Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Systematic Review Article

A Systematic Review on the Potential Applications of Theranostic Nanoparticles in Diabetes and its Associated Complication Diabetic Neuropathy

Author(s): Uddhav Patangia, Kalpita Bhatta, Himangi Vig, Sneh Priya, Ankita Wal, Lalit Kumar Tyagi and Pranay Wal*

Volume 14, Issue 3, 2024

Published on: 19 January, 2024

Page: [247 - 265] Pages: 19

DOI: 10.2174/0124681873265152231229042106

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Diabetes neuropathy is a frequent ailment that has a substantial impact on patients by increasing the risk of falls and causing discomfort. The lower extremities are where diabetic neuropathy patients first feel pain. This discomfort could seem like a pinprick, an electric shock, or something else.

Objective: Here, we give a comprehensive overview of this quickly developing theranostic application that includes all relevant imaging, diagnostic, therapeutic, and monitoring elements for the management of diabetes and diabetes neuropathy.

Methods: The data for the current study was gathered by searching PubMed and Google Scholar. Several research and review publications from various publishers, including Springer Nature, Bentham Science, PLOS one, MDPI, and ACS Publishing Centre, were evaluated to compile the data.

Result: Recent developments in theranostics have shown promise as alternate management approaches for diabetes and ailments linked to diabetes. Numerous nanotechnology-built biosensors, including multiwalled carbon nanotubes, copper nanowires, zinc oxide tetrapods, and nanoparticle- embedded contact lenses, offer benefits in monitoring diabetic neuropathy.

Conclusion: The potency, usability, and dependability of insulin substitutes have been demonstrated by a variety of innovative methods for the management of diabetes, which includes nanotechnology approaches using Gene-Based Nanoparticles (siRNA), Liposomes, Exosomes/ Extracellular Vesicles, Neuromodulation, and Inhalable Nanoparticles. Over the past few years, the development of various theranostic nanoparticles for Diabetic neuropathy has experienced an unprecedented expansion. Even though much work needs to be done to precisely evaluate the genuine benefits provided by these particles, such as issues with nanotoxicity, theranostic nanoparticles will have a significant impact on the field of nanomedicine.

Keywords: Diabetes neuropathy, theranostics, nanotechnology, nanoparticles, inhalable nanoparticles, multiwalled carbon nanotubes.

Graphical Abstract
[1]
Nagpal AS, Leet J, Egan K, Garza R. Diabetic neuropathy: A critical, narrative review of published data from 2019. Curr Pain Headache Rep 2021; 25(3): 15.
[http://dx.doi.org/10.1007/s11916-020-00928-x] [PMID: 33630186]
[2]
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197153]
[3]
Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 2017; 317(24): 2515-23.
[http://dx.doi.org/10.1001/jama.2017.7596] [PMID: 28655017]
[4]
Nguyen PH, Ramamoorthy A, Sahoo BR, et al. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem Rev 2021; 121(4): 2545-647.
[http://dx.doi.org/10.1021/acs.chemrev.0c01122] [PMID: 33543942]
[5]
Nowak A, Boesch L, Andres E, et al. Effect of vitamin D3 on self-perceived fatigue. Medicine (Baltimore) 2016; 95(52): e5353.
[http://dx.doi.org/10.1097/MD.0000000000005353 ] [PMID: 28033244]
[6]
Rolim LC, da Silva EMK, Komatsu WR, Abreu M, Dib SA. Acetyl-L-carnitine for the treatment of diabetic polyneuropathy. Cochrane Libr 2014; (8):
[http://dx.doi.org/10.1002/14651858.CD011265]
[7]
Al-Geffari M. Comparison of different screening tests for diagnosis of diabetic peripheral neuropathy in Primary Health Care setting. Int J Health Sci (Qassim) 2012; 6(2): 127-34.
[http://dx.doi.org/10.12816/0005988] [PMID: 23580893]
[8]
Baumfeld D, Baumfeld T, Macedo B, Zambelli R, Lopes F, Nery C. Factors related to amputation level and wound healing in diabetic patients. Acta Ortop Bras 2018; 26(5): 342-5.
[http://dx.doi.org/10.1590/1413-785220182605173445 ] [PMID: 30464719]
[9]
Chuan F, Tang K, Jiang P, Zhou B, He X. Reliability and validity of the perfusion, extent, depth, infection and sensation (PEDIS) classification system and score in patients with diabetic foot ulcer. PLoS One 2015; 10(4): e0124739.
[http://dx.doi.org/10.1371/journal.pone.0124739] [PMID: 25875097]
[10]
Bunner AE, Wells CL, Gonzales J, Agarwal U, Bayat E, Barnard ND. A dietary intervention for chronic diabetic neuropathy pain: a randomized controlled pilot study. Nutr Diabetes 2015; 5(5): e158.
[http://dx.doi.org/10.1038/nutd.2015.8] [PMID: 26011582]
[11]
Nayak U, Acharya V, Jain H, Lenka S. Clinical assessment of the autonomic nervous system in diabetes mellitus and its correlation with glycemic control. Indian J Med Sci 2013; 67(1): 13-22.
[http://dx.doi.org/10.4103/0019-5359.120691] [PMID: 24178337]
[12]
Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 2012; 7: 1189-202.
[http://dx.doi.org/10.2147/IJN.S26650] [PMID: 22419867]
[13]
Gauthami M, Srinivasan NM, Goud N, et al. Synthesis of silver nanoparticles using Cinnamomum zeylanicum bark extract and its antioxidant activity. Nanosci Nanotechnol 2015; 5(1): 2-7.
[http://dx.doi.org/10.2174/221068120501150728103209]
[14]
Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 2013; 13(3): 257-69.
[http://dx.doi.org/10.1586/erm.13.15] [PMID: 23570404]
[15]
Daniel V, Daniel K. Diabetic neuropathy: new perspectives on early diagnosis and treatments. Curr Diab Rep 2022; 3(02): 12-4.
[http://dx.doi.org/10.52845/JCDR/2020v1i1a3]
[16]
Azmi S, Ferdousi M, Kalteniece A, et al. Diagnosing and managing diabetic somatic and autonomic neuropathy. Ther Adv Endocrinol Metab 2019; 10.
[http://dx.doi.org/10.1177/2042018819826890] [PMID: 30783521]
[17]
Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6(3): 432-44.
[http://dx.doi.org/10.4239/wjd.v6.i3.432] [PMID: 25897354]
[18]
Ebright MJ, Li SH, Reynolds E, et al. Unintended consequences of Mayo paraneoplastic evaluations. Neurology 2018; 91(22): e2057-66.
[http://dx.doi.org/10.1212/WNL.0000000000006577 ] [PMID: 30366974]
[19]
Vinik AI, Nevoret ML, Casellini C, Parson H. Diabetic Neuropathy. Endocrinol Metab Clin North Am 2013; 42(4): 747-87.
[http://dx.doi.org/10.1016/j.ecl.2013.06.001] [PMID: 24286949]
[20]
Borodina T, Kostyushev D, Zamyatnin AA Jr, Parodi A. Nanomedicine for treating diabetic retinopathy vascular degeneration. International Journal of Translational Medicine 2021; 1(3): 306-22.
[http://dx.doi.org/10.3390/ijtm1030018]
[21]
Pillai GS, Rasheed R, Kumar H, Shajan A, Radhakrishnan N, Ravindran G. Relationship between diabetic retinopathy and diabetic peripheral neuropathy - Neurodegenerative and microvascular changes. Indian J Ophthalmol 2021; 69(11): 3370-5.
[http://dx.doi.org/10.4103/ijo.IJO_1279_21] [PMID: 34708808]
[22]
Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig 2018; 9(6): 1239-54.
[http://dx.doi.org/10.1111/jdi.12833] [PMID: 29533535]
[23]
Lian N, Li T. Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications. Biomed Pharmacother 2016; 84: 42-50.
[http://dx.doi.org/10.1016/j.biopha.2016.09.010] [PMID: 27636511]
[24]
Mizukami H, Yagihashi S. Exploring a new therapy for diabetic polyneuropathy - the application of stem cell transplantation. Front Endocrinol (Lausanne) 2014; 5: 45.
[http://dx.doi.org/10.3389/fendo.2014.00045] [PMID: 24782826]
[25]
Niimi N, Yako H, Takaku S, Chung SK, Sango K. Aldose reductase and the polyol pathway in schwann cells: old and new problems. Int J Mol Sci 2021; 22(3): 1031.
[http://dx.doi.org/10.3390/ijms22031031] [PMID: 33494154]
[26]
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic complications and oxidative stress: A 20-year voyage back in time and back to the future. Antioxidants 2021; 10(5): 727.
[http://dx.doi.org/10.3390/antiox10050727] [PMID: 34063078]
[27]
Grote CW, Wright DE. A role for insulin in diabetic neuropathy. Front Neurosci 2016; 10: 581.
[http://dx.doi.org/10.3389/fnins.2016.00581] [PMID: 28066166]
[28]
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond trophic factors: exploiting the intrinsic regenerative properties of adult neurons. Front Cell Neurosci 2019; 13: 128.
[http://dx.doi.org/10.3389/fncel.2019.00128] [PMID: 31024258]
[29]
Rachana KS, Manu MS, Advirao GM. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy. Neurosci Lett 2016; 629: 110-5.
[http://dx.doi.org/10.1016/j.neulet.2016.06.067] [PMID: 27373589]
[30]
Luo Q, Feng Y, Xie Y, et al. Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine 2019; 17: 188-97.
[http://dx.doi.org/10.1016/j.nano.2019.01.007] [PMID: 30721753]
[31]
Hinder LM, Murdock BJ, Park M, et al. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: An inflammatory story. Exp Neurol 2018; 305: 33-43.
[http://dx.doi.org/10.1016/j.expneurol.2018.03.011 ] [PMID: 29550371]
[32]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[33]
de Lucia C, Komici K, Borghetti G, et al. microRNA in cardiovascular aging and age-related cardiovascular diseases. Front Med (Lausanne) 2017; 4: 74.
[http://dx.doi.org/10.3389/fmed.2017.00074] [PMID: 28660188]
[34]
Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of Nanomedicine. ACS Nano 2017; 11(3): 2313-81.
[http://dx.doi.org/10.1021/acsnano.6b06040] [PMID: 28290206]
[35]
Martinelli C, Jacchetti E. Development of Advanced Nanomaterials for Multifunctional Devices: Insights into a Novel Concept of Personalized Medicine. Journal of Nanotheranostics 2023; 4(1): 35-6.
[http://dx.doi.org/10.3390/jnt4010002]
[36]
Dhandhukia JP, Shi P, Peddi S, et al. Bifunctional elastin-like polypeptide nanoparticles bind rapamycin and integrins and suppress tumor growth in vivo. Bioconjug Chem 2017; 28(11): 2715-28.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00469 ] [PMID: 28937754]
[37]
Na JH, Koo H, Lee S, et al. Precise targeting of liver tumor using glycol chitosan nanoparticles: Mechanisms, key factors, and their implications. Mol Pharm 2016; 13(11): 3700-11.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00507 ] [PMID: 27654060]
[38]
Canetta E. Current and future advancements of raman spectroscopy techniques in cancer Nanomedicine. Int J Mol Sci 2021; 22(23): 13141.
[http://dx.doi.org/10.3390/ijms222313141] [PMID: 34884946]
[39]
Kumar B, Jalodia K, Kumar P, Gautam HK. Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol 2017; 41: 260-8.
[http://dx.doi.org/10.1016/j.jddst.2017.07.019]
[40]
Chen YS, Zhao Y, Beinat C, et al. Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects. Nat Nanotechnol 2021; 16(6): 717-24.
[http://dx.doi.org/10.1038/s41565-021-00869-5] [PMID: 33782588]
[41]
Santurro A, Vullo AM, Borro M, et al. Personalized medicine applied to forensic sciences: New advances and perspectives for a tailored forensic approach. Curr Pharm Biotechnol 2017; 18(3): 263-73.
[http://dx.doi.org/10.2174/1389201018666170207141525 ] [PMID: 28176637]
[42]
Teleanu D, Chircov C, Grumezescu A, Teleanu R. Neurotoxicity of nanomaterials: An up-to-date overview. Nanomaterials (Basel) 2019; 9(1): 96.
[http://dx.doi.org/10.3390/nano9010096] [PMID: 30642104]
[43]
Rattanawongwiboon T, Soontaranon S, Hemvichian K, Lertsarawut P, Laksee S, Picha R. Study on particle size and size distribution of gold nanoparticles by TEM and SAXS. Radiat Phys Chem 2022; 191: 109842.
[http://dx.doi.org/10.1016/j.radphyschem.2021.109842]
[44]
Alomari G, Hamdan S, Al-Trad B. Gold nanoparticles as a promising treatment for diabetes and its complications: Current and future potentials. Braz J Pharm Sci 2021; 57: e19040.
[http://dx.doi.org/10.1590/s2175-97902020000419040]
[45]
Purnawira B, Purwaningsih H, Ervianto Y. ynthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conf Ser: Mater Sci Eng. 541-012018.
[46]
Bharti C, Gulati N, Nagaich U, Pal AK. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig 2015; 5(3): 124-33.
[http://dx.doi.org/10.4103/2230-973X.160844] [PMID: 26258053]
[47]
Flygare M, Svensson K. Quantifying crystallinity in carbon nanotubes and its influence on mechanical behaviour. Mater Today Commun 2019; 18: 39-45.
[http://dx.doi.org/10.1016/j.mtcomm.2018.11.003]
[48]
Simon J, Flahaut E, Golzio M. Overview of carbon nanotubes for biomedical applications. Materials (Basel) 2019; 12(4): 624.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[49]
Hu M, Gou T, Chen Y, et al. A Novel Drug Delivery System: Hyodeoxycholic Acid-Modified Metformin Liposomes for Type 2 Diabetes Treatment. Molecules 2023; 28(6): 2471.
[http://dx.doi.org/10.3390/molecules28062471] [PMID: 36985444]
[50]
Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal 2015; 23(3): 351-8.
[http://dx.doi.org/10.1016/j.jfda.2015.01.007] [PMID: 28911691]
[51]
Gattás-Asfura KM, Abuid NJ, Labrada I, Stabler CL. Promoting dendrimer self-assembly enhances covalent layer-by-layer encapsulation of pancreatic islets. ACS Biomater Sci Eng 2020; 6(5): 2641-51.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01033 ] [PMID: 32587885]
[52]
Vidal F, Vásquez P, Cayumán F, et al. Prevention of synaptic alterations and neurotoxic effects of PAMAM dendrimers by surface functionalization. Nanomaterials (Basel) 2017; 8(1): 7.
[http://dx.doi.org/10.3390/nano8010007] [PMID: 29295581]
[53]
Siddiqui SA, Or Rashid MM, Uddin MG, et al. Biological efficacy of zinc oxide nanoparticles against diabetes: A preliminary study conducted in mice. Biosci Rep 2020; 40(4): BSR20193972.
[http://dx.doi.org/10.1042/BSR20193972] [PMID: 32207527]
[54]
Gadoa ZA, Moustafa AH, El Rayes SM, Arisha AA, Mansour MF. Zinc Oxide Nanoparticles and Synthesized Pyrazolopyrimidine Alleviate Diabetic Effects in Rats Induced by Type II Diabetes. ACS Omega 2022; 7(41): 36865-72.
[http://dx.doi.org/10.1021/acsomega.2c05638] [PMID: 36278044]
[55]
Ali LMA, Shaker SA, Pinol R, et al. Effect of superparamagnetic iron oxide nanoparticles on glucose homeostasis on type 2 diabetes experimental model. Life Sci 2020; 245: 117361.
[http://dx.doi.org/10.1016/j.lfs.2020.117361] [PMID: 32001268]
[56]
Same S, Samee G. Carbon Nanotube Biosensor for Diabetes Disease. CJMB. 2018;5(1):1-6. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[57]
Liu X, Jiang J, Meng H. Transcytosis - An effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery. Theranostics 2019; 9(26): 8018-25.
[http://dx.doi.org/10.7150/thno.38587] [PMID: 31754378]
[58]
Divya K, Yashwant VP, Kevin BS. Theranostic Applications of Nanomaterials for Ophthalmic Applications. International Journal Of Scientific Advances 2021; 2(3): 354-64.
[http://dx.doi.org/10.51542/ijscia.v2i3.20]
[59]
Singh D, Dilnawaz F, Sahoo SK. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine (Lond) 2020; 15(2): 111-4.
[http://dx.doi.org/10.2217/nnm-2019-0401] [PMID: 31903854]
[60]
Sun L, Sogo Y, Wang X, Ito A. Biosafety of mesoporous silica nanoparticles: A combined experimental and literature study. J Mater Sci Mater Med 2021; 32(9): 102.
[http://dx.doi.org/10.1007/s10856-021-06582-y] [PMID: 34406531]
[61]
Benz MR, Vargas HA, Sala E. Functional MR imaging techniques in oncology in the era of personalized medicine. Magn Reson Imaging Clin N Am 2016; 24(1): 1-10.
[http://dx.doi.org/10.1016/j.mric.2015.08.001] [PMID: 26613872]
[62]
Hu J, Ye M, Zhou Z. Aptamers: Novel diagnostic and therapeutic tools for diabetes mellitus and metabolic diseases. J Mol Med (Berl) 2017; 95(3): 249-56.
[http://dx.doi.org/10.1007/s00109-016-1485-1] [PMID: 27847965]
[63]
Canese R, Vurro F, Marzola P. Iron oxide nanoparticles as theranostic agents in cancer immunotherapy. Nanomaterials (Basel) 2021; 11(8): 1950.
[http://dx.doi.org/10.3390/nano11081950] [PMID: 34443781]
[64]
Pratt EC, Shaffer TM, Grimm J. Nanoparticles and radiotracers: Advances toward radionanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(6): 872-90.
[http://dx.doi.org/10.1002/wnan.1402] [PMID: 27006133]
[65]
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021; 18(2): 336-51.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0510 ] [PMID: 33861527]
[66]
Jin M, Yu DG, Geraldes CFGC, Williams GR, Bligh SWA. Theranostic fibers for simultaneous imaging and drug delivery. Mol Pharm 2016; 13(7): 2457-65.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00197 ] [PMID: 27280491]
[67]
Saadatpour Z, Bjorklund G, Chirumbolo S, et al. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016; 1-5.
[http://dx.doi.org/10.1038/cgt.2016.62] [PMID: 27857058]
[68]
Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y. An update on nanoparticle-based contrast agents in medical imaging. Artif Cells Nanomed Biotechnol 2018; 46(6): 1111-21.
[http://dx.doi.org/10.1080/21691401.2017.1379014 ] [PMID: 28933183]
[69]
Liu J, Lécuyer T, Seguin J, et al. Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv Drug Deliv Rev 2019; 138: 193-210.
[http://dx.doi.org/10.1016/j.addr.2018.10.015] [PMID: 30414492]
[70]
Lohrke J, Frenzel T, Endrikat J, et al. 25 years of contrast-enhanced MRI: Developments, current challenges and future perspectives. Adv Ther 2016; 33(1): 1-28.
[http://dx.doi.org/10.1007/s12325-015-0275-4] [PMID: 26809251]
[71]
Hsu JC, Tang Z, Eremina OE, et al. Nanomaterial-based contrast agents. Nature Reviews Methods Primers 2023; 3(1): 30.
[http://dx.doi.org/10.1038/s43586-023-00211-4]
[72]
Flores AM, Ye J, Jarr KU, Hosseini-Nassab N, Smith BR, Leeper NJ. Nanoparticle therapy for vascular diseases. Arterioscler Thromb Vasc Biol 2019; 39(4): 635-46.
[http://dx.doi.org/10.1161/ATVBAHA.118.311569 ] [PMID: 30786744]
[73]
Allphin AJ, Mowery YM, Lafata KJ, et al. Photon counting CT and radiomic analysis enables differentiation of tumors based on lymphocyte burden. Tomography 2022; 8(2): 740-53.
[http://dx.doi.org/10.3390/tomography8020061] [PMID: 35314638]
[74]
Bosca F, Bielecki PA, Exner AA, Barge A. Porphyrin-loaded pluronic nanobubbles: A new US-activated agent for future theranostic applications. Bioconjug Chem 2018; 29(2): 234-40.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00732 ] [PMID: 29365258]
[75]
Zaidman CM, Seelig MJ, Baker JC, Mackinnon SE, Pestronk A. Detection of peripheral nerve pathology: Comparison of ultrasound and MRI. Neurology 2013; 80(18): 1634-40.
[http://dx.doi.org/10.1212/WNL.0b013e3182904f3f ] [PMID: 23553474]
[76]
Kollmer J, Bendszus M. Magnetic resonance neurography: Improved diagnosis of peripheral neuropathies. Neurotherapeutics 2021; 18(4): 2368-83.
[http://dx.doi.org/10.1007/s13311-021-01166-8] [PMID: 34859380]
[77]
Rao H, Gaur N, Tipre D. Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy. Nucl Med Commun 2017; 38(4): 275-84.
[http://dx.doi.org/10.1097/MNM.0000000000000653 ] [PMID: 28234786]
[78]
Li J, Zhang W, Wang X, et al. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy. PLoS One 2018; 13(1): e0190699.
[http://dx.doi.org/10.1371/journal.pone.0190699] [PMID: 29304099]
[79]
Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy. Int J Nanomedicine 2019; 14: 8321-44.
[http://dx.doi.org/10.2147/IJN.S218085] [PMID: 31695370]
[80]
Jiang Z, Zhang M, Li P, Wang Y, Fu Q. Nanomaterial-based CT contrast agents and their applications in image-guided therapy. Theranostics 2023; 13(2): 483-509.
[http://dx.doi.org/10.7150/thno.79625] [PMID: 36632234]
[81]
Aiello LP. Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 2014; 37(1): 17-23.
[http://dx.doi.org/10.2337/dc13-2251] [PMID: 24356593]
[82]
Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013; 10(3): 831-47.
[http://dx.doi.org/10.1021/mp3005885] [PMID: 23360440]
[83]
Snouffer E. An inexplicable upsurge: The rise in type 1 diabetes. Diabetes Res Clin Pract 2018; 137: 242-4.
[http://dx.doi.org/10.1016/j.diabres.2018.02.022] [PMID: 29625722]
[84]
Wang P, Yoo B, Yang J, et al. GLP-1R-targeting magnetic nanoparticles for pancreatic islet imaging. Diabetes 2014; 63(5): 1465-74.
[http://dx.doi.org/10.2337/db13-1543] [PMID: 24458362]
[85]
Rodriguez-Rodriguez AE, Porrini E, Torres A. Beta-cell dysfunction induced by tacrolimus: A way to explain type 2 diabetes? Int J Mol Sci 2021; 22(19): 10311.
[http://dx.doi.org/10.3390/ijms221910311] [PMID: 34638652]
[86]
Harms RZ, Lorenzo KM, Corley KP, Cabrera MS, Sarvetnick NE. Altered CD161 bright CD8+ mucosal associated invariant T (MAIT)-like cell dynamics and increased differentiation states among juvenile type 1 diabetics. PLoS One 2015; 10(1): e0117335.
[http://dx.doi.org/10.1371/journal.pone.0117335] [PMID: 25625430]
[87]
Gu L, Fang RH, Sailor MJ, Park JH. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano 2012; 6(6): 4947-54.
[http://dx.doi.org/10.1021/nn300456z] [PMID: 22646927]
[88]
Felton C, Karmakar A, Gartia Y, Ramidi P, Biris AS, Ghosh A. Magnetic nanoparticles as contrast agents in biomedical imaging: Recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metab Rev 2014; 46(2): 142-54.
[http://dx.doi.org/10.3109/03602532.2013.876429] [PMID: 24754519]
[89]
Wu Z, Kandeel F. Radionuclide probes for molecular imaging of pancreatic beta-cells. Adv Drug Deliv Rev 2010; 62(11): 1125-38.
[http://dx.doi.org/10.1016/j.addr.2010.09.006] [PMID: 20854861]
[90]
Andralojc K, Srinivas M, Brom M, et al. Obstacles on the way to the clinical visualisation of beta cells: Looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia 2012; 55(5): 1247-57.
[http://dx.doi.org/10.1007/s00125-012-2491-7] [PMID: 22358499]
[91]
Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D. Nanomedicine-based strategies for diabetes: Diagnostics, monitoring, and treatment. Trends Endocrinol Metab 2020; 31(6): 448-58.
[http://dx.doi.org/10.1016/j.tem.2020.02.001] [PMID: 32396845]
[92]
Zhang B, Yang B, Zhai C, Jiang B, Wu Y. The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI. Biomaterials 2013; 34(23): 5843-52.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.021 ] [PMID: 23642536]
[93]
Gaglia JL, Guimaraes AR, Harisinghani M, et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest 2011; 121(1): 442-5.
[http://dx.doi.org/10.1172/JCI44339] [PMID: 21123946]
[94]
Matea C, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12: 5421-31.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[95]
Billingsley K, Balaconis MK, Dubach JM, et al. Fluorescent nano-optodes for glucose detection. Anal Chem 2010; 82(9): 3707-13.
[http://dx.doi.org/10.1021/ac100042e] [PMID: 20355725]
[96]
Li JB, Liu HW, Fu T, Wang R, Zhang XB, Tan W. Recent progress in small-molecule near-IR probes for bioimaging. Trends Chem 2019; 1(2): 224-34.
[http://dx.doi.org/10.1016/j.trechm.2019.03.002] [PMID: 32864595]
[97]
Xing S-G, Xiong Q-R, Zhong Q, et al. Recent research advances of antibody-conjugated quantum dots. Chin J Anal Chem 2013; 41(6): 949-54.
[http://dx.doi.org/10.1016/S1872-2040(13)60663-5]
[98]
Zayed DG. AbdElhamid AS, Freag MS, Elzoghby AO. Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging. Nanomedicine (Lond) 2019; 14(3): 225-8.
[http://dx.doi.org/10.2217/nnm-2018-0414] [PMID: 30652951]
[99]
Li Z, Lu W, Jia S, Yuan H, Gao LH. Design and application of conjugated polymer Nanomaterials for detection and inactivation of pathogenic microbes. ACS Appl Bio Mater 2021; 4(1): 370-86.
[http://dx.doi.org/10.1021/acsabm.0c01395] [PMID: 35014288]
[100]
Liu W, Zhou X, Xu L, et al. Graphene quantum dot-functionalized three-dimensional ordered mesoporous ZnO for acetone detection toward diagnosis of diabetes. Nanoscale 2019; 11(24): 11496-504.
[http://dx.doi.org/10.1039/C9NR00942F] [PMID: 31112195]
[101]
Liu Y, Zeng S, Ji W, et al. Emerging theranostic Nanomaterials in diabetes and its complications. Adv Sci (Weinh) 2022; 9(3): 2102466.
[http://dx.doi.org/10.1002/advs.202102466] [PMID: 34825525]
[102]
Zhao C, Gong H, Niu G, Wang F. Ultrasensitive SO2 sensor for sub-ppm detection using Cu-doped SnO2 nanosheet arrays directly grown on chip. Sens Actuators B Chem 2020; 324: 128745.
[http://dx.doi.org/10.1016/j.snb.2020.128745]
[103]
Edelman SV, Argento NB, Pettus J, Hirsch IB. Clinical implications of real-time and intermittently scanned continuous glucose monitoring. Diabetes Care 2018; 41(11): 2265-74.
[http://dx.doi.org/10.2337/dc18-1150] [PMID: 30348844]
[104]
Hovorka R, Nodale M, Haidar A, Wilinska ME. Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: Drawbacks and way forward. Diabetes Technol Ther 2013; 15(1): 4-12.
[http://dx.doi.org/10.1089/dia.2012.0185] [PMID: 23046396]
[105]
Freckmann G, Schmid C, Baumstark A, Rutschmann M, Haug C, Heinemann L. Analytical performance requirements for systems for self-monitoring of blood glucose with focus on system accuracy: Relevant differences among ISO 15197: 2003, ISO 15197: 2013, and current FDA recommendations. J Diabetes Sci Technol 2015; 9(4): 885-94.
[http://dx.doi.org/10.1177/1932296815580160] [PMID: 25872965]
[106]
Shoaib A, Darraj A, Khan ME, et al. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. Nanomaterials (Basel) 2023; 13(5): 867.
[http://dx.doi.org/10.3390/nano13050867] [PMID: 36903746]
[107]
Hadžović H, Alić M, Dedović A, et al. Use of Biosensors in Diabetes Monitoring: Medical and Economic Aspects. CMBEBIH 2019: Proceedings of the International Conference on Medical and Biological Engineering. Banja Luka, Bosnia and Herzegovina.. 2019.
[http://dx.doi.org/10.1007/978-3-030-17971-7_113]
[108]
Ding S, Schumacher M. Sensor monitoring of physical activity to improve glucose management in diabetic patients: A review. Sensors (Basel) 2016; 16(4): 589.
[http://dx.doi.org/10.3390/s16040589] [PMID: 27120602]
[109]
Banakar M, Hamidi M, Khurshid Z, et al. Electrochemical Biosensors for Pathogen Detection: An Updated Review. Biosensors (Basel) 2022; 12(11): 927.
[http://dx.doi.org/10.3390/bios12110927] [PMID: 36354437]
[110]
Kumar V, Guleria P, Mehta SK. Nanosensors for food quality and safety assessment. Environ Chem Lett 2017; 15(2): 165-77.
[http://dx.doi.org/10.1007/s10311-017-0616-4]
[111]
Kukreja GS, Alok A, Reddy AK, et al. IoT based foot neuropathy analysis and remote monitoring of foot pressure and temperature. 2020 5th International Conference on Computing, Communication and Security (ICCCS). Patna, India. IEEE. 2020.
[http://dx.doi.org/10.1109/ICCCS49678.2020.9277004]
[112]
Wang J, Wang L, Li G, et al. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS Sens 2022; 7(10): 3102-7.
[http://dx.doi.org/10.1021/acssensors.2c01533] [PMID: 36218347]
[113]
Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: Recent developments. Sensors (Basel) 2017; 17(8): 1866.
[http://dx.doi.org/10.3390/s17081866] [PMID: 28805693]
[114]
Ku M, Kim J, Won JE, et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci Adv 2020; 6(28): eabb2891.
[http://dx.doi.org/10.1126/sciadv.abb2891] [PMID: 32923592]
[115]
Bekmurzayeva A, Ashikbayeva Z, Myrkhiyeva Z, et al. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Sci Rep 2021; 11(1): 19583.
[http://dx.doi.org/10.1038/s41598-021-99099-x] [PMID: 34599251]
[116]
Thomas A, Heinemann L, Ramírez A, Zehe A. Options for the development of noninvasive glucose monitoring: Is nanotechnology an option to break the boundaries? J Diabetes Sci Technol 2016; 10(3): 782-9.
[http://dx.doi.org/10.1177/1932296815616133] [PMID: 26581879]
[117]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[http://dx.doi.org/10.1038/nrd4477] [PMID: 25430866]
[118]
Yu L, Tian Y, Gao A, et al. Bi-module sensing device to in situ quantitatively detect hydrogen peroxide released from migrating tumor cells. PLoS One 2015; 10(6): e0127610.
[http://dx.doi.org/10.1371/journal.pone.0127610]
[119]
Srikanth NA, Nair RS, Siddharth KS. A Review on Comprehensive analysis in curbing Diabetes Mellitus with the aid of Nanotools. 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS). RUPNAGAR, India. IEEE. 2020.
[http://dx.doi.org/10.1109/ICIIS51140.2020.9342707]
[120]
Luong AD, Roy I, Malhotra BD, Luong JHT. Analytical and biosensing platforms for insulin: A review. Sensors and Actuators Reports 2021; 3: 100028.
[http://dx.doi.org/10.1016/j.snr.2021.100028]
[121]
Zhao Y, Fan L, Zhang Y, et al. Hyper-Branched Cu@Cu 2 O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose Detection. ACS Appl Mater Interfaces 2015; 7(30): 16802-12.
[http://dx.doi.org/10.1021/acsami.5b04614] [PMID: 26186078]
[122]
Wang X, Ge C, Chen K, Zhang YX. An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim Acta 2018; 259: 225-32.
[http://dx.doi.org/10.1016/j.electacta.2017.10.182]
[123]
Liu S, Hui KS, Hui KN. Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose Sensors. ACS Appl Mater Interfaces 2016; 8(5): 3258-67.
[http://dx.doi.org/10.1021/acsami.5b11001] [PMID: 26757795]
[124]
Zhong Y, Ma Y, Guo Q, et al. Controllable synthesis of TiO2@ Fe2O3 core-shell nanotube arrays with double-wall coating as superb lithium-ion battery anodes. Sci Rep 2017; 7(1): 40927.
[http://dx.doi.org/10.1038/srep40927] [PMID: 28098237]
[125]
Myndrul V, Iatsunskyi I, Babayevska N, Jarek M, Jesionowski T. Effect of electrode modification with chitosan and nafion® on the efficiency of real-time enzyme glucose bioSensors based on ZnO tetrapods. Materials (Basel) 2022; 15(13): 4672.
[http://dx.doi.org/10.3390/ma15134672] [PMID: 35806796]
[126]
Knoepfel A, Liu N, Hou Y, et al. Development of Tetrapod Zinc Oxide-Based UV Sensor for Precision Livestock Farming and Productivity. Biosensors (Basel) 2022; 12(10): 837.
[http://dx.doi.org/10.3390/bios12100837] [PMID: 36290974]
[127]
Hussein SKA, Rheima AM, Al-Kazaz FF, Mohammed SH, Kadhim MM, Al-Khateeb IKI. Nanoarchitectonics with NADPH catalyst and quantum dots copper sulfide on titanium dioxide nano-sheets electrode for electrochemical biosensing of sorbitol detection. J Oleo Sci 2022; 71(10): 1551-61.
[http://dx.doi.org/10.5650/jos.ess22198] [PMID: 36184463]
[128]
Jeon HJ, Kim S, Park S, et al. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens. Nano Lett 2021; 21(20): 8933-40.
[http://dx.doi.org/10.1021/acs.nanolett.1c01880] [PMID: 34415172]
[129]
Andreou C, Pal S, Rotter L, Yang J, Kircher MF. Molecular imaging in nanotechnology and Theranostics. Mol Imaging Biol 2017; 19(3): 363-72.
[http://dx.doi.org/10.1007/s11307-017-1056-z] [PMID: 28349293]
[130]
Cen P, Zhou Y, Cui C, et al. Optical molecular imaging and theranostics in neurological diseases based on aggregation-induced emission luminogens. Eur J Nucl Med Mol Imaging 2022; 49(13): 4529-50.
[http://dx.doi.org/10.1007/s00259-022-05894-7] [PMID: 35781601]
[131]
Aragón-Sánchez J, Víquez-Molina G, López-Valverde ME, Aragón-Hernández C, Aragón-Hernández J, Rojas-Bonilla JM. Mean Platelet Volume-to-Lymphocyte Ratio Is a Biomarker of 1- Year Mortality in Patients With Diabetic Foot Infections. Int J Low Extrem Wounds 2023; 2023.
[http://dx.doi.org/10.1177/15347346231165668] [PMID: 36974391]
[132]
Shende P, Patel C. siRNA: An alternative treatment for diabetes and associated conditions. J Drug Target 2019; 27(2): 174-82.
[http://dx.doi.org/10.1080/1061186X.2018.1476518 ] [PMID: 29756500]
[133]
García-Hevia L, Bañobre-López M, Gallo J. Recent Progress on Manganese‐Based Nanostructures as Responsive MRI Contrast Agents. Chemistry 2019; 25(2): 431-41.
[http://dx.doi.org/10.1002/chem.201802851] [PMID: 29999200]
[134]
Gupta N, Rai DB, Jangid AK, et al. Nanomaterials-based siRNA delivery: Routes of administration, hurdles and role of nanocarriersNanotechnology in Modern Animal Biotechnology. Cham: Springer 2019; pp. 67-114.
[http://dx.doi.org/10.1007/978-981-13-6004-6_3]
[135]
Kandregula B, Narisepalli S, Chitkara D, Mittal A. Exploration of lipid-based nanocarriers as drug delivery systems in diabetic foot ulcer. Mol Pharm 2022; 19(7): 1977-98.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00970 ] [PMID: 35481377]
[136]
Chauhan PS, Yadav D, Tayal S, Jin JO. Therapeutic advancements in the management of diabetes mellitus with special reference to nanotechnology. Curr Pharm Des 2020; 26(38): 4909-16.
[http://dx.doi.org/10.2174/1381612826666200826135401 ] [PMID: 32851952]
[137]
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23(9): 3319-29.
[http://dx.doi.org/10.1080/10717544.2016.1177136 ] [PMID: 27145899]
[138]
Shade CW. Liposomes as advanced delivery systems for nutraceuticals. Integr Med (Encinitas) 2016; 15(1): 33-6.
[PMID: 27053934]
[139]
Lamichhane N, Udayakumar T, D’Souza W, et al. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules 2018; 23(2): 288.
[http://dx.doi.org/10.3390/molecules23020288] [PMID: 29385755]
[140]
Doyle L, Wang M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019; 8(7): 727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[141]
Bhandari R, Sharma A, Kuhad A. Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP). Front Endocrinol (Lausanne) 2022; 12: 790747.
[http://dx.doi.org/10.3389/fendo.2021.790747] [PMID: 35211091]
[142]
Pishavar E, Trentini M, Zanotti F, et al. Exosomes as Neurological Nanosized Machines. ACS Nanoscience Au 2022; 2(4): 284-96.
[http://dx.doi.org/10.1021/acsnanoscienceau.1c00062 ] [PMID: 37102062]
[143]
Kinfe TM, Chakravarthy KV, Deer TR. Editorial: Cerebral localization and neurostimulation for pain. Front Neurol 2022; 13: 1019162.
[http://dx.doi.org/10.3389/fneur.2022.1019162] [PMID: 36247790]
[144]
Olmsted ZT, Hadanny A, Marchese AM, et al. Recommendations for neuromodulation in diabetic neuropathic pain. Frontiers in Pain Research 2021; 2: 726308.
[http://dx.doi.org/10.3389/fpain.2021.726308] [PMID: 35295414]
[145]
Nevins S, McLoughlin CD, Oliveros A, et al. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy‐Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. Small 2023; 2300744: 2300744.
[http://dx.doi.org/10.1002/smll.202300744] [PMID: 37058079]
[146]
Sabatino A, Regolisti G, Cosola C, Gesualdo L, Fiaccadori E. Intestinal microbiota in type 2 diabetes and chronic kidney disease. Curr Diab Rep 2017; 17(3): 16.
[http://dx.doi.org/10.1007/s11892-017-0841-z] [PMID: 28271466]
[147]
Ikegami R, Eshima H, Nakajima T, Toyoda S, Poole DC, Kano Y. Type I diabetes suppresses intracellular calcium ion increase normally evoked by heat stress in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2021; 320(4): R384-92.
[http://dx.doi.org/10.1152/ajpregu.00168.2020] [PMID: 33407019]
[148]
Ho J, Slawka E, Pacheco-Barrios K, Cardenas-Rojas A, Castelo-Branco L, Fregni F. The pros and cons of tDCS as a therapeutic tool in the rehabilitation of chronic pain. Principles and Practice of Clinical Research Journal 2022; 8(2): 26-30.
[http://dx.doi.org/10.21801/ppcrj.2022.82.4] [PMID: 36199760]
[149]
Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(1): e1586.
[http://dx.doi.org/10.1002/wnan.1586] [PMID: 31602823]
[150]
Baskaran P, Mohandass A, Gustafson N, et al. Evaluation of a polymer coated nanoparticle cream formulation of resiniferatoxin for the treatment of painful diabetic peripheral neuropathy. Pain 2022; 2022: 10-97.
[http://dx.doi.org/10.1097/j.pain.0000000000002765 ] [PMID: 36001079]
[151]
Vishwakarma VK, Paswan SK, Arora T, Verma RK, Yadav HN. Pain Allaying Epalrestat-Loaded Lipid Nanoformulation for the Diabetic Neuropathic Pain Interventions: Design, Development, and Animal Study. Curr Drug Metab 2022; 23(7): 571-83.
[http://dx.doi.org/10.2174/1389200223666220810152633] [PMID: 35950248]
[152]
Singh A, Raghav A, Shiekh PA, Kumar A. Transplantation of engineered exosomes derived from bone marrow mesenchymal stromal cells ameliorate diabetic peripheral neuropathy under electrical stimulation. Bioact Mater 2021; 6(8): 2231-49.
[http://dx.doi.org/10.1016/j.bioactmat.2021.01.008 ] [PMID: 33553812]
[153]
Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci 2020; 27(9): 2410-9.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.005] [PMID: 32884424]
[154]
Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM. Neuroprotective effect of cerium oxide nanoparticles in a rat model of experimental diabetic neuropathy. Brain Res Bull 2017; 131: 117-22.
[http://dx.doi.org/10.1016/j.brainresbull.2017.03.013 ] [PMID: 28373151]
[155]
Joshi RP, Negi G, Kumar A, et al. SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: An insight into its mechanism for neuroprotection. Nanomedicine 2013; 9(6): 776-85.
[http://dx.doi.org/10.1016/j.nano.2013.01.001] [PMID: 23347896]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy