Review Article

芳香l-氨基酸脱羧酶和神经胶质源性神经营养因子靶向壳核治疗帕金森病的潜在治疗方法

卷 24, 期 4, 2024

发表于: 19 January, 2024

页: [278 - 291] 页: 14

弟呕挨: 10.2174/0115665232283842240102073002

价格: $65

摘要

帕金森病(PD)是一种以多巴胺能神经元特异性丧失为特征的神经退行性疾病,导致运动受损。其流行率是过去25年的两倍,影响到1000多万人。缺乏治疗仍然使用左旋多巴和其他选择作为疾病管理措施。治疗转向基因治疗(GT),它利用在目标区域直接传递特定基因。因此,使用芳香l-氨基酸脱羧酶(AADC)和胶质源性神经营养因子(GDNF)治疗PD达到了有效的控制。通过减少给药频率,同时使用provasin和AADC作为多巴胺能保护治疗,诊断为PD的患者可能会获得更好的治疗效果。提高纹状体中酪氨酸羟化酶(TH)、糖皮质激素(GCH)和AADC的酶活性可能有助于外源性左旋多巴恢复多巴胺(DA)水平。谷氨酸脱羧酶(GAD)在丘脑底核(STN)中的表达增加也可能对PD有益。将GDNF特异性靶向于壳层区治疗在临床上是合理的,对保护多巴胺能神经元是有益的。此外,临床前和临床研究支持GDNF在神经系统疾病中显示其神经保护作用的作用。另一种Ret受体属于酪氨酸激酶家族,在多巴胺能神经元和声音中表达,在抑制PD的进展中起重要作用。GDNF与这些受体结合,形成受体-配体复合物。另一方面,通过脂质体和包封细胞途径静脉给药重组GDNF,可以安全有效地将神经营养因子分配到壳核和实质。目前的综述强调GT靶向GDNF和AADC治疗的率,以及相应的经验证据。

关键词: 帕金森病,神经胶质源性神经营养因子,芳香l -氨基酸脱羧酶,基因治疗,酪氨酸羟化酶,中性营养因子治疗。

图形摘要
[1]
Napoli M, Shah IM, Stewart DA. Molecular pathways and genetic aspects of Parkinson’s disease: From bench to bedside. Expert Rev Neurother 2007; 7(12): 1693-729.
[http://dx.doi.org/10.1586/14737175.7.12.1693] [PMID: 18052765]
[2]
Kumar S, Goyal L, Singh S. Tremor and rigidity in patients with Parkinson’s disease: Emphasis on epidemiology, pathophysiology and contributing factors. CNS Neurol Disord Drug Targets 2022; 21(7): 596-609.
[http://dx.doi.org/10.2174/1871527320666211006142100]
[3]
Beitz JM. Parkinson s disease a review. Front Biosci 2014; S6(1): 65-74.
[http://dx.doi.org/10.2741/S415] [PMID: 24389262]
[4]
Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[5]
Vingerhoets FJG, Schulzer M, Calne DB, Snow BJ. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann Neurol 1997; 41(1): 58-64.
[http://dx.doi.org/10.1002/ana.410410111] [PMID: 9005866]
[6]
Zhang Q, Aldridge GM, Narayanan NS, Anderson SW, Uc EY. Approach to cognitive impairment in Parkinson’s disease. Neurotherapeutics 2020; 17(4): 1495-510.
[http://dx.doi.org/10.1007/s13311-020-00963-x] [PMID: 33205381]
[7]
Rabinstein AA, Shulman LM. Management of behavioral and psychiatric problems in Parkinson’s disease. Parkinsonism Relat Disord 2000; 7(1): 41-50.
[http://dx.doi.org/10.1016/S1353-8020(00)00039-0] [PMID: 11008195]
[8]
Pastor P, Ezquerra M, Muñoz E, et al. Significant association between the tau gene A0/A0 genotype and Parkinson’s disease. Ann Neurol 2000; 47(2): 242-5.
[http://dx.doi.org/10.1002/1531-8249(200002)47:2<242::AID-ANA16>3.0.CO;2-L] [PMID: 10665497]
[9]
Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol 2016; 15(12): 1257-72.
[http://dx.doi.org/10.1016/S1474-4422(16)30230-7] [PMID: 27751556]
[10]
Vrieze SI, Iacono WG, McGue M. Confluence of genes, environment, development, and behavior in a post-GWAS world. Dev Psychopathol 2012; 24(4): 1195-214.
[http://dx.doi.org/10.1017/S0954579412000648]
[11]
Postuma RB, Lang AE, Munhoz RP, et al. Caffeine for treatment of Parkinson disease: A randomized controlled trial. Neurology 2012; 79(7): 651-8.
[http://dx.doi.org/10.1212/WNL.0b013e318263570d] [PMID: 22855866]
[12]
Ma C, Liu Y, Neumann S, Gao X. Nicotine from cigarette smoking and diet and Parkinson disease: A review. Transl Neurodegener 2017; 6(1): 18.
[http://dx.doi.org/10.1186/s40035-017-0090-8] [PMID: 28680589]
[13]
Baumann CR. Epidemiology, diagnosis and differential diagnosis in Parkinson’s disease tremor. Parkinsonism Relat Disord 2012; 18(S1): S90-2.
[http://dx.doi.org/10.1016/S1353-8020(11)70029-3] [PMID: 22166466]
[14]
Schildknecht S, Pape R, Meiser J, et al. Preferential extracellular generation of the active parkinsonian toxin MPP+ by transporter-independent export of the intermediate MPDP+. Antioxid Redox Signal 2015; 23(13): 1001-16.
[http://dx.doi.org/10.1089/ars.2015.6297] [PMID: 26413876]
[15]
Kopin IJ. MPTP: An industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson’s disease. Environ Health Perspect 1987; 75: 45-51.
[http://dx.doi.org/10.1289/ehp.877545] [PMID: 3319563]
[16]
Kouli A, Torsney KM, Kuan WL. Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications 2018; pp. 3-26.
[17]
Chagraoui A, Boulain M, Juvin L, Anouar Y, Barrière G, Deurwaerdère P. L-DOPA in parkinson’s disease: Looking at the “false” neurotransmitters and their meaning. Int J Mol Sci 2019; 21(1): 294.
[http://dx.doi.org/10.3390/ijms21010294] [PMID: 31906250]
[18]
Davis MD, Kaufman S. Products of the tyrosine-dependent oxidation of tetrahydrobiopterin by rat liver phenylalanine hydroxylase. Arch Biochem Biophys 1993; 304(1): 9-16.
[http://dx.doi.org/10.1006/abbi.1993.1315] [PMID: 8323303]
[19]
Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol 2004; 61(5): 641-4.
[http://dx.doi.org/10.1001/archneur.61.5.641] [PMID: 15148138]
[20]
Nagatsu T. The catecholamine system in health and disease -Relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc Jpn Acad, Ser B, Phys Biol Sci 2006; 82(10): 388-415.
[http://dx.doi.org/10.2183/pjab.82.388] [PMID: 25792770]
[21]
Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013; 7: 152.
[http://dx.doi.org/10.3389/fncir.2013.00152] [PMID: 24130517]
[22]
Narayanan NS, Rodnitzky RL, Uc EY. Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci 2013; 24(3): 267-78.
[http://dx.doi.org/10.1515/revneuro-2013-0004] [PMID: 23729617]
[23]
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 2019; 39(1): 31-59.
[http://dx.doi.org/10.1007/s10571-018-0632-3] [PMID: 30446950]
[24]
Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem 2011; 116(2): 164-76.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07109.x] [PMID: 21073468]
[25]
Zolin A, Cohn R, Pang R, Siliciano AF, Fairhall AL, Ruta V. Context-dependent representations of movement in Drosophila dopaminergic reinforcement pathways. Nat Neurosci 2021; 24(11): 1555-66.
[http://dx.doi.org/10.1038/s41593-021-00929-y] [PMID: 34697455]
[26]
Graves SM, Xie Z, Stout KA, et al. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nat Neurosci 2020; 23(1): 15-20.
[http://dx.doi.org/10.1038/s41593-019-0556-3] [PMID: 31844313]
[27]
Mosley LL, Mosley JFFJ II. Vesicular monoamine transporter type 2 (VMAT2) inhibitors in the management of tardive dyskinesia. Clin Med Rev Case Rep 2017; 4: 198.
[http://dx.doi.org/10.23937/2378-3656/1410198]
[28]
Hegarty SV, Sullivan AM, O’Keeffe GW. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Dev Biol 2013; 379(2): 123-38.
[http://dx.doi.org/10.1016/j.ydbio.2013.04.014] [PMID: 23603197]
[29]
Chinta SJ, Andersen JK. Dopaminergic neurons. Int J Biochem Cell Biol 2005; 37(5): 942-6.
[http://dx.doi.org/10.1016/j.biocel.2004.09.009] [PMID: 15743669]
[30]
Kordower JH, Olanow CW, Dodiya HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013; 136(8): 2419-31.
[http://dx.doi.org/10.1093/brain/awt192] [PMID: 23884810]
[31]
Mamelak M. Parkinson’s disease, the dopaminergic neuron and gammahydroxybutyrate. Neurol Ther 2018; 7(1): 5-11.
[http://dx.doi.org/10.1007/s40120-018-0091-2] [PMID: 29368093]
[32]
Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it?: Dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol 2020; 15(1): 114-64.
[http://dx.doi.org/10.1007/s11481-019-09851-4] [PMID: 31077015]
[33]
Sebastianutto I, Goyet E, Andreoli L, et al. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease. J Clin Invest 2020; 130(3): 1168-84.
[http://dx.doi.org/10.1172/JCI126361] [PMID: 32039920]
[34]
Messanvi F, Eggens-Meijer E, Roozendaal B, van der Want JJ. A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat. Front Neuroanat 2013; 7: 41.
[http://dx.doi.org/10.3389/fnana.2013.00041] [PMID: 24367297]
[35]
Bartus RT, Weinberg MS, Samulski RJ. Parkinson’s disease gene therapy: Success by design meets failure by efficacy. Mol Ther 2014; 22(3): 487-97.
[http://dx.doi.org/10.1038/mt.2013.281] [PMID: 24356252]
[36]
Dahariya S, Nagarjuna V. Biomaterials in tissue engineering and regenerative medicine: In vitro disease models and advances in gene-based therapies. In: Biomaterials in Tissue Engineering and Regenerative Medicine. 2021; pp. 485-504.
[http://dx.doi.org/10.1007/978-981-16-0002-9_14]
[37]
Melsheimer R, Geldhof A, Apaolaza I, Schaible T. Remicade® (infliximab): 20 years of contributions to science and medicine. Biologics 2019; 13: 139-78.
[PMID: 31440029]
[38]
Marks L. The birth pangs of monoclonal antibody therapeutics: the failure and legacy of Centoxin. InMAbs 2012; 4(3): 403-12.
[http://dx.doi.org/10.4161/mabs.19909]
[39]
Cheng S. Pharmacologically controlled neurotrophic factor gene therapy for Parkinson's disease Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen 2021.
[http://dx.doi.org/10.1016/j.omtm.2021.07.007]
[40]
Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12(3): 342-7.
[http://dx.doi.org/10.1038/nm1358] [PMID: 16474400]
[41]
Mount JD, Herzog RW, Tillson DM, et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002; 99(8): 2670-6.
[http://dx.doi.org/10.1182/blood.V99.8.2670] [PMID: 11929752]
[42]
Wang L, Nichols TC, Read MS, Bellinger DA, Verma IM. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther 2000; 1(2): 154-8.
[http://dx.doi.org/10.1006/mthe.2000.0031] [PMID: 10933925]
[43]
Raj D, Davidoff AM, Nathwani AC. Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: Progress and challenges. Expert Rev Hematol 2011; 4(5): 539-49.
[http://dx.doi.org/10.1586/ehm.11.48] [PMID: 21939421]
[44]
McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther 2008; 16(10): 1648-56.
[http://dx.doi.org/10.1038/mt.2008.171] [PMID: 18682697]
[45]
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-capacity adenoviral vectors: Expanding the scope of gene therapy. Int J Mol Sci 2020; 21(10): 3643.
[http://dx.doi.org/10.3390/ijms21103643] [PMID: 32455640]
[46]
Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013; 525(2): 162-9.
[http://dx.doi.org/10.1016/j.gene.2013.03.137] [PMID: 23618815]
[47]
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372): eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[48]
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183: 2055-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.192] [PMID: 34087309]
[49]
Majláth Z, Török N, Toldi J, Vécsei L. Promising therapeutic agents for the treatment of Parkinson’s disease. Expert Opin Biol Ther 2016; 16(6): 787-99.
[http://dx.doi.org/10.1517/14712598.2016.1164687] [PMID: 26961515]
[50]
Kirik D, Cederfjäll E, Halliday G, Petersén Å. Gene therapy for Parkinson’s disease: Disease modification by GDNF family of ligands. Neurobiol Dis 2017; 97(Pt B): 179-88.
[http://dx.doi.org/10.1016/j.nbd.2016.09.008] [PMID: 27616425]
[51]
Valles F, Fiandaca MS, Eberling JL, et al. Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase I study for the treatment of Parkinson disease. Neurosurgery 2010; 67(5): 1377-85.
[http://dx.doi.org/10.1227/NEU.0b013e3181f53a5c] [PMID: 20871425]
[52]
Martinez-Fong D, Bannon MJ, Trudeau LE, et al. NTS-Polyplex: A potential nanocarrier for neurotrophic therapy of Parkinson’s disease. Nanomedicine 2012; 8(7): 1052-69.
[http://dx.doi.org/10.1016/j.nano.2012.02.009] [PMID: 22406187]
[53]
Hernandez-Chan NG, Bannon MJ, Orozco-Barrios CE, et al. Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson’s disease. J Biomed Sci 2015; 22(1): 59.
[http://dx.doi.org/10.1186/s12929-015-0166-7] [PMID: 26198255]
[54]
Lapchak PA, Beck KD, Araujo DM, Irwin I, Langston JW, Hefti F. Chronic intranigral administration of brain-derived neurotrophic factor produces striatal dopaminergic hypofunction in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection. Neuroscience 1993; 53(3): 639-50.
[http://dx.doi.org/10.1016/0306-4522(93)90612-J] [PMID: 8098137]
[55]
Wold W, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2014; 13(6): 421-33.
[http://dx.doi.org/10.2174/1566523213666131125095046] [PMID: 24279313]
[56]
Doerfler W. Adenoviral vector DNA-and SARS-CoV-2 mRNA-based COVID-19 vaccines: possible integration into the human genome-are adenoviral genes expressed in vector-based vaccines? Virus Res 2021; 302: 198466.
[http://dx.doi.org/10.1016/j.virusres.2021.198466] [PMID: 34087261]
[57]
Shieh WJ. Human adenovirus infections in pediatric population-an update on clinico–pathologic correlation. Biomed J 2022; 45(1): 38-49.
[http://dx.doi.org/10.1016/j.bj.2021.08.009]
[58]
Nemerow GR, Stewart PL, Reddy VS. Structure of human adenovirus. Curr Opin Virol 2012; 2(2): 115-21.
[http://dx.doi.org/10.1016/j.coviro.2011.12.008] [PMID: 22482707]
[59]
Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncologist 2002; 7(1): 46-59.
[http://dx.doi.org/10.1634/theoncologist.7-1-46] [PMID: 11854546]
[60]
Maginnis MS. Virus–receptor interactions: The key to cellular invasion. J Mol Biol 2018; 430(17): 2590-611.
[http://dx.doi.org/10.1016/j.jmb.2018.06.024] [PMID: 29924965]
[61]
Somvanshi P, Khisty S. Peptide-based DNA delivery system. Med Nov Technol Devices 2021; 11: 100091.
[http://dx.doi.org/10.1016/j.medntd.2021.100091]
[62]
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23(10): 645-62.
[http://dx.doi.org/10.1038/s41580-022-00496-5] [PMID: 35710830]
[63]
Yan Z, McCray PB Jr, Engelhardt JF. Advances in gene therapy for cystic fibrosis lung disease. Hum Mol Genet 2019; 28(R1): R88-94.
[http://dx.doi.org/10.1093/hmg/ddz139] [PMID: 31332440]
[64]
Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther 2020; 28(3): 709-22.
[http://dx.doi.org/10.1016/j.ymthe.2020.01.001] [PMID: 31968213]
[65]
Bjorklund A, Cenci-Nilsson A. Recent advances in Parkinson's disease: Basic research. Preface. Prog Brain Res 183: 9-10.
[http://dx.doi.org/10.1016/S0079-6123(10)83018-3]
[66]
Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH. Human gene therapy approaches for the treatment of Parkinson’s disease: An overview of current and completed clinical trials. Parkinsonism Relat Disord 2019; 66: 16-24.
[http://dx.doi.org/10.1016/j.parkreldis.2019.07.018] [PMID: 31324556]
[67]
Axelsen TM, Woldbye DPD. Gene therapy for Parkinson’s disease, an update. J Parkinsons Dis 2018; 8(2): 195-215.
[http://dx.doi.org/10.3233/JPD-181331] [PMID: 29710735]
[68]
Burton EA, Glorioso JC, Fink DJ. Gene therapy progress and prospects: Parkinson’s disease. Gene Ther 2003; 10(20): 1721-7.
[http://dx.doi.org/10.1038/sj.gt.3302116] [PMID: 12939638]
[69]
Manfredsson F, Okun M, Mandel R. Gene therapy for neurological disorders: Challenges and future prospects for the use of growth factors for the treatment of Parkinson’s disease. Curr Gene Ther 2009; 9(5): 375-88.
[http://dx.doi.org/10.2174/156652309789753400] [PMID: 19860652]
[70]
Lee HJ, Jung DH, Jung YJ, Shin HK, Choi BT. Transcranial alternating current stimulation rescues motor deficits in a mouse model of Parkinson’s disease via the production of glial cell line-derived neurotrophic factor. Brain Stimul 2022; 15(3): 645-53.
[http://dx.doi.org/10.1016/j.brs.2022.04.002] [PMID: 35429660]
[71]
Behl T, Kaur I, Kumar A, Mehta V, Zengin G, Arora S. Gene therapy in the management of Parkinson’s disease: Potential of gdnf as a promising therapeutic strategy. Curr Gene Ther 2020; 20(3): 207-22.
[http://dx.doi.org/10.2174/1566523220999200817164051] [PMID: 32811394]
[72]
Fiandaca MS, Bankiewicz KS, Federoff HJ. Gene therapy for the treatment of Parkinson’s disease: The nature of the biologics expands the future indications. Pharmaceuticals 2012; 5(6): 553-90.
[http://dx.doi.org/10.3390/ph5060553] [PMID: 24281662]
[73]
Arango D, Bittar A, Esmeral NP, et al. Understanding the potential of genome editing in parkinson’s disease. Int J Mol Sci 2021; 22(17): 9241.
[http://dx.doi.org/10.3390/ijms22179241] [PMID: 34502143]
[74]
Parambi DGT, Alharbi KS, Kumar R, et al. Gene therapy approach with an emphasis on growth factors: theoretical and clinical outcomes in neurodegenerative diseases. Mol Neurobiol 2022; 59(1): 191-233.
[http://dx.doi.org/10.1007/s12035-021-02555-y] [PMID: 34655056]
[75]
Mahato AK, Sidorova YA. RET receptor tyrosine kinase: Role in neurodegeneration, obesity, and cancer. Int J Mol Sci 2020; 21(19): 7108.
[http://dx.doi.org/10.3390/ijms21197108] [PMID: 32993133]
[76]
Barker RA, Björklund A, Gash DM, et al. GDNF and Parkinson’s disease: Where next? A summary from a recent workshop. J Parkinsons Dis 2020; 10(3): 875-91.
[http://dx.doi.org/10.3233/JPD-202004] [PMID: 32508331]
[77]
Kirkeby A, Barker RA. Parkinson disease and growth factors — is GDNF good enough? Nat Rev Neurol 2019; 15(6): 312-4.
[http://dx.doi.org/10.1038/s41582-019-0180-6] [PMID: 30948845]
[78]
Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer's Disease and Parkinson's Disease). J Drug Deliv 2011; 2011: 469679.
[http://dx.doi.org/10.1155/2011/469679]
[79]
Fajardo-Serrano A, Rico AJ, Roda E, et al. Adeno-associated viral vectors as versatile tools for Parkinson’s research, both for disease modeling purposes and for therapeutic uses. Int J Mol Sci 2021; 22(12): 6389.
[http://dx.doi.org/10.3390/ijms22126389] [PMID: 34203739]
[80]
Weissmiller AM, Wu C. Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener 2012; 1(1): 14.
[http://dx.doi.org/10.1186/2047-9158-1-14] [PMID: 23210531]
[81]
Blesch A. Neurotrophic factors in neurodegeneration. Brain Pathol 2006; 16(4): 295-303.
[http://dx.doi.org/10.1111/j.1750-3639.2006.00036.x] [PMID: 17107599]
[82]
El Ouaamari Y, Van den Bos J, Willekens B, Cools N, Wens I. Neurotrophic factors as regenerative therapy for neurodegenerative diseases: Current status, challenges and future perspectives. Int J Mol Sci 2023; 24(4): 3866.
[http://dx.doi.org/10.3390/ijms24043866] [PMID: 36835277]
[83]
Huntington TE, Srinivasan R. Adeno-associated virus expression of α-synuclein as a tool to model Parkinson’s Disease: Current understanding and knowledge gaps. Aging Dis 2021; 12(4): 1120-37.
[http://dx.doi.org/10.14336/AD.2021.0517] [PMID: 34221553]
[84]
Muramatsu S. The current status of gene therapy for Parkinson’s disease. Ann Neurosci 2010; 17(2): 92-5.
[http://dx.doi.org/10.5214/ans.0972-7531.1017209] [PMID: 25205879]
[85]
Björklund T, Davidsson M. Next-generation gene therapy for parkinson’s disease using engineered viral vectors. J Parkinsons Dis 2021; 11(s2): S209-17.
[http://dx.doi.org/10.3233/JPD-212674] [PMID: 34366370]
[86]
Zhu D, Schieferecke AJ, Lopez PA, Schaffer DV. Adeno-associated virus vector for central nervous system gene therapy. Trends Mol Med 2021; 27(6): 524-37.
[http://dx.doi.org/10.1016/j.molmed.2021.03.010] [PMID: 33895085]
[87]
Rocco MT, Akhter AS, Ehrlich DJ, et al. Long-term safety of MRI-guided administration of AAV2-GDNF and gadoteridol in the putamen of individuals with Parkinson’s disease. Mol Ther 2022; 30(12): 3632-8.
[http://dx.doi.org/10.1016/j.ymthe.2022.08.003] [PMID: 35957524]
[88]
Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson’s disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13: 986668.
[http://dx.doi.org/10.3389/fphar.2022.986668] [PMID: 36339626]
[89]
Hwu PWL, Kiening K, Anselm I, et al. Gene therapy in the putamen for curing AADC deficiency and Parkinson’s disease. EMBO Mol Med 2021; 13(9): e14712.
[http://dx.doi.org/10.15252/emmm.202114712] [PMID: 34423905]
[90]
Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS. Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nat Rev Neurol 2019; 15(4): 204-23.
[http://dx.doi.org/10.1038/s41582-019-0155-7] [PMID: 30867588]
[91]
Christine CW, Richardson RM, Laar AD, et al. Safety of AADC gene therapy for moderately advanced Parkinson disease: three-year outcomes from the PD-1101 trial. Neurology 2022; 98(1): e40-50.
[http://dx.doi.org/10.1212/WNL.0000000000012952] [PMID: 34649873]
[92]
Jamebozorgi K, Taghizadeh E, Rostami D, et al. Cellular and molecular aspects of Parkinson treatment: Future therapeutic perspectives. Mol Neurobiol 2019; 56(7): 4799-811.
[http://dx.doi.org/10.1007/s12035-018-1419-8] [PMID: 30397850]
[93]
Wood H. Gene therapy boosts response to levodopa in patients with Parkinson disease. Nat Rev Neurol 2020; 16(5): 242.
[http://dx.doi.org/10.1038/s41582-020-0351-5] [PMID: 32235927]
[94]
Buttery PC, Barker RA. Gene and cell-based therapies for Parkinson’s disease: Where are we? Neurotherapeutics 2020; 17(4): 1539-62.
[http://dx.doi.org/10.1007/s13311-020-00940-4] [PMID: 33128174]
[95]
Robinson R. Successful gene therapy for AADC deficiency opens therapeutic options for other neurologic diseases. Neurol Today 2021; 21(17): 10-2.
[http://dx.doi.org/10.1097/01.NT.0000792808.17023.2e]
[96]
Merola A, Kobayashi N, Romagnolo A, et al. Gene therapy in movement disorders: A systematic review of ongoing and completed clinical trials. Front Neurol 2021; 12: 648532.
[http://dx.doi.org/10.3389/fneur.2021.648532] [PMID: 33889127]
[97]
Lohr KM, Bernstein AI, Stout KA, et al. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci 2014; 111(27): 9977-82.
[http://dx.doi.org/10.1073/pnas.1402134111] [PMID: 24979780]
[98]
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 2015; 67(4): 1005-24.
[http://dx.doi.org/10.1124/pr.114.010397] [PMID: 26408528]
[99]
Sun M, Kong L, Wang X, et al. Coexpression of tyrosine hydroxylase, GTP cyclohydrolase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson’s disease. Hum Gene Ther 2004; 15(12): 1177-96.
[http://dx.doi.org/10.1089/hum.2004.15.1177] [PMID: 15684695]
[100]
Palfi S, Ralph RS, Mitrophanous K. C1-7 ProSavin®: A lentiviral vector approach for the treatment of Parkinson’s disease. In: The CliniBook. EDP Sciences 2022; pp. 486-92.
[101]
Albert K, Voutilainen M, Domanskyi A, Airavaara M. AAV vector-mediated gene delivery to substantia nigra dopamine neurons: Implications for gene therapy and disease models. Genes 2017; 8(2): 63.
[http://dx.doi.org/10.3390/genes8020063] [PMID: 28208742]
[102]
Grames MS, Dayton RD, Jackson KL, Richard AD, Lu X, Klein RL. Cre-dependent AAV vectors for highly targeted expression of disease-related proteins and neurodegeneration in the substantia nigra. FASEB J 2018; 32(8): 4420-7.
[http://dx.doi.org/10.1096/fj.201701529RR] [PMID: 29513569]
[103]
Voutilainen MH, De Lorenzo F, Stepanova P, et al. Evidence for an additive neurorestorative effect of simultaneously administered CDNF and GDNF in hemiparkinsonian rats: implications for different mechanism of action. eNeuro 2017; 4(1): ENEURO.0117-16.2017.
[http://dx.doi.org/10.1523/ENEURO.0117-16.2017] [PMID: 28303260]
[104]
Chmielarz P, Saarma M. Neurotrophic factors for disease-modifying treatments of Parkinson’s disease: Gaps between basic science and clinical studies. Pharmacol Rep 2020; 72(5): 1195-217.
[http://dx.doi.org/10.1007/s43440-020-00120-3] [PMID: 32700249]
[105]
Oh SM, Chang MY, Song JJ, et al. Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med 2015; 7(5): 510-25.
[http://dx.doi.org/10.15252/emmm.201404610] [PMID: 25759364]
[106]
Karimian A, Gorjizadeh N, Alemi F, et al. CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci 2020; 259: 118165.
[http://dx.doi.org/10.1016/j.lfs.2020.118165] [PMID: 32735884]
[107]
Muramatsu S, Fujimoto K, Kato S, et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 2010; 18(9): 1731-5.
[http://dx.doi.org/10.1038/mt.2010.135] [PMID: 20606642]
[108]
Moschovou K, Melagraki G, Mavromoustakos T, Zacharia LC, Afantitis A. Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics. Expert Opin Drug Discov 2020; 15(1): 53-62.
[http://dx.doi.org/10.1080/17460441.2020.1691165] [PMID: 31744341]
[109]
Safari F, Hatam G, Behbahani AB, et al. CRISPR system: A high-throughput toolbox for research and treatment of Parkinson’s disease. Cell Mol Neurobiol 2020; 40(4): 477-93.
[http://dx.doi.org/10.1007/s10571-019-00761-w] [PMID: 31773362]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy