Res., 2019, 177, 81-103.
[http://dx.doi.org/10.1007/978-3-030-03502-0_4] [PMID: 30523622]
[67]
Savard, M.; Gosselin, J. Epstein-Barr virus immunossuppression of innate immunity mediated by phagocytes. Virus Res., 2006, 119(2), 134-145.
[http://dx.doi.org/10.1016/j.virusres.2006.02.008] [PMID: 16545476]
[68]
Kimura, H.; Hoshino, Y.; Hara, S.; Sugaya, N.; Kawada, J.; Shibata, Y.; Kojima, S.; Nagasaka, T.; Kuzushima, K.; Morishima, T. Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J. Infect. Dis., 2005, 191(4), 531-539.
[http://dx.doi.org/10.1086/427239] [PMID: 15655776]
[69]
Zheng, X.; Huang, Y.; Li, K.; Luo, R.; Cai, M.; Yun, J. Immunosuppressive tumor microenvironment and immunotherapy of epstein-barr virus-associated malignancies. Viruses, 2022, 14(5), 1017.
[http://dx.doi.org/10.3390/v14051017] [PMID: 35632758]
[70]
Xu, J.; Huang, Z.; Liu, D.; Zhong, J.; Ke, K.; Qiu, S.; Shao, J.; Zou, W.; Luo, X. Epstein-Barr Virus (EBV) Encoded Latent Membrane Protein 1 (LMP-1) triggered inflammatory response through nfκb p65 signaling pathway in tonsils. Int. J. Clin. Exp. Pathol., 2017, 10, 537-543.
[71]
Pinzone, M.R.; Berretta, M.; Cacopardo, B.; Nunnari, G. Epstein-barr virus- and Kaposi sarcoma-associated herpesvirus-related malignancies in the setting of human immunodeficiency virus infection. Semin. Oncol., 2015, 42(2), 258-271.
[http://dx.doi.org/10.1053/j.seminoncol.2014.12.026] [PMID: 25843730]
[72]
Shindiapina, P.; Ahmed, E.H.; Mozhenkova, A.; Abebe, T.; Baiocchi, R.A. Immunology of EBV-related lymphoproliferative disease in HIV-positive individuals. Front. Oncol., 2020, 10, 1723.
[http://dx.doi.org/10.3389/fonc.2020.01723] [PMID: 33102204]
[73]
Petrara, M.R.; Freguja, R.; Gianesin, K.; Zanchetta, M.; Rossi, A.D. Epstein-Barr virus-driven lymphomagenesis in the context of human immunodeficiency virus type 1 infection. Front. Microbiol., 2013, 4, 311.
[http://dx.doi.org/10.3389/fmicb.2013.00311] [PMID: 24151490]
[74]
de Melo Silva, J.; Pinheiro-Silva, R.; Dhyani, A.; Pontes, G.S. Cytomegalovirus and epstein-barr infections: Prevalence and impact on patients with hematological diseases. BioMed Res. Int., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/1627824] [PMID: 33163531]
[75]
Petrara, M.R.; Cattelan, A.M.; Zanchetta, M.; Sasset, L.; Freguja, R.; Gianesin, K.; Cecchetto, M.G.; Carmona, F.; De Rossi, A. Epstein-barr virus load and immune activation in human immunodeficiency virus type 1-infected patients. J. Clin. Virol., 2012, 53(3), 195-200.
[http://dx.doi.org/10.1016/j.jcv.2011.12.013] [PMID: 22209290]
[76]
Stevens, S.J.C.; Blank, B.S.N.; Smits, P.H.M.; Meenhorst, P.L.; Middeldorp, J.M. High Epstein-Barr virus (EBV) DNA loads in HIV-infected patients: Correlation with antiretroviral therapy and quantitative EBV serology. AIDS, 2002, 16(7), 993-1001.
[http://dx.doi.org/10.1097/00002030-200205030-00005] [PMID: 11953465]
[77]
Laurent, C.; Fabiani, B.; Do, C.; Tchernonog, E.; Cartron, G.; Gravelle, P.; Amara, N.; Malot, S.; Palisoc, M.M.; Copie-Bergman, C.; Glehen, A.T.; Copin, M.C.; Brousset, P.; Pittaluga, S.; Jaffe, E.S.; Coppo, P. Immune-checkpoint expression in Epstein-Barr virus positive and negative plasmablastic lymphoma: A clinical and pathological study in 82 patients. Haematologica, 2016, 101(8), 976-984.
[http://dx.doi.org/10.3324/haematol.2016.141978] [PMID: 27175027]
[78]
Gilardini Montani, M.S.; Santarelli, R.; Falcinelli, L.; Gonnella, R.; Granato, M.; Di Renzo, L.; Cuomo, L.; Vitillo, M.; Faggioni, A.; Cirone, M. EBV up-regulates PD-L1 on the surface of primary monocytes by increasing ROS and activating TLR signaling and STAT3. J. Leukoc. Biol., 2018, 104(4), 821-832.
[http://dx.doi.org/10.1002/JLB.2A0118-029RR] [PMID: 30040158]
[79]
Gianella, S.; Moser, C.; Vitomirov, A.; McKhann, A.; Layman, L.; Scott, B.; Caballero, G.; Lada, S.; Bosch, R.J.; Hoenigl, M. Presence of asymptomatic CMV and EBV DNA in blood of persons with HIV starting antiretroviral therapy are associated with Non-AIDS clinical events. AIDS, 2020, 34, 849-857.
[http://dx.doi.org/10.1097/QAD.0000000000002484] [PMID: 32271250]
[80]
Baxter, A.E.; Kaufmann, D.E. Tumor-necrosis factor is a master of T cell exhaustion. Nat. Immunol., 2016, 17(5), 476-478.
[http://dx.doi.org/10.1038/ni.3436] [PMID: 27092797]
[81]
González-Tafoya, E.; Diupotex, M.; Zamora-Chimal, J.; Salaiza-Suazo, N.; Ruiz-Remigio, A.; Becker, I. TNF contributes to T-cell exhaustion in chronic L. mexicana infections of mice through PD-L1 up-regulation. Cell. Immunol., 2020, 358, 104196.
[http://dx.doi.org/10.1016/j.cellimm.2020.104196] [PMID: 33032241]
[82]
Thom, K.; Petrik, J. Progression towards AIDS leads to increased torque teno virus and torque teno minivirus titers in tissues of HIV infected individuals. J. Med. Virol., 2007, 79(1), 1-7.
[http://dx.doi.org/10.1002/jmv.20756] [PMID: 17133553]
[83]
Chris D, M.; Jesper, E-O.; Ole, K.; Jan, P.; Jens, K.C.; Marie S, B.; Jens, O.N.; Kim, K. TTV viral load as a marker for immune reconstitution after initiation of HAART in HIV-infected patients. HIV Clin. Trials, 2002, 3(4), 287-295.
[http://dx.doi.org/10.1310/8C94-VYPQ-NG1H-4CNW] [PMID: 12187502]
[84]
Shibayama, T.; Masuda, G.; Ajisawa, A.; Takahashi, M.; Nishizawa, T.; Tsuda, F.; Okamoto, H. Inverse relationship between the titre of TT virus DNA and the CD4 cell count in patients infected with HIV. AIDS, 2001, 15(5), 563-570.
[http://dx.doi.org/10.1097/00002030-200103300-00004] [PMID: 11316992]
[85]
Bai, G.H.; Lin, S.C.; Hsu, Y.H.; Chen, S.Y. The human virome: Viral metagenomics, relations with human diseases, and therapeutic applications. Viruses, 2022, 14(2), 278.
[http://dx.doi.org/10.3390/v14020278] [PMID: 35215871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy