Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

胶质母细胞瘤中的神经炎症:微环境在肿瘤进展中的作用

卷 24, 期 6, 2024

发表于: 17 January, 2024

页: [579 - 594] 页: 16

弟呕挨: 10.2174/0115680096265849231031101449

价格: $65

摘要

胶质母细胞瘤(GBM)是主要类型的原发性脑肿瘤中最具侵袭性和致命性的。它表现出恶性生长,浸润脑组织,并对治疗表现出耐药性。GBM是一种复杂的疾病,具有高度的异质性。在肿瘤生长过程中,小胶质细胞和星形胶质细胞等细胞浸润肿瘤微环境,广泛参与胶质瘤的形成。肿瘤相关巨噬细胞(tam),无论是来自外周还是代表脑内小胶质细胞,都是GBM肿瘤微环境中数量最多的非肿瘤性群体。局部炎性肿瘤微环境促进了GBM细胞复杂的异质性,主要诱导肿瘤侵袭性和耐药。GBM的免疫抑制肿瘤微环境为肿瘤免疫逃避提供了多种途径,促进了肿瘤的进展。此外,tam和星形胶质细胞可以通过释放细胞因子和激活信号通路促进肿瘤进展。在这篇综述中,我们总结了微环境在GBM进展中的作用,重点是神经炎症。这些微环境研究的最新进展有可能在未来的时间里为GBM的治疗提供一个有希望的方法。

关键词: 胶质母细胞瘤,肿瘤微环境,神经炎症,tam,小胶质细胞,星形胶质细胞。

Next »
图形摘要
[1]
Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA, 2013, 310(17), 1842-1850.
[http://dx.doi.org/10.1001/jama.2013.280319] [PMID: 24193082]
[2]
DeAngelis, L.M. Brain tumors. N. Engl. J. Med., 2001, 344(2), 114-123.
[http://dx.doi.org/10.1056/NEJM200101113440207] [PMID: 11150363]
[3]
Aldoghachi, A.F.; Aldoghachi, A.F.; Breyne, K.; Ling, K.H.; Cheah, P.S. Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience, 2022, 491, 240-270.
[http://dx.doi.org/10.1016/j.neuroscience.2022.03.030] [PMID: 35395355]
[4]
Roberts, J.W.; Powlovich, L.; Sheybani, N.; LeBlang, S. Focused ultrasound for the treatment of glioblastoma. J. Neurooncol., 2022, 157(2), 237-247.
[http://dx.doi.org/10.1007/s11060-022-03974-0] [PMID: 35267132]
[5]
Duzan, A.; Reinken, D.; McGomery, T.L.; Ferencz, N.M.; Plummer, J.M.; Basti, M.M. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J. Integr. Med., 2023, 21(2), 120-129.
[http://dx.doi.org/10.1016/j.joim.2023.01.005] [PMID: 36805391]
[6]
Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2011–2015. Neuro-oncol., 2018, 20(S4), iv1-iv86.
[http://dx.doi.org/10.1093/neuonc/noy131] [PMID: 30445539]
[7]
Furnari, F.B.; Fenton, T.; Bachoo, R.M.; Mukasa, A.; Stommel, J.M.; Stegh, A.; Hahn, W.C.; Ligon, K.L.; Louis, D.N.; Brennan, C.; Chin, L.; DePinho, R.A.; Cavenee, W.K. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev., 2007, 21(21), 2683-2710.
[http://dx.doi.org/10.1101/gad.1596707] [PMID: 17974913]
[8]
Delgado-López, P.D.; Corrales-García, E.M. Survival in glioblastoma: A review on the impact of treatment modalities. Clin. Transl. Oncol., 2016, 18(11), 1062-1071.
[http://dx.doi.org/10.1007/s12094-016-1497-x] [PMID: 26960561]
[9]
DeCordova, S.; Shastri, A.; Tsolaki, A.G.; Yasmin, H.; Klein, L.; Singh, S.K.; Kishore, U. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Front. Immunol., 2020, 11, 1402.
[http://dx.doi.org/10.3389/fimmu.2020.01402] [PMID: 32765498]
[10]
Yeo, E.C.F.; Brown, M.P.; Gargett, T.; Ebert, L.M. The role of cytokines and chemokines in shaping the immune microenvironment of glioblastoma: Implications for immunotherapy. Cells, 2021, 10(3), 607.
[http://dx.doi.org/10.3390/cells10030607] [PMID: 33803414]
[11]
Alghamri, M.S.; McClellan, B.L.; Hartlage, C.S.; Haase, S.; Faisal, S.M.; Thalla, R.; Dabaja, A.; Banerjee, K.; Carney, S.V.; Mujeeb, A.A.; Olin, M.R.; Moon, J.J.; Schwendeman, A.; Lowenstein, P.R.; Castro, M.G. Targeting neuroinflammation in brain cancer: Uncovering mechanisms, pharmacological targets, and neuropharmaceutical developments. Front. Pharmacol., 2021, 12, 680021.
[http://dx.doi.org/10.3389/fphar.2021.680021] [PMID: 34084145]
[12]
Catalano, M. Editorial: Brain tumors and neuroinflammation. Front. Cell. Neurosci., 2022, 16, 941263.
[http://dx.doi.org/10.3389/fncel.2022.941263] [PMID: 35722623]
[13]
Río-Hortega, P.; Jiménez de Asúa, F. Sobre la fagocitosis en los tumores y en otros procesos patológicos. Arch Card Y Hemat, 1921, II(5), 161-220.
[14]
Penfield, W. Microglia and the process of phagocytosis in gliomas. Am. J. Pathol., 1925, 1(1), 77-90, 15.
[PMID: 19969634]
[15]
Charles, N.A.; Holland, E.C.; Gilbertson, R.; Glass, R.; Kettenmann, H. The brain tumor microenvironment. Glia, 2011, 59(8), 1169-1180.
[http://dx.doi.org/10.1002/glia.21136] [PMID: 21446047]
[16]
Quail, D.F.; Joyce, J.A. The microenvironmental landscape of brain tumors. Cancer Cell, 2017, 31(3), 326-341.
[http://dx.doi.org/10.1016/j.ccell.2017.02.009] [PMID: 28292436]
[17]
Zhou, W.; Chen, C.; Shi, Y.; Wu, Q.; Gimple, R.C.; Fang, X.; Huang, Z.; Zhai, K.; Ke, S.Q.; Ping, Y.F.; Feng, H.; Rich, J.N.; Yu, J.S.; Bao, S.; Bian, X.W. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell, 2017, 21(5), 591-603.e4.
[http://dx.doi.org/10.1016/j.stem.2017.10.002] [PMID: 29100012]
[18]
Guan, X.; Hasan, M.N.; Maniar, S.; Jia, W.; Sun, D. Reactive astrocytes in glioblastoma multiforme. Mol. Neurobiol., 2018, 55(8), 6927-6938.
[http://dx.doi.org/10.1007/s12035-018-0880-8] [PMID: 29363044]
[19]
Ma, Q.; Long, W.; Xing, C.; Chu, J.; Luo, M.; Wang, H.Y.; Liu, Q.; Wang, R.F. Cancer stem cells and immunosuppressive microenvironment in glioma. Front. Immunol., 2018, 9, 2924.
[http://dx.doi.org/10.3389/fimmu.2018.02924] [PMID: 30619286]
[20]
Zhang, H.; Zhou, Y.; Cui, B.; Liu, Z.; Shen, H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed. Pharmacother., 2020, 126, 110086.
[http://dx.doi.org/10.1016/j.biopha.2020.110086] [PMID: 32172060]
[21]
Sokratous, G.; Polyzoidis, S.; Ashkan, K. Immune infiltration of tumor microenvironment following immunotherapy for glioblastoma multiforme. Hum. Vaccin. Immunother., 2017, 13(11), 2575-2582.
[http://dx.doi.org/10.1080/21645515.2017.1303582] [PMID: 28362548]
[22]
Gieryng, A.; Pszczolkowska, D.; Walentynowicz, K.A.; Rajan, W.D.; Kaminska, B. Immune microenvironment of gliomas. Lab. Invest., 2017, 97(5), 498-518.
[http://dx.doi.org/10.1038/labinvest.2017.19] [PMID: 28287634]
[23]
Pachocki, C.J.; Hol, E.M. Current perspectives on diffuse midline glioma and a different role for the immune microenvironment compared to glioblastoma. J. Neuroinflammation, 2022, 19(1), 276.
[http://dx.doi.org/10.1186/s12974-022-02630-8] [PMID: 36403059]
[24]
Tomaszewski, W.; Sanchez-Perez, L.; Gajewski, T.F.; Sampson, J.H. Brain tumor microenvironment and host state: Implications for immunotherapy. Clin. Cancer Res., 2019, 25(14), 4202-4210.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1627] [PMID: 30804019]
[25]
Codrici, E.; Popescu, I.D.; Tanase, C.; Enciu, A.M. Friends with benefits: Chemokines, glioblastoma-associated microglia/macrophages, and tumor microenvironment. Int. J. Mol. Sci., 2022, 23(5), 2509.
[http://dx.doi.org/10.3390/ijms23052509] [PMID: 35269652]
[26]
Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci., 2016, 19(1), 20-27.
[http://dx.doi.org/10.1038/nn.4185] [PMID: 26713745]
[27]
Brown, N.F.; Carter, T.J.; Ottaviani, D.; Mulholland, P. Harnessing the immune system in glioblastoma. Br. J. Cancer, 2018, 119(10), 1171-1181.
[http://dx.doi.org/10.1038/s41416-018-0258-8] [PMID: 30393372]
[28]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[29]
Grégoire, H.; Roncali, L.; Rousseau, A.; Chérel, M.; Delneste, Y.; Jeannin, P.; Hindré, F.; Garcion, E. Targeting tumor associated macrophages to overcome conventional treatment resistance in glioblastoma. Front. Pharmacol., 2020, 11, 368.
[http://dx.doi.org/10.3389/fphar.2020.00368] [PMID: 32322199]
[30]
Buonfiglioli, A.; Hambardzumyan, D. Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathol. Commun., 2021, 9(1), 54.
[http://dx.doi.org/10.1186/s40478-021-01156-z] [PMID: 33766119]
[31]
Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, 229(2), 176-185.
[http://dx.doi.org/10.1002/path.4133] [PMID: 23096265]
[32]
Virtuoso, A.; Giovannoni, R.; De Luca, C.; Gargano, F.; Cerasuolo, M.; Maggio, N.; Lavitrano, M.; Papa, M. The glioblastoma microenvironment: Morphology, metabolism, and molecular signature of glial dynamics to discover metabolic rewiring sequence. Int. J. Mol. Sci., 2021, 22(7), 3301.
[http://dx.doi.org/10.3390/ijms22073301] [PMID: 33804873]
[33]
Matias, D.; Balça-Silva, J.; da Graça, G.C.; Wanjiru, C.M.; Macharia, L.W.; Nascimento, C.P.; Roque, N.R.; Coelho-Aguiar, J.M.; Pereira, C.M.; Dos Santos, M.F.; Pessoa, L.S.; Lima, F.R.S.; Schanaider, A.; Ferrer, V.P.; Moura-Neto, V. Microglia/astrocytes–glioblastoma crosstalk: Crucial molecular mechanisms and microenvironmental factors. Front. Cell. Neurosci., 2018, 12, 235.
[http://dx.doi.org/10.3389/fncel.2018.00235] [PMID: 30123112]
[34]
Roesch, S.; Rapp, C.; Dettling, S.; Herold-Mende, C. When immune cells turn bad—tumor-associated microglia/macrophages in glioma. Int. J. Mol. Sci., 2018, 19(2), 436.
[http://dx.doi.org/10.3390/ijms19020436] [PMID: 29389898]
[35]
Perelroizen, R.; Philosof, B.; Budick-Harmelin, N.; Chernobylsky, T.; Ron, A.; Katzir, R.; Shimon, D.; Tessler, A.; Adir, O.; Gaoni-Yogev, A.; Meyer, T.; Krivitsky, A.; Shidlovsky, N.; Madi, A.; Ruppin, E.; Mayo, L. Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain, 2022, 145(9), 3288-3307.
[http://dx.doi.org/10.1093/brain/awac222] [PMID: 35899587]
[36]
Wu, A.; Wei, J.; Kong, L.Y.; Wang, Y.; Priebe, W.; Qiao, W.; Sawaya, R.; Heimberger, A.B. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncol., 2010, 12(11), 1113-1125.
[http://dx.doi.org/10.1093/neuonc/noq082] [PMID: 20667896]
[37]
Durafourt, B.A.; Moore, C.S.; Zammit, D.A.; Johnson, T.A.; Zaguia, F.; Guiot, M.C.; Bar-Or, A.; Antel, J.P. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia, 2012, 60(5), 717-727.
[http://dx.doi.org/10.1002/glia.22298] [PMID: 22290798]
[38]
Iriki, T.; Ohnishi, K.; Fujiwara, Y.; Horlad, H.; Saito, Y.; Pan, C.; Ikeda, K.; Mori, T.; Suzuki, M.; Ichiyasu, H.; Kohrogi, H.; Takeya, M.; Komohara, Y. The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation. Lung Cancer, 2017, 106, 22-32.
[http://dx.doi.org/10.1016/j.lungcan.2017.01.003] [PMID: 28285690]
[39]
Mostofa, A.G.M.; Punganuru, S.R.; Madala, H.R.; Al-Obaide, M.; Srivenugopal, K.S. The process and regulatory components of inflammation in brain oncogenesis. Biomolecules, 2017, 7(4), 34.
[http://dx.doi.org/10.3390/biom7020034] [PMID: 28346397]
[40]
Kai, K.; Komohara, Y.; Esumi, S.; Fujiwara, Y.; Yamamoto, T.; Uekawa, K.; Ohta, K.; Takezaki, T.; Kuroda, J.; Shinojima, N.; Hamasaki, T.; Mukasa, A. Macrophage/microglia-derived IL-1β induces glioblastoma growth via the STAT3/NF-κB pathway. Hum. Cell, 2022, 35(1), 226-237.
[http://dx.doi.org/10.1007/s13577-021-00619-8] [PMID: 34591282]
[41]
Tarassishin, L.; Lim, J.; Weatherly, D.B.; Angeletti, R.H.; Lee, S.C. Interleukin-1-induced changes in the glioblastoma secretome suggest its role in tumor progression. J. Proteomics, 2014, 99, 152-168.
[http://dx.doi.org/10.1016/j.jprot.2014.01.024] [PMID: 24503185]
[42]
Yeung, Y.T.; McDonald, K.L.; Grewal, T.; Munoz, L. Interleukins in glioblastoma pathophysiology: Implications for therapy. Br. J. Pharmacol., 2013, 168(3), 591-606.
[http://dx.doi.org/10.1111/bph.12008] [PMID: 23062197]
[43]
Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol., 2019, 94, 112-120.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.004] [PMID: 31077796]
[44]
Widodo, S.S.; Dinevska, M.; Furst, L.M.; Stylli, S.S.; Mantamadiotis, T. IL-10 in glioma. Br. J. Cancer, 2021, 125(11), 1466-1476.
[http://dx.doi.org/10.1038/s41416-021-01515-6] [PMID: 34349251]
[45]
Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol. Rev., 2008, 222(1), 155-161.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00607.x] [PMID: 18364000]
[46]
Bellora, F.; Castriconi, R.; Dondero, A.; Reggiardo, G.; Moretta, L.; Mantovani, A.; Moretta, A.; Bottino, C. The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc. Natl. Acad. Sci., 2010, 107(50), 21659-21664.
[http://dx.doi.org/10.1073/pnas.1007654108] [PMID: 21118979]
[47]
Galdiero, M.R.; Garlanda, C.; Jaillon, S.; Marone, G.; Mantovani, A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell. Physiol., 2013, 228(7), 1404-1412.
[http://dx.doi.org/10.1002/jcp.24260] [PMID: 23065796]
[48]
Ho, I.A.W.; Shim, W.S.N. Contribution of the microenvironmental niche to glioblastoma heterogeneity. BioMed Res. Int., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/9634172] [PMID: 28630875]
[49]
Wang, J.; Leavenworth, J.W.; Hjelmeland, A.B.; Smith, R.; Patel, N.; Borg, B.; Si, Y.; King, P.H. Deletion of the RNA regulator HuR in tumor-associated microglia and macrophages stimulates anti-tumor immunity and attenuates glioma growth. Glia, 2019, 67(12), 2424-2439.
[http://dx.doi.org/10.1002/glia.23696] [PMID: 31400163]
[50]
Bejarano, L.; Jordāo, M.J.C.; Joyce, J.A. Therapeutic targeting of the tumor microenvironment. Cancer Discov., 2021, 11(4), 933-959.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1808] [PMID: 33811125]
[51]
Cui, X.; Morales, R.T.T.; Qian, W.; Wang, H.; Gagner, J.P.; Dolgalev, I.; Placantonakis, D.; Zagzag, D.; Cimmino, L.; Snuderl, M.; Lam, R.H.W.; Chen, W. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials, 2018, 161, 164-178.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.053] [PMID: 29421553]
[52]
Lepore, F.; D’Alessandro, G.; Antonangeli, F.; Santoro, A.; Esposito, V.; Limatola, C.; Trettel, F. CXCL16/CXCR6 axis drives microglia/macrophages phenotype in physiological conditions and plays a crucial role in glioma. Front. Immunol., 2018, 9, 2750.
[http://dx.doi.org/10.3389/fimmu.2018.02750] [PMID: 30542347]
[53]
Ni, B.; Huang, G.; Yang, R.; Wang, Z.; Song, H.; Li, K.; Zhang, Y.; Wu, K.; Shi, G.; Wang, X.; Shen, J.; Liu, Y. The short isoform of MS4A7 is a novel player in glioblastoma microenvironment, M2 macrophage polarization, and tumor progression. J. Neuroinflammation, 2023, 20(1), 80.
[http://dx.doi.org/10.1186/s12974-023-02766-1] [PMID: 36944954]
[54]
Zha, C.; Meng, X.; Li, L.; Mi, S.; Qian, D.; Li, Z.; Wu, P.; Hu, S.; Zhao, S.; Cai, J.; Liu, Y. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol. Med., 2020, 17(1), 154-168.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0353] [PMID: 32296583]
[55]
Ma, J.; Chen, C.C.; Li, M. Macrophages/microglia in the glioblastoma tumor microenvironment. Int. J. Mol. Sci., 2021, 22(11), 5775.
[http://dx.doi.org/10.3390/ijms22115775] [PMID: 34071306]
[56]
Zhang, J.; Sarkar, S.; Cua, R.; Zhou, Y.; Hader, W.; Yong, V.W. A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis, 2012, 33(2), 312-319.
[http://dx.doi.org/10.1093/carcin/bgr289] [PMID: 22159219]
[57]
Vakilian, A.; Khorramdelazad, H.; Heidari, P.; Sheikh Rezaei, Z.; Hassanshahi, G. CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem. Int., 2017, 103, 1-7.
[http://dx.doi.org/10.1016/j.neuint.2016.12.013] [PMID: 28025034]
[58]
Henrik Heiland, D.; Ravi, V.M.; Behringer, S.P.; Frenking, J.H.; Wurm, J.; Joseph, K.; Garrelfs, N.W.C.; Strähle, J.; Heynckes, S.; Grauvogel, J.; Franco, P.; Mader, I.; Schneider, M.; Potthoff, A.L.; Delev, D.; Hofmann, U.G.; Fung, C.; Beck, J.; Sankowski, R.; Prinz, M.; Schnell, O. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun., 2019, 10(1), 2541.
[http://dx.doi.org/10.1038/s41467-019-10493-6] [PMID: 31186414]
[59]
Gagliano, N.; Costa, F.; Cossetti, C.; Pettinari, L.; Bassi, R.; Chiriva-Internati, M.; Cobos, E.; Gioia, M.; Pluchino, S. Glioma-astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model. Oncol. Rep., 2009, 22(6), 1349-1356.
[http://dx.doi.org/10.3892/or_00000574] [PMID: 19885586]
[60]
Sin, W.C.; Aftab, Q.; Bechberger, J.F.; Leung, J.H.; Chen, H.; Naus, C.C. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene, 2016, 35(12), 1504-1516.
[http://dx.doi.org/10.1038/onc.2015.210] [PMID: 26165844]
[61]
Di Virgilio, F. Purines, purinergic receptors, and cancer. Cancer Res., 2012, 72(21), 5441-5447.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1600] [PMID: 23090120]
[62]
Kang, J.; Kang, N.; Lovatt, D.; Torres, A.; Zhao, Z.; Lin, J.; Nedergaard, M. Connexin 43 hemichannels are permeable to ATP. J. Neurosci., 2008, 28(18), 4702-4711.
[http://dx.doi.org/10.1523/JNEUROSCI.5048-07.2008] [PMID: 18448647]
[63]
Sofroniew, M.V. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist, 2014, 20(2), 160-172.
[http://dx.doi.org/10.1177/1073858413504466] [PMID: 24106265]
[64]
Zhu, W.; Carney, K.E.; Pigott, V.M.; Falgoust, L.M.; Clark, P.A.; Kuo, J.S.; Sun, D. Glioma-mediated microglial activation promotes glioma proliferation and migration: Roles of Na + /H + exchanger isoform 1. Carcinogenesis, 2016, 37(9), 839-851.
[http://dx.doi.org/10.1093/carcin/bgw068] [PMID: 27287871]
[65]
Graeber, M.B.; Scheithauer, B.W.; Kreutzberg, G.W. Microglia in brain tumors. Glia, 2002, 40(2), 252-259.
[http://dx.doi.org/10.1002/glia.10147] [PMID: 12379912]
[66]
Li-Rong, L.; Jia-Chen, L.; Jin-Shuang, B.; Qin-Qin, B.; Gai-Qing, W. Interaction of microglia and astrocytes in the neurovascular unit. Front. Immunol., 2020, 11, 1024.
[67]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[68]
Sriram, K.; O’Callaghan, J.P. Divergent roles for tumor necrosis factor-α in the brain. J. Neuroimmune Pharmacol., 2007, 2(2), 140-153.
[http://dx.doi.org/10.1007/s11481-007-9070-6] [PMID: 18040839]
[69]
Mangogna, A.; Agostinis, C.; Bonazza, D.; Belmonte, B.; Zacchi, P.; Zito, G.; Romano, A.; Zanconati, F.; Ricci, G.; Kishore, U.; Bulla, R. Is the complement protein C1q a pro- or anti-tumorigenic factor? bioinformatics analysis involving human carcinomas. Front. Immunol., 2019, 10, 865.
[http://dx.doi.org/10.3389/fimmu.2019.00865] [PMID: 31130944]
[70]
Oushy, S.; Hellwinkel, J.E.; Wang, M.; Nguyen, G.J.; Gunaydin, D.; Harland, T.A.; Anchordoquy, T.J.; Graner, M.W. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1737), 20160477.
[http://dx.doi.org/10.1098/rstb.2016.0477] [PMID: 29158308]
[71]
Sahlender, D.A.; Savtchouk, I.; Volterra, A. What do we know about gliotransmitter release from astrocytes? Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1654), 20130592.
[http://dx.doi.org/10.1098/rstb.2013.0592] [PMID: 25225086]
[72]
Huang, J.Y.; Cheng, Y.J.; Lin, Y.P.; Lin, H.C.; Su, C.C.; Juliano, R.; Yang, B.C. Extracellular matrix of glioblastoma inhibits polarization and transmigration of T cells: The role of tenascin-C in immune suppression. J. Immunol., 2010, 185(3), 1450-1459.
[http://dx.doi.org/10.4049/jimmunol.0901352] [PMID: 20622113]
[73]
Swiatek-Machado, K.; Kaminska, B. STAT signaling in glioma cells. Adv. Exp. Med. Biol., 2013, 986, 189-208.
[http://dx.doi.org/10.1007/978-94-007-4719-7_10] [PMID: 22879070]
[74]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[75]
Wei, J.; Barr, J.; Kong, L.Y.; Wang, Y.; Wu, A.; Sharma, A.K.; Gumin, J.; Henry, V.; Colman, H.; Priebe, W.; Sawaya, R.; Lang, F.F.; Heimberger, A.B. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol. Cancer Ther., 2010, 9(1), 67-78.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0734] [PMID: 20053772]
[76]
Chautard, E.; Ouédraogo, Z.G.; Biau, J.; Verrelle, P. Role of Akt in human malignant glioma: From oncogenesis to tumor aggressiveness. J. Neurooncol., 2014, 117(2), 205-215.
[http://dx.doi.org/10.1007/s11060-014-1382-9] [PMID: 24477623]
[77]
Kim, J.K.; Jin, X.; Sohn, Y.W.; Jin, X.; Jeon, H.Y.; Kim, E.J.; Ham, S.W.; Jeon, H.M.; Chang, S.Y.; Oh, S.Y.; Yin, J.; Kim, S.H.; Park, J.B.; Nakano, I.; Kim, H. Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling. Cancer Lett., 2014, 353(2), 194-200.
[http://dx.doi.org/10.1016/j.canlet.2014.07.034] [PMID: 25079688]
[78]
Li, K.; Li, J.; Zheng, J.; Qin, S. Reactive astrocytes in neurodegenerative diseases. Aging Dis., 2019, 10(3), 664-675.
[http://dx.doi.org/10.14336/AD.2018.0720] [PMID: 31165009]
[79]
Chen, W.; Xia, T.; Wang, D.; Huang, B.; Zhao, P.; Wang, J.; Qu, X.; Li, X. Human astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of cytomembrane MMP14. Oncotarget, 2016, 7(38), 62425-62438.
[http://dx.doi.org/10.18632/oncotarget.11515] [PMID: 27613828]
[80]
Nicolas, C.S.; Amici, M.; Bortolotto, Z.A.; Doherty, A.; Csaba, Z.; Fafouri, A.; Dournaud, P.; Gressens, P.; Collingridge, G.L.; Peineau, S. The role of JAK-STAT signaling within the CNS. JAK-STAT, 2013, 2(1), e22925.
[http://dx.doi.org/10.4161/jkst.22925] [PMID: 24058789]
[81]
Shabtay-Orbach, A.; Amit, M.; Binenbaum, Y.; Na’ara, S.; Gil, Z. Paracrine regulation of glioma cells invasion by astrocytes is mediated by glial-derived neurotrophic factor. Int. J. Cancer, 2015, 137(5), 1012-1020.
[http://dx.doi.org/10.1002/ijc.29380] [PMID: 25487790]
[82]
Senft, C.; Priester, M.; Polacin, M.; Schröder, K.; Seifert, V.; Kögel, D.; Weissenberger, J. Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells. J. Neurooncol., 2011, 101(3), 393-403.
[http://dx.doi.org/10.1007/s11060-010-0273-y] [PMID: 20589525]
[83]
Semenza, G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol., 2014, 9(1), 47-71.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104720] [PMID: 23937437]
[84]
Corzo, C.A.; Condamine, T.; Lu, L.; Cotter, M.J.; Youn, J.I.; Cheng, P.; Cho, H.I.; Celis, E.; Quiceno, D.G.; Padhya, T.; McCaffrey, T.V.; McCaffrey, J.C.; Gabrilovich, D.I. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med., 2010, 207(11), 2439-2453.
[http://dx.doi.org/10.1084/jem.20100587] [PMID: 20876310]
[85]
Harris, A.J.; Thompson, A.R.; Whyte, M.K.; Walmsley, S.R. HIF-mediated innate immune responses: Cell signaling and therapeutic implications. Hypoxia., 2014, 2, 47-58.
[PMID: 27774466]
[86]
Guo, X.; Xue, H.; Shao, Q.; Wang, J.; Guo, X.; Chen, X.; Zhang, J.; Xu, S.; Li, T.; Zhang, P.; Gao, X.; Qiu, W.; Liu, Q.; Li, G. Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget, 2016, 7(49), 80521-80542.
[http://dx.doi.org/10.18632/oncotarget.11825] [PMID: 27602954]
[87]
Almiron Bonnin, D.A.; Havrda, M.C.; Lee, M.C.; Liu, H.; Zhang, Z.; Nguyen, L.N.; Harrington, L.X.; Hassanpour, S.; Cheng, C.; Israel, M.A. Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene, 2018, 37(8), 1107-1118.
[http://dx.doi.org/10.1038/onc.2017.404] [PMID: 29155422]
[88]
Ooi, Y.C.; Tran, P.; Ung, N.; Thill, K.; Trang, A.; Fong, B.M.; Nagasawa, D.T.; Lim, M.; Yang, I. The role of regulatory T-cells in glioma immunology. Clin. Neurol. Neurosurg., 2014, 119, 125-132.
[http://dx.doi.org/10.1016/j.clineuro.2013.12.004] [PMID: 24582432]
[89]
Yamagiwa, S.; Gray, J.D.; Hashimoto, S.; Horwitz, D.A. A role for TGF-β in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol., 2001, 166(12), 7282-7289.
[http://dx.doi.org/10.4049/jimmunol.166.12.7282] [PMID: 11390478]
[90]
Liu, S.; Zhang, C.; Wang, B.; Zhang, H.; Qin, G.; Li, C.; Cao, L.; Gao, Q.; Ping, Y.; Zhang, K.; Lian, J.; Zhao, Q.; Wang, D.; Zhang, Z.; Zhao, X.; Yang, L.; Huang, L.; Yang, B.; Zhang, Y. Regulatory T cells promote glioma cell stemness through TGF-β–NF-κB–IL6–STAT3 signaling. Cancer Immunol. Immunother., 2021, 70(9), 2601-2616.
[http://dx.doi.org/10.1007/s00262-021-02872-0] [PMID: 33576874]
[91]
Paluskievicz, C.M.; Cao, X.; Abdi, R.; Zheng, P.; Liu, Y.; Bromberg, J.S. T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol., 2019, 10, 2453.
[http://dx.doi.org/10.3389/fimmu.2019.02453] [PMID: 31681327]
[92]
Armitage, J.D.; Newnes, H.V.; McDonnell, A.; Bosco, A.; Waithman, J. Fine-tuning the tumour microenvironment: Current perspectives on the mechanisms of tumour immunosuppression. Cells, 2021, 10(1), 56.
[http://dx.doi.org/10.3390/cells10010056] [PMID: 33401460]
[93]
Xu, L.; Xiao, H.; Xu, M.; Zhou, C.; Yi, L.; Liang, H. Glioma-derived T cell immunoglobulin- and mucin domain-containing molecule-4 (TIM4) contributes to tumor tolerance. J. Biol. Chem., 2011, 286(42), 36694-36699.
[http://dx.doi.org/10.1074/jbc.M111.292540] [PMID: 21896488]
[94]
Wang, H.; Zhou, H.; Xu, J.; Lu, Y.; Ji, X.; Yao, Y.; Chao, H.; Zhang, J.; Zhang, X.; Yao, S.; Wu, Y.; Wan, J. Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy. Cancer Lett., 2021, 496, 134-143.
[http://dx.doi.org/10.1016/j.canlet.2020.09.028] [PMID: 33022290]
[95]
Colwell, N.; Larion, M.; Giles, A.J.; Seldomridge, A.N.; Sizdahkhani, S.; Gilbert, M.R.; Park, D.M. Hypoxia in the glioblastoma microenvironment: Shaping the phenotype of cancer stem-like cells. Neuro-oncol., 2017, 19(7), 887-896.
[http://dx.doi.org/10.1093/neuonc/now258] [PMID: 28339582]
[96]
Schaaf, M.B.; Garg, A.D.; Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis., 2018, 9(2), 115.
[http://dx.doi.org/10.1038/s41419-017-0061-0] [PMID: 29371595]
[97]
Mi, Y.; Guo, N.; Luan, J.; Cheng, J.; Hu, Z.; Jiang, P.; Jin, W.; Gao, X. The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment. Front. Immunol., 2020, 11, 737.
[http://dx.doi.org/10.3389/fimmu.2020.00737] [PMID: 32391020]
[98]
Tomić, S.; Joksimović, B.; Bekić, M.; Vasiljević, M.; Milanović, M.; Čolić, M.; Vučević, D. Prostaglanin-E2 potentiates the suppressive functions of human mononuclear myeloid-derived suppressor cells and increases their capacity to expand IL-10-producing regulatory T cell subsets. Front. Immunol., 2019, 10, 475.
[http://dx.doi.org/10.3389/fimmu.2019.00475] [PMID: 30936876]
[99]
Chang, A.L.; Miska, J.; Wainwright, D.A.; Dey, M.; Rivetta, C.V.; Yu, D.; Kanojia, D.; Pituch, K.C.; Qiao, J.; Pytel, P.; Han, Y.; Wu, M.; Zhang, L.; Horbinski, C.M.; Ahmed, A.U.; Lesniak, M.S. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res., 2016, 76(19), 5671-5682.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0144] [PMID: 27530322]
[100]
Otvos, B.; Silver, D.J.; Mulkearns-Hubert, E.E.; Alvarado, A.G.; Turaga, S.M.; Sorensen, M.D.; Rayman, P.; Flavahan, W.A.; Hale, J.S.; Stoltz, K.; Sinyuk, M.; Wu, Q.; Jarrar, A.; Kim, S.H.; Fox, P.L.; Nakano, I.; Rich, J.N.; Ransohoff, R.M.; Finke, J.; Kristensen, B.W.; Vogelbaum, M.A.; Lathia, J.D. Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells, 2016, 34(8), 2026-2039.
[http://dx.doi.org/10.1002/stem.2393] [PMID: 27145382]
[101]
Sánchez-León, M.L.; Jiménez-Cortegana, C.; Cabrera, G.; Vermeulen, E.M.; de la Cruz-Merino, L.; Sánchez-Margalet, V. The effects of dendritic cell-based vaccines in the tumor microenvironment: Impact on myeloid-derived suppressor cells. Front. Immunol., 2022, 13, 1050484.
[http://dx.doi.org/10.3389/fimmu.2022.1050484] [PMID: 36458011]
[102]
Martinez, F.O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front. Biosci., 2008, 13(13), 453-461.
[http://dx.doi.org/10.2741/2692] [PMID: 17981560]
[103]
Lapeyre-Prost, A.; Terme, M.; Pernot, S.; Pointet, A.L.; Voron, T.; Tartour, E.; Taieb, J. Immunomodulatory activity of VEGF in cancer. Int. Rev. Cell Mol. Biol., 2017, 330, 295-342.
[http://dx.doi.org/10.1016/bs.ircmb.2016.09.007] [PMID: 28215534]
[104]
Ostrand-Rosenberg, S.; Sinha, P.; Beury, D.W.; Clements, V.K. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin. Cancer Biol., 2012, 22(4), 275-281.
[http://dx.doi.org/10.1016/j.semcancer.2012.01.011] [PMID: 22313874]
[105]
Vallée, A.; Guillevin, R.; Vallée, J.N. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev. Neurosci., 2017, 29(1), 71-91.
[http://dx.doi.org/10.1515/revneuro-2017-0032] [PMID: 28822229]
[106]
Samaras, V.; Piperi, C.; Levidou, G.; Zisakis, A.; Kavantzas, N.; Themistocleous, M.S.; Boviatsis, E.I.; Barbatis, C.; Lea, R.W.; Kalofoutis, A.; Korkolopoulou, P. Analysis of interleukin (IL)-8 expression in human astrocytomas: Associations with IL-6, cyclooxygenase-2, vascular endothelial growth factor, and microvessel morphometry. Hum. Immunol., 2009, 70(6), 391-397.
[http://dx.doi.org/10.1016/j.humimm.2009.03.011] [PMID: 19332096]
[107]
Blank, A.; Kremenetskaia, I.; Urbantat, R.M.; Acker, G.; Turkowski, K.; Radke, J.; Schneider, U.C.; Vajkoczy, P.; Brandenburg, S. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. J. Pathol., 2021, 253(2), 160-173.
[http://dx.doi.org/10.1002/path.5569] [PMID: 33044746]
[108]
Taylor, C.T.; Cummins, E.P. The role of NF-kappaB in hypoxia-induced gene expression. Ann. N. Y. Acad. Sci., 2009, 1177(1), 178-184.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05024.x] [PMID: 19845620]
[109]
Sharma, V.; Dixit, D.; Koul, N.; Mehta, V.S.; Sen, E. Ras regulates interleukin-1β-induced HIF-1α transcriptional activity in glioblastoma. J. Mol. Med., 2011, 89(2), 123-136.
[http://dx.doi.org/10.1007/s00109-010-0683-5] [PMID: 20865400]
[110]
Kaluz, S.; Van Meir, E.G. At the crossroads of cancer and inflammation: Ras rewires an HIF-driven IL-1 autocrine loop. J. Mol. Med., 2011, 89(2), 91-94.
[http://dx.doi.org/10.1007/s00109-010-0706-2] [PMID: 21161499]
[111]
Sun, W.; Depping, R.; Jelkmann, W. Interleukin-1β promotes hypoxia-induced apoptosis of glioblastoma cells by inhibiting hypoxia-inducible factor-1 mediated adrenomedullin production. Cell Death Dis., 2014, 5(1), e1020-e1020.
[http://dx.doi.org/10.1038/cddis.2013.562] [PMID: 24457964]
[112]
Döring, Y.; Pawig, L.; Weber, C.; Noels, H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front. Physiol., 2014, 5, 212.
[PMID: 24966838]
[113]
Richardson, J.P. CXCR4 and glioblastoma. Anticancer. Agents Med. Chem., 2015, 16(1), 59-74.
[http://dx.doi.org/10.2174/1871520615666150824153032]
[114]
Yadav, V.N.; Zamler, D.; Baker, G.J.; Kadiyala, P.; Erdreich-Epstein, A.; DeCarvalho, A.C.; Mikkelsen, T.; Castro, M.G.; Lowenstein, P.R. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget, 2016, 7(50), 83701-83719.
[http://dx.doi.org/10.18632/oncotarget.13295] [PMID: 27863376]
[115]
Stevenson, C.B.; Ehtesham, M.; McMillan, K.M.; Valadez, J.G.; Edgeworth, M.L.; Price, R.R.; Abel, T.W.; Mapara, K.Y.; Thompson, R.C. CXCR4 expression is elevated in glioblastoma multiforme and correlates with an increase in intensity and extent of peritumoral T2-weighted magnetic resonance imaging signal abnormalities. Neurosurgery, 2008, 63(3), 560-570.
[http://dx.doi.org/10.1227/01.NEU.0000324896.26088.EF] [PMID: 18812968]
[116]
Cheng, X.; Wang, H.; Zhang, X.; Zhao, S.; Zhou, Z.; Mu, X.; Zhao, C.; Teng, W. The Role of SDF-1/CXCR4/CXCR7 in Neuronal Regeneration after Cerebral Ischemia. Front. Neurosci., 2017, 11, 590.
[http://dx.doi.org/10.3389/fnins.2017.00590] [PMID: 29123467]
[117]
Chen, L.; Zhu, M.; Yu, S.; Hai, L.; Zhang, L.; Zhang, C.; Zhao, P.; Zhou, H.; Wang, S.; Yang, X. Arg kinase mediates CXCL12/CXCR4-induced invadopodia formation and invasion of glioma cells. Exp. Cell Res., 2020, 389(1), 111893.
[http://dx.doi.org/10.1016/j.yexcr.2020.111893] [PMID: 32035133]
[118]
Ping, Y.; Yao, X.; Jiang, J.; Zhao, L.; Yu, S.; Jiang, T.; Lin, M.C.M.; Chen, J.; Wang, B.; Zhang, R.; Cui, Y.; Qian, C.; Wang, J.M.; Bian, X. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J. Pathol., 2011, 224(3), 344-354.
[http://dx.doi.org/10.1002/path.2908] [PMID: 21618540]
[119]
Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120), 756-760.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[120]
Ye, X.; Xu, S.; Xin, Y.; Yu, S.; Ping, Y.; Chen, L.; Xiao, H.; Wang, B.; Yi, L.; Wang, Q.; Jiang, X.; Yang, L.; Zhang, P.; Qian, C.; Cui, Y.; Zhang, X.; Bian, X. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J. Immunol., 2012, 189(1), 444-453.
[http://dx.doi.org/10.4049/jimmunol.1103248] [PMID: 22664874]
[121]
Zhou, W.; Ke, S.Q.; Huang, Z.; Flavahan, W.; Fang, X.; Paul, J.; Wu, L.; Sloan, A.E.; McLendon, R.E.; Li, X.; Rich, J.N.; Bao, S. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat. Cell Biol., 2015, 17(2), 170-182.
[http://dx.doi.org/10.1038/ncb3090] [PMID: 25580734]
[122]
Boyd, N.H.; Tran, A.N.; Bernstock, J.D.; Etminan, T.; Jones, A.B.; Gillespie, G.Y.; Friedman, G.K.; Hjelmeland, A.B. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics, 2021, 11(2), 665-683.
[http://dx.doi.org/10.7150/thno.41692] [PMID: 33391498]
[123]
Samaras, V.; Piperi, C.; Korkolopoulou, P.; Zisakis, A.; Levidou, G.; Themistocleous, M.S.; Boviatsis, E.I.; Sakas, D.E.; Lea, R.W.; Kalofoutis, A.; Patsouris, E. Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol. Cell. Biochem., 2007, 304(1-2), 343-351.
[http://dx.doi.org/10.1007/s11010-007-9517-3] [PMID: 17551671]
[124]
Nijaguna, M.B.; Patil, V.; Urbach, S.; Shwetha, S.D.; Sravani, K.; Hegde, A.S.; Chandramouli, B.A.; Arivazhagan, A.; Marin, P.; Santosh, V.; Somasundaram, K. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) induces microglial release of insulin-like growth factor-binding protein 1 (IGFBP1) to promote angiogenesis. J. Biol. Chem., 2015, 290(38), 23401-23415.
[http://dx.doi.org/10.1074/jbc.M115.664037] [PMID: 26245897]
[125]
Noorani, I.; Petty, G.; Grundy, P.L.; Sharpe, G.; Willaime-Morawek, S.; Harris, S.; Thomas, G.J.; Nicoll, J.A.R.; Boche, D. Novel association between microglia and stem cells in human gliomas: A contributor to tumour proliferation? J. Pathol. Clin. Res., 2015, 1(2), 67-75.
[http://dx.doi.org/10.1002/cjp2.7] [PMID: 27499894]
[126]
Abou-Antoun, T.J.; Hale, J.S.; Lathia, J.D.; Dombrowski, S.M. Brain cancer stem cells in adults and children: Cell biology and therapeutic implications. Neurotherapeutics, 2017, 14(2), 372-384.
[http://dx.doi.org/10.1007/s13311-017-0524-0] [PMID: 28374184]
[127]
Yang, I.; Han, S.J.; Kaur, G.; Crane, C.; Parsa, A.T. The role of microglia in central nervous system immunity and glioma immunology. J. Clin. Neurosci., 2010, 17(1), 6-10.
[http://dx.doi.org/10.1016/j.jocn.2009.05.006] [PMID: 19926287]
[128]
Chen, J.; Liu, G.; Wang, X.; Hong, H.; Li, T.; Li, L.; Wang, H.; Xie, J.; Li, B.; Li, T.; Lu, D.; Zhang, Y.; Zhao, H.; Yao, C.; Wen, K.; Li, T.; Chen, J.; Wu, S.; He, K.; Zhang, W.N.; Zhao, J.; Wang, N.; Han, Q.; Xia, Q.; Qi, J.; Chen, J.; Zhou, T.; Man, J.; Zhang, X.M.; Li, A.L.; Pan, X. Glioblastoma stem cell-specific histamine secretion drives pro-angiogenic tumor microenvironment remodeling. Cell Stem Cell, 2022, 29(11), 1531-1546.e7.
[http://dx.doi.org/10.1016/j.stem.2022.09.009] [PMID: 36265493]
[129]
Puebla, M.; Tapia, P.J.; Espinoza, H. Key role of astrocytes in postnatal brain and retinal angiogenesis. Int. J. Mol. Sci., 2022, 23(5), 2646.
[http://dx.doi.org/10.3390/ijms23052646] [PMID: 35269788]
[130]
Vollmann-Zwerenz, A.; Leidgens, V.; Feliciello, G.; Klein, C.A.; Hau, P. Tumor cell invasion in glioblastoma. Int. J. Mol. Sci., 2020, 21(6), 1932.
[http://dx.doi.org/10.3390/ijms21061932] [PMID: 32178267]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy