Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

肠道菌群相关代谢物在胃肠道癌症中的影响研究

卷 24, 期 6, 2024

发表于: 11 January, 2024

页: [612 - 628] 页: 17

弟呕挨: 10.2174/0115680096274860231111210214

价格: $65

摘要

胃肠道(GI)癌症由于其患病率、对福祉的影响、高死亡率、经济负担以及预防和早期发现的潜力而成为一个主要的健康问题。胃肠道癌症研究在了解生物学、风险因素和治疗选择方面取得了显著进展。一个新兴的研究领域是肠道微生物组在胃肠道癌症发展和治疗反应中的作用。肠道微生物群对消化、代谢和免疫功能至关重要,与胃肠道癌症的关系越来越密切。生态失调和肠道微生物组成的改变可能导致癌症的发展。科学家研究特定细菌或微生物代谢物如何影响癌症进展和治疗反应。调节肠道微生物群在提高治疗效果和预防胃肠道癌症方面显示出希望。肠道菌群失调可通过炎症、代谢物产生、遗传毒性和免疫调节影响胃肠道癌症。微生物产生代谢物,如短链脂肪酸、胆汁酸和次级代谢物。它们影响宿主细胞,影响细胞增殖、细胞凋亡、DNA损伤和免疫调节等过程,这些过程都与癌症的发展有关。本文综述了胃肠道肿瘤中肠道微生物代谢产物及其分子机制的最新研究进展。希望这一尝试将有助于开展其他相关研究,以揭示所涉及的确切机制,识别与胃肠道癌症相关的微生物特征,并开发靶点。

关键词: 微生物衍生代谢物,胃肠道癌症,双重作用,肠道微生物群,肠道微生物群失调,代谢物产生。

图形摘要
[1]
Marzhoseyni, Z.; Shayestehpour, M.; Salimian, M.; Esmaeili, D.; Saffari, M.; Fathizadeh, H. Designing a novel fusion protein from Streptococcus agalactiae with apoptosis induction effects on cervical cancer cells. Microb. Pathog., 2022, 169, 105670.
[http://dx.doi.org/10.1016/j.micpath.2022.105670] [PMID: 35809755]
[2]
Shaghaghi, Z.; Alvandi, M.; Ghanbarimasir, Z.; Farzipour, S.; Emami, S. Current development of sigma-2 receptor radioligands as potential tumor imaging agents. Bioorg. Chem., 2021, 115, 105163.
[http://dx.doi.org/10.1016/j.bioorg.2021.105163] [PMID: 34289426]
[3]
Ağagündüz, D.; Cocozza, E.; Cemali, Ö.; Bayazıt, A.D.; Nanì, M.F.; Cerqua, I.; Morgillo, F.; Saygılı, S.K.; Berni Canani, R.; Amero, P.; Capasso, R. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front. Pharmacol., 2023, 14, 1130562.
[http://dx.doi.org/10.3389/fphar.2023.1130562] [PMID: 36762108]
[4]
Wang, F.; Song, M.; Lu, X.; Zhu, X.; Deng, J. Gut microbes in gastrointestinal cancers In: Seminars in Cancer Biology; Elsevier, 2022; 82, pp. (2)967-975.
[5]
Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Dehbanpour, M.R.; Nosrati, S. A review of effects of atorvastatin in cancer therapy. Med. Oncol., 2022, 40(1), 27.
[http://dx.doi.org/10.1007/s12032-022-01892-9] [PMID: 36459301]
[6]
Tsilimigras, M.C.B.; Fodor, A.; Jobin, C. Carcinogenesis and therapeutics: The microbiota perspective. Nat. Microbiol., 2017, 2(3), 17008.
[http://dx.doi.org/10.1038/nmicrobiol.2017.8] [PMID: 28225000]
[7]
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[8]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[9]
Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol., 2016, 14(1), 20-32.
[http://dx.doi.org/10.1038/nrmicro3552] [PMID: 26499895]
[10]
Tözün, A. Bağırsak Mikrobiyatas: Gastrointestinal Kanserler, 2019; pp. 9-15.
[11]
Agus, A.; Clément, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 2021, 70(6), 1174-1182.
[http://dx.doi.org/10.1136/gutjnl-2020-323071] [PMID: 33272977]
[12]
Servin, A.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev., 2004, 28(4), 405-440.
[http://dx.doi.org/10.1016/j.femsre.2004.01.003] [PMID: 15374659]
[13]
Cheng, H.Y.; Ning, M.X.; Chen, D.K.; Ma, W.T. Interactions between the gut microbiota and the host innate immune response against pathogens. Front. Immunol., 2019, 10, 607.
[http://dx.doi.org/10.3389/fimmu.2019.00607] [PMID: 30984184]
[14]
Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet., 2012, 13(4), 260-270.
[http://dx.doi.org/10.1038/nrg3182] [PMID: 22411464]
[15]
von Martels, J.Z.H.; Sadaghian Sadabad, M.; Bourgonje, A.R.; Blokzijl, T.; Dijkstra, G.; Faber, K.N.; Harmsen, H.J.M. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe, 2017, 44, 3-12.
[http://dx.doi.org/10.1016/j.anaerobe.2017.01.001] [PMID: 28062270]
[16]
Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol., 2017, 14(10), 573-584.
[http://dx.doi.org/10.1038/nrgastro.2017.88] [PMID: 28743984]
[17]
Collins, S.M. A role for the gut microbiota in IBS. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 497-505.
[http://dx.doi.org/10.1038/nrgastro.2014.40] [PMID: 24751910]
[18]
de Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol., 2012, 13(6), 607-615.
[http://dx.doi.org/10.1016/S1470-2045(12)70137-7] [PMID: 22575588]
[19]
Hsiao, Y.C.; Liu, C.W.; Chi, L.; Yang, Y.; Lu, K. Effects of gut microbiome on carcinogenic DNA damage. Chem. Res. Toxicol., 2020, 33(8), 2130-2138.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00142] [PMID: 32677427]
[20]
Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016, 7(3), 189-200.
[http://dx.doi.org/10.1080/19490976.2015.1134082] [PMID: 26963409]
[21]
Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 2003, 62(1), 67-72.
[http://dx.doi.org/10.1079/PNS2002207] [PMID: 12740060]
[22]
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[23]
Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, 341(6145), 569-573.
[http://dx.doi.org/10.1126/science.1241165] [PMID: 23828891]
[24]
Chambers, E.S.; Morrison, D.J.; Frost, G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc. Nutr. Soc., 2015, 74(3), 328-336.
[http://dx.doi.org/10.1017/S0029665114001657] [PMID: 25497601]
[25]
Kim, C.H. Microbiota or short-chain fatty acids: which regulates diabetes? Cell. Mol. Immunol., 2018, 15(2), 88-91.
[http://dx.doi.org/10.1038/cmi.2017.57] [PMID: 28713163]
[26]
Hu, J.; Lin, S.; Zheng, B.; Cheung, P.C.K. Short-chain fatty acids in control of energy metabolism. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1243-1249.
[http://dx.doi.org/10.1080/10408398.2016.1245650] [PMID: 27786539]
[27]
Yao, Y.; Cai, X.; Fei, W.; Ye, Y.; Zhao, M.; Zheng, C. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit. Rev. Food Sci. Nutr., 2022, 62(1), 1-12.
[http://dx.doi.org/10.1080/10408398.2020.1854675] [PMID: 33261516]
[28]
Kimura, I.; Miyamoto, J.; Ohue-Kitano, R.; Watanabe, K.; Yamada, T.; Onuki, M.; Aoki, R.; Isobe, Y.; Kashihara, D.; Inoue, D.; Inaba, A.; Takamura, Y.; Taira, S.; Kumaki, S.; Watanabe, M.; Ito, M.; Nakagawa, F.; Irie, J.; Kakuta, H.; Shinohara, M.; Iwatsuki, K.; Tsujimoto, G.; Ohno, H.; Arita, M.; Itoh, H.; Hase, K. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science, 2020, 367(6481), eaaw8429.
[http://dx.doi.org/10.1126/science.aaw8429] [PMID: 32108090]
[29]
Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther., 2008, 27(2), 104-119.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x] [PMID: 17973645]
[30]
Davie, J.R. Inhibition of histone deacetylase activity by butyrate. J. Nutr., 2003, 133(7)(Suppl.), 2485S-2493S.
[http://dx.doi.org/10.1093/jn/133.7.2485S] [PMID: 12840228]
[31]
Segain, J-P.; Raingeard de la Blétière, D.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C.; Ferrier, L.; Bonnet, C.; Blottière, H.M.; Galmiche, J.P. Butyrate inhibits inflammatory responses through NFkappa B inhibition: Implications for Crohn’s disease. Gut, 2000, 47(3), 397-403.
[http://dx.doi.org/10.1136/gut.47.3.397] [PMID: 10940278]
[32]
Singh, N.; Thangaraju, M.; Prasad, P.D.; Martin, P.M.; Lambert, N.A.; Boettger, T.; Offermanns, S.; Ganapathy, V. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J. Biol. Chem., 2010, 285(36), 27601-27608.
[http://dx.doi.org/10.1074/jbc.M110.102947] [PMID: 20601425]
[33]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[34]
Klampfer, L.; Huang, J.; Sasazuki, T.; Shirasawa, S.; Augenlicht, L. Inhibition of interferon γ signaling by the short chain fatty acid butyrate. Mol. Cancer Res., 2003, 1(11), 855-862.
[PMID: 14517348]
[35]
Zimmerman, M.A.; Singh, N.; Martin, P.M.; Thangaraju, M.; Ganapathy, V.; Waller, J.L.; Shi, H.; Robertson, K.D.; Munn, D.H.; Liu, K. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(12), G1405-G1415.
[http://dx.doi.org/10.1152/ajpgi.00543.2011] [PMID: 22517765]
[36]
Kumar, S.; Babu, B. A brief review on propionic acid: A renewal energy source. National Conference on Environmental Conservation (NCEC-2006), 2006.
[37]
Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol., 2017, 19(1), 29-41.
[http://dx.doi.org/10.1111/1462-2920.13589] [PMID: 27928878]
[38]
Nishina, P.M.; Freedland, R.A. Effects of propionate on lipid biosynthesis in isolated rat hepatocytes. J. Nutr., 1990, 120(7), 668-673.
[http://dx.doi.org/10.1093/jn/120.7.668] [PMID: 2366102]
[39]
Rondeau, M.P.; Meltzer, K.; Michel, K.E.; McManus, C.M.; Washabau, R.J. Short chain fatty acids stimulate feline colonic smooth muscle contraction. J. Feline Med. Surg., 2003, 5(3), 167-173.
[http://dx.doi.org/10.1016/S1098-612X(03)00002-0] [PMID: 12765627]
[40]
Zeng, X.; Sunkara, L.T.; Jiang, W.; Bible, M.; Carter, S.; Ma, X.; Qiao, S.; Zhang, G. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS One, 2013, 8(8), e72922.
[http://dx.doi.org/10.1371/journal.pone.0072922] [PMID: 24023657]
[41]
Tedelind, S.; Westberg, F.; Kjerrulf, M.; Vidal, A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World J. Gastroenterol., 2007, 13(20), 2826-2832.
[http://dx.doi.org/10.3748/wjg.v13.i20.2826] [PMID: 17569118]
[42]
Nishida, A.; Miyamoto, J.; Shimizu, H.; Kimura, I. Gut microbial short-chain fatty acids-mediated olfactory receptor 78 stimulation promotes anorexigenic gut hormone peptide YY secretion in mice. Biochem. Biophys. Res. Commun., 2021, 557, 48-54.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.167] [PMID: 33862459]
[43]
Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 2012, 61(2), 364-371.
[http://dx.doi.org/10.2337/db11-1019] [PMID: 22190648]
[44]
Spears, J.W.; Lloyd, K.E.; Pickworth, C.A.; Huang, Y.L.; Krafka, K.; Hyda, J.; Grimes, J.L. Chromium propionate in broilers: human food and broiler safety. Poult. Sci., 2019, 98(12), 6579-6585.
[http://dx.doi.org/10.3382/ps/pez444] [PMID: 31392337]
[45]
Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[46]
Tajiri, K.; Shimizu, Y. Branched-chain amino acids in liver diseases. Transl. Gastroenterol. Hepatol., 2018, 3, 47.
[http://dx.doi.org/10.21037/tgh.2018.07.06] [PMID: 30148232]
[47]
Bassit, R.A.; Sawada, L.A.; Bacurau, R.F.P.; Navarro, F.; Rosa, L.S.F.B.P.C. The effect of BCAA supplementation upon the immune response of triathletes. Med. Sci. Sports Exerc., 2000, 32(7), 1214-1219.
[http://dx.doi.org/10.1097/00005768-200007000-00005] [PMID: 10912884]
[48]
Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; Le Chatelier, E.; Levenez, F.; Doré, J.; Mattila, I.; Plichta, D.R.; Pöhö, P.; Hellgren, L.I.; Arumugam, M.; Sunagawa, S.; Vieira-Silva, S.; Jørgensen, T.; Holm, J.B.; Trošt, K.; Consortium, M.H.I.T.; Kristiansen, K.; Brix, S.; Raes, J.; Wang, J.; Hansen, T.; Bork, P.; Brunak, S.; Oresic, M.; Ehrlich, S.D.; Pedersen, O. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535(7612), 376-381.
[http://dx.doi.org/10.1038/nature18646] [PMID: 27409811]
[49]
Zhou, M.; Shao, J.; Wu, C.Y.; Shu, L.; Dong, W.; Liu, Y.; Chen, M.; Wynn, R.M.; Wang, J.; Wang, J.; Gui, W.J.; Qi, X.; Lusis, A.J.; Li, Z.; Wang, W.; Ning, G.; Yang, X.; Chuang, D.T.; Wang, Y.; Sun, H. Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes, 2019, 68(9), 1730-1746.
[http://dx.doi.org/10.2337/db18-0927] [PMID: 31167878]
[50]
Chen, Y.; Chen, Y.X. Microbiota-associated metabolites and related immunoregulation in colorectal cancer. Cancers, 2021, 13(16), 4054.
[http://dx.doi.org/10.3390/cancers13164054] [PMID: 34439208]
[51]
Dai, G.; Chen, X.; He, Y. The gut microbiota activates AhR through the tryptophan metabolite Kyn to mediate renal cell carcinoma metastasis. Front. Nutr., 2021, 8, 712327.
[http://dx.doi.org/10.3389/fnut.2021.712327] [PMID: 34458309]
[52]
Hezaveh, K.; Shinde, R.S.; Klötgen, A.; Halaby, M.J.; Lamorte, S.; Quevedo, R.; Neufeld, L.; Liu, Z.Q.; Jin, R.; Grünwald, B.T. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity, 2022, 55(2), 324-340.
[53]
Zhao, C.; Hu, X.; Bao, L.; Wu, K.; Feng, L.; Qiu, M.; Hao, H.; Fu, Y.; Zhang, N. Aryl hydrocarbon receptor activation by Lactobacillus reuteri tryptophan metabolism alleviates Escherichia coli-induced mastitis in mice. PLoS Pathog., 2021, 17(7), e1009774.
[http://dx.doi.org/10.1371/journal.ppat.1009774] [PMID: 34297785]
[54]
Thomas, C.; Pellicciari, R.; Pruzanski, M.; Auwerx, J.; Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov., 2008, 7(8), 678-693.
[http://dx.doi.org/10.1038/nrd2619] [PMID: 18670431]
[55]
Winston, J.A.; Theriot, C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes, 2020, 11(2), 158-171.
[http://dx.doi.org/10.1080/19490976.2019.1674124] [PMID: 31595814]
[56]
Nguyen, T.T.; Ung, T.T.; Kim, N.H.; Jung, Y.D. Role of bile acids in colon carcinogenesis. World J. Clin. Cases, 2018, 6(13), 577-588.
[http://dx.doi.org/10.12998/wjcc.v6.i13.577] [PMID: 30430113]
[57]
Duboc, H.; Rajca, S.; Rainteau, D.; Benarous, D.; Maubert, M.A.; Quervain, E.; Thomas, G.; Barbu, V.; Humbert, L.; Despras, G.; Bridonneau, C.; Dumetz, F.; Grill, J.P.; Masliah, J.; Beaugerie, L.; Cosnes, J.; Chazouillères, O.; Poupon, R.; Wolf, C.; Mallet, J.M.; Langella, P.; Trugnan, G.; Sokol, H.; Seksik, P. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut, 2013, 62(4), 531-539.
[http://dx.doi.org/10.1136/gutjnl-2012-302578] [PMID: 22993202]
[58]
Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D.A.; Jabri, B.; Chang, E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature, 2012, 487(7405), 104-108.
[http://dx.doi.org/10.1038/nature11225] [PMID: 22722865]
[59]
Li, X.; Hong, J.; Wang, Y.; Pei, M.; Wang, L.; Gong, Z. Trimethylamine-N-oxide pathway: A potential target for the treatment of MAFLD. Front. Mol. Biosci., 2021, 8, 733507.
[http://dx.doi.org/10.3389/fmolb.2021.733507] [PMID: 34660695]
[60]
Zhu, Y.; Li, Q.; Jiang, H. Gut microbiota in atherosclerosis: Focus on trimethylamine N-oxide. Acta Pathol. Microbiol. Scand. Suppl., 2020, 128(5), 353-366.
[http://dx.doi.org/10.1111/apm.13038] [PMID: 32108960]
[61]
Xu, K.Y.; Xia, G.H.; Lu, J.Q.; Chen, M.X.; Zhen, X.; Wang, S.; You, C.; Nie, J.; Zhou, H.W.; Yin, J. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci. Rep., 2017, 7(1), 1445.
[http://dx.doi.org/10.1038/s41598-017-01387-y] [PMID: 28469156]
[62]
Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem., 2013, 24(8), 1415-1422.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[63]
Stevens, J.F.; Maier, C.S. The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev., 2016, 15(3), 425-444.
[http://dx.doi.org/10.1007/s11101-016-9459-z] [PMID: 27274718]
[64]
Ding, S.; Jiang, H.; Fang, J. Regulation of immune function by polyphenols. J. Immunol. Res., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/1264074] [PMID: 29850614]
[65]
Hossan, M.S.; Rahman, S.; Bashar, A.; Jahan, R.; Al-Nahain, A.; Rahmatullah, M. Rosmarinic acid: A review of its anticancer action. World J. Pharm. Pharm. Sci., 2014, 3(9), 57-70.
[66]
Karthikkumar, V.; Sivagami, G.; Vinothkumar, R.; Rajkumar, D.; Nalini, N. Modulatory efficacy of rosmarinic acid on premalignant lesions and antioxidant status in 1,2-dimethylhydrazine induced rat colon carcinogenesis. Environ. Toxicol. Pharmacol., 2012, 34(3), 949-958.
[http://dx.doi.org/10.1016/j.etap.2012.07.014] [PMID: 22960260]
[67]
Larqué, E.; Sabater-Molina, M.; Zamora, S. Biological significance of dietary polyamines. Nutrition, 2007, 23(1), 87-95.
[http://dx.doi.org/10.1016/j.nut.2006.09.006] [PMID: 17113752]
[68]
Tofalo, R.; Cocchi, S.; Suzzi, G. Polyamines and gut microbiota. Front. Nutr., 2019, 6, 16.
[http://dx.doi.org/10.3389/fnut.2019.00016] [PMID: 30859104]
[69]
Pegg, A.E. Functions of polyamines in mammals. J. Biol. Chem., 2016, 291(29), 14904-14912.
[http://dx.doi.org/10.1074/jbc.R116.731661] [PMID: 27268251]
[70]
Dhara, M.; Matta, J.A.; Lei, M.; Knowland, D.; Yu, H.; Gu, S.; Bredt, D.S. Polyamine regulation of ion channel assembly and implications for nicotinic acetylcholine receptor pharmacology. Nat. Commun., 2020, 11(1), 2799.
[http://dx.doi.org/10.1038/s41467-020-16629-3] [PMID: 32493979]
[71]
Wroblewski, L.E.; Peek, R.M., Jr; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev., 2010, 23(4), 713-739.
[http://dx.doi.org/10.1128/CMR.00011-10] [PMID: 20930071]
[72]
Maleki-Kakelar, H.; Dehghani, J.; Barzegari, A.; Barar, J.; Shirmohamadi, M.; Sadeghi, J.; Omidi, Y. Lactobacillus plantarum induces apoptosis in gastric cancer cells via modulation of signaling pathways in Helicobacter pylori. Bioimpacts, 2019, 10(2), 65-72.
[http://dx.doi.org/10.34172/bi.2020.09] [PMID: 32363150]
[73]
Lin, C.C.; Huang, W.C.; Su, C.H.; Lin, W.D.; Wu, W.T.; Yu, B.; Hsu, Y.M. Effects of multi-strain probiotics on immune responses and metabolic balance in helicobacter pylori-infected mice. Nutrients, 2020, 12(8), 2476.
[http://dx.doi.org/10.3390/nu12082476] [PMID: 32824501]
[74]
Russo, F.; Orlando, A.; Linsalata, M.; Cavallini, A.; Messa, C. Effects of Lactobacillus rhamnosus GG on the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells. Nutr. Cancer, 2007, 59(1), 106-114.
[http://dx.doi.org/10.1080/01635580701365084] [PMID: 17927509]
[75]
Nekouian, R.; Rasouli, B.S.; Ghadimi-Darsajini, A.; Iragian, G.R. In vitro activity of probiotic Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor gene expression. J. Cancer Res. Ther., 2017, 13(2), 246-251.
[http://dx.doi.org/10.4103/0973-1482.204897] [PMID: 28643742]
[76]
Tamura, M.; Gu, J.; Matsumoto, K.; Aota, S.; Parsons, R.; Yamada, K.M. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science, 1998, 280(5369), 1614-1617.
[http://dx.doi.org/10.1126/science.280.5369.1614] [PMID: 9616126]
[77]
Bai, Z.; Zhang, Z.; Ye, Y.; Wang, S. Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway. Cell Biol. Int., 2010, 34(12), 1141-1145.
[http://dx.doi.org/10.1042/CBI20090481] [PMID: 20718712]
[78]
Li, Y.; He, P.; Liu, Y.; Qi, M.; Dong, W. Combining sodium butyrate with cisplatin increases the apoptosis of gastric cancer in vivo and in vitro via the mitochondrial apoptosis pathway. Front. Pharmacol., 2021, 12, 708093.
[http://dx.doi.org/10.3389/fphar.2021.708093] [PMID: 34512341]
[79]
Shi, X.; Chen, Z.; Yang, Y.; Yan, S. Bile reflux gastritis: Insights into pathogenesis, relevant factors, carcinomatous risk, diagnosis, and management. Gastroenterol. Res. Pract., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/2642551] [PMID: 36134174]
[80]
Wang, S.; Kuang, J.; Zhang, H.; Chen, W.; Zheng, X.; Wang, J.; Huang, F.; Ge, K.; Li, M.; Zhao, M.; Rajani, C.; Zhu, J.; Zhao, A.; Jia, W. Bile acid–microbiome interaction promotes gastric carcinogenesis. Adv. Sci., 2022, 9(16), 2200263.
[http://dx.doi.org/10.1002/advs.202200263] [PMID: 35285172]
[81]
Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[82]
Li, T.; Guo, H.; Li, H.; Jiang, Y.; Zhuang, K.; Lei, C.; Wu, J.; Zhou, H.; Zhu, R.; Zhao, X.; Lu, Y.; Shi, C.; Nie, Y.; Wu, K.; Yuan, Z.; Fan, D.M.; Shi, Y. MicroRNA-92a-1–5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia. Gut, 2019, 68(10), 1751-1763.
[http://dx.doi.org/10.1136/gutjnl-2017-315318] [PMID: 30635407]
[83]
Kuwahara, A.; Saito, T.; Kobayashi, M. Bile acids promote carcinogenesis in the remnant stomach of rats. J. Cancer Res. Clin. Oncol., 1989, 115(5), 423-428.
[http://dx.doi.org/10.1007/BF00393330] [PMID: 2808479]
[84]
Wang, X.; Sun, L.; Wang, X.; Kang, H.; Ma, X.; Wang, M.; Lin, S.; Liu, M.; Dai, C.; Dai, Z. Acidified bile acids enhance tumor progression and telomerase activity of gastric cancer in mice dependent on c-Myc expression. Cancer Med., 2017, 6(4), 788-797.
[http://dx.doi.org/10.1002/cam4.999] [PMID: 28247570]
[85]
Liu, X.; Shao, L.; Liu, X.; Ji, F.; Mei, Y.; Cheng, Y.; Liu, F.; Yan, C.; Li, L.; Ling, Z. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine, 2019, 40, 336-348.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.034] [PMID: 30584008]
[86]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[87]
Farrell, J.J.; Zhang, L.; Zhou, H.; Chia, D.; Elashoff, D.; Akin, D.; Paster, B.J.; Joshipura, K.; Wong, D.T.W. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut, 2012, 61(4), 582-588.
[http://dx.doi.org/10.1136/gutjnl-2011-300784] [PMID: 21994333]
[88]
Li, Q.; Jin, M.; Liu, Y.; Jin, L. Gut microbiota: Its potential roles in pancreatic cancer. Front. Cell. Infect. Microbiol., 2020, 10, 572492.
[http://dx.doi.org/10.3389/fcimb.2020.572492] [PMID: 33117731]
[89]
Panebianco, C.; Pisati, F.; Ulaszewska, M.; Andolfo, A.; Villani, A.; Federici, F.; Laura, M.; Rizzi, E.; Potenza, A.; Latiano, T.P.; Perri, F.; Tripodo, C.; Pazienza, V. Tuning gut microbiota through a probiotic blend in gemcitabine-treated pancreatic cancer xenografted mice. Clin. Transl. Med., 2021, 11(11), e580.
[http://dx.doi.org/10.1002/ctm2.580] [PMID: 34841697]
[90]
Natoni, F.; Diolordi, L.; Santoni, C.; Gilardini Montani, M.S. Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim. Biophys. Acta Mol. Cell Res., 2005, 1745(3), 318-329.
[http://dx.doi.org/10.1016/j.bbamcr.2005.07.003] [PMID: 16109447]
[91]
Panebianco, C.; Villani, A.; Pisati, F.; Orsenigo, F.; Ulaszewska, M.; Latiano, T.P.; Potenza, A.; Andolfo, A.; Terracciano, F.; Tripodo, C.; Perri, F.; Pazienza, V. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomed. Pharmacother., 2022, 151, 113163.
[http://dx.doi.org/10.1016/j.biopha.2022.113163] [PMID: 35617803]
[92]
Mirji, G.; Worth, A.; Bhat, S.A.; El Sayed, M.; Kannan, T.; Goldman, A.R.; Tang, H.Y.; Liu, Q.; Auslander, N.; Dang, C.V.; Abdel-Mohsen, M.; Kossenkov, A.; Stanger, B.Z.; Shinde, R.S. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol., 2022, 7(75), eabn0704.
[http://dx.doi.org/10.1126/sciimmunol.abn0704] [PMID: 36083892]
[93]
Janevska, D.; Chaloska-Ivanova, V.; Janevski, V. Hepatocellular carcinoma: Risk factors, diagnosis and treatment. Open Access Maced. J. Med. Sci., 2015, 3(4), 732-736.
[http://dx.doi.org/10.3889/oamjms.2015.111] [PMID: 27275318]
[94]
Chu, H.; Williams, B.; Schnabl, B. Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res., 2018, 2(1), 43-51.
[http://dx.doi.org/10.1016/j.livres.2017.11.005] [PMID: 30416839]
[95]
Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; Pike, N.B.; Strum, J.C.; Steplewski, K.M.; Murdock, P.R.; Holder, J.C.; Marshall, F.H.; Szekeres, P.G.; Wilson, S.; Ignar, D.M.; Foord, S.M.; Wise, A.; Dowell, S.J. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem., 2003, 278(13), 11312-11319.
[http://dx.doi.org/10.1074/jbc.M211609200] [PMID: 12496283]
[96]
Bindels, L.B.; Porporato, P.; Dewulf, E.M.; Verrax, J.; Neyrinck, A.M.; Martin, J.C.; Scott, K.P.; Buc Calderon, P.; Feron, O.; Muccioli, G.G.; Sonveaux, P.; Cani, P.D.; Delzenne, N.M. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer, 2012, 107(8), 1337-1344.
[http://dx.doi.org/10.1038/bjc.2012.409] [PMID: 22976799]
[97]
Yang, D.; Guo, X.; Huang, T.; Liu, C. The role of group 3 innate lymphoid cells in lung infection and immunity. Front. Cell. Infect. Microbiol., 2021, 11, 586471.
[http://dx.doi.org/10.3389/fcimb.2021.586471] [PMID: 33718260]
[98]
Withers, D.R.; Hepworth, M.R. Group 3 innate lymphoid cells: communications hubs of the intestinal immune system. Front. Immunol., 2017, 8, 1298.
[http://dx.doi.org/10.3389/fimmu.2017.01298] [PMID: 29085366]
[99]
Zenobia, C.; Hajishengallis, G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000, 2015, 69(1), 142-159.
[http://dx.doi.org/10.1111/prd.12083] [PMID: 26252407]
[100]
Guo, Y.; Liu, Y.; Rui, B.; Lei, Z.; Ning, X.; Liu, Y.; Li, M. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front. Immunol., 2023, 14, 1171680.
[http://dx.doi.org/10.3389/fimmu.2023.1171680] [PMID: 37304260]
[101]
Hu, C.; Xu, B.; Wang, X.; Wan, W.H.; Lu, J.; Kong, D.; Jin, Y.; You, W.; Sun, H.; Mu, X. Gut microbiota–derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology, 2023, 77(1), 48-64.
[PMID: 35262957]
[102]
Dapito, D.H.; Mencin, A.; Gwak, G.Y.; Pradere, J.P.; Jang, M.K.; Mederacke, I.; Caviglia, J.M.; Khiabanian, H.; Adeyemi, A.; Bataller, R.; Lefkowitch, J.H.; Bower, M.; Friedman, R.; Sartor, R.B.; Rabadan, R.; Schwabe, R.F. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell, 2012, 21(4), 504-516.
[http://dx.doi.org/10.1016/j.ccr.2012.02.007] [PMID: 22516259]
[103]
Shen, R.; Ke, L.; Li, Q.; Dang, X.; Shen, S.; Shen, J.; Li, S.; Liang, L.; Peng, B.; Kuang, M.; Ma, Y.; Yang, Z.; Hua, Y. Abnormal bile acid-microbiota crosstalk promotes the development of hepatocellular carcinoma. Hepatol. Int., 2022, 16(2), 396-411.
[http://dx.doi.org/10.1007/s12072-022-10299-7] [PMID: 35211843]
[104]
Ren, Z.; Li, A.; Jiang, J.; Zhou, L.; Yu, Z.; Lu, H.; Xie, H.; Chen, X.; Shao, L.; Zhang, R.; Xu, S.; Zhang, H.; Cui, G.; Chen, X.; Sun, R.; Wen, H.; Lerut, J.P.; Kan, Q.; Li, L.; Zheng, S. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 2019, 68(6), 1014-1023.
[http://dx.doi.org/10.1136/gutjnl-2017-315084] [PMID: 30045880]
[105]
Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Man Lei, Y.; Jabri, B.; Alegre, M.L.; Chang, E.B.; Gajewski, T.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, 2015, 350(6264), 1084-1089.
[http://dx.doi.org/10.1126/science.aac4255] [PMID: 26541606]
[106]
Loo, T.M.; Kamachi, F.; Watanabe, Y.; Yoshimoto, S.; Kanda, H.; Arai, Y.; Nakajima-Takagi, Y.; Iwama, A.; Koga, T.; Sugimoto, Y.; Ozawa, T.; Nakamura, M.; Kumagai, M.; Watashi, K.; Taketo, M.M.; Aoki, T.; Narumiya, S.; Oshima, M.; Arita, M.; Hara, E.; Ohtani, N. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov., 2017, 7(5), 522-538.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0932] [PMID: 28202625]
[107]
Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schauer, P.; Smith, J.D.; Allayee, H.; Tang, W.H.W.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472(7341), 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[108]
Liu, Z.Y.; Tan, X.Y.; Li, Q.J.; Liao, G.C.; Fang, A.P.; Zhang, D.M.; Chen, P.Y.; Wang, X.Y.; Luo, Y.; Long, J.A.; Zhong, R.H.; Zhu, H.L. Trimethylamine N-oxide, a gut microbiota-dependent metabolite of choline, is positively associated with the risk of primary liver cancer: A case-control study. Nutr. Metab., 2018, 15(1), 81.
[http://dx.doi.org/10.1186/s12986-018-0319-2] [PMID: 30479648]
[109]
Wu, Y.; Rong, X.; Pan, M.; Wang, T.; Yang, H.; Chen, X.; Xiao, Z.; Zhao, C. Integrated analysis reveals the gut microbial metabolite TMAO promotes inflammatory hepatocellular carcinoma by upregulating POSTN. Front. Cell Dev. Biol., 2022, 10, 840171.
[http://dx.doi.org/10.3389/fcell.2022.840171] [PMID: 35676936]
[110]
Morra, L.; Moch, H. Periostin expression and epithelial-mesenchymal transition in cancer: A review and an update. Virchows Arch., 2011, 459(5), 465-475.
[http://dx.doi.org/10.1007/s00428-011-1151-5] [PMID: 21997759]
[111]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[112]
Alvandi, M.; Shaghaghi, Z.; Polgardani, N.Z.; Abbasi, S.; Albooyeh, H.; Dastranj, L.; Farzipour, S. Etodolac enhances the radiosensitivity of irradiated HT-29 human colorectal cancer cells. Curr. Radiopharm., 2022, 15(3), 242-248.
[http://dx.doi.org/10.2174/1874471015666220321143139] [PMID: 35319403]
[113]
Marzhoseyni, Z.; Shojaie, L.; Tabatabaei, S.A.; Movahedpour, A.; Safari, M.; Esmaeili, D.; Mahjoubin-Tehran, M.; Jalili, A.; Morshedi, K.; Khan, H.; Okhravi, R.; Hamblin, M.R.; Mirzaei, H. Streptococcal bacterial components in cancer therapy. Cancer Gene Ther., 2022, 29(2), 141-155.
[http://dx.doi.org/10.1038/s41417-021-00308-6] [PMID: 33753868]
[114]
Wong, S.H.; Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(11), 690-704.
[http://dx.doi.org/10.1038/s41575-019-0209-8] [PMID: 31554963]
[115]
Mima, K.; Nishihara, R.; Qian, Z.R.; Cao, Y.; Sukawa, Y.; Nowak, J.A.; Yang, J.; Dou, R.; Masugi, Y.; Song, M.; Kostic, A.D.; Giannakis, M.; Bullman, S.; Milner, D.A.; Baba, H.; Giovannucci, E.L.; Garraway, L.A.; Freeman, G.J.; Dranoff, G.; Garrett, W.S.; Huttenhower, C.; Meyerson, M.; Meyerhardt, J.A.; Chan, A.T.; Fuchs, C.S.; Ogino, S. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut, 2016, 65(12), 1973-1980.
[http://dx.doi.org/10.1136/gutjnl-2015-310101] [PMID: 26311717]
[116]
Raman, M.; Ambalam, P.; Kondepudi, K.K.; Pithva, S.; Kothari, C.; Patel, A.T.; Purama, R.K.; Dave, J.M.; Vyas, B.R.M. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes, 2013, 4(3), 181-192.
[http://dx.doi.org/10.4161/gmic.23919] [PMID: 23511582]
[117]
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; Lee, J.R.; Offermanns, S.; Ganapathy, V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014, 40(1), 128-139.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[118]
Fernández, J.; Saettone, P.; Franchini, M.C.; Villar, C.J.; Lombó, F. Antitumor bioactivity and gut microbiota modulation of polyhydroxybutyrate (PHB) in a rat animal model for colorectal cancer. Int. J. Biol. Macromol., 2022, 203, 638-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.112] [PMID: 35090944]
[119]
Sánchez-Alcoholado, L.; Laborda-Illanes, A.; Otero, A.; Ordóñez, R.; González-González, A.; Plaza-Andrades, I.; Ramos-Molina, B.; Gómez-Millán, J.; Queipo-Ortuño, M.I. Relationships of gut microbiota composition, short-chain fatty acids and polyamines with the pathological response to neoadjuvant radiochemotherapy in colorectal cancer patients. Int. J. Mol. Sci., 2021, 22(17), 9549.
[http://dx.doi.org/10.3390/ijms22179549] [PMID: 34502456]
[120]
Bachmann, M.; Meissner, C.; Pfeilschifter, J.; Mühl, H. Cooperation between the bacterial-derived short-chain fatty acid butyrate and interleukin-22 detected in human Caco2 colon epithelial/carcinoma cells. Biofactors, 2017, 43(2), 283-292.
[http://dx.doi.org/10.1002/biof.1341] [PMID: 27801948]
[121]
Chen, D.; Jin, D.; Huang, S.; Wu, J.; Xu, M.; Liu, T.; Dong, W.; Liu, X.; Wang, S.; Zhong, W.; Liu, Y.; Jiang, R.; Piao, M.; Wang, B.; Cao, H. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett., 2020, 469, 456-467.
[http://dx.doi.org/10.1016/j.canlet.2019.11.019] [PMID: 31734354]
[122]
Salcedo, R.; Worschech, A.; Cardone, M.; Jones, Y.; Gyulai, Z.; Dai, R.M.; Wang, E.; Ma, W.; Haines, D.; O’hUigin, C.; Marincola, F.M.; Trinchieri, G. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: Role of interleukin 18. J. Exp. Med., 2010, 207(8), 1625-1636.
[http://dx.doi.org/10.1084/jem.20100199] [PMID: 20624890]
[123]
Vaishnava, S.; Behrendt, C.L.; Ismail, A.S.; Eckmann, L.; Hooper, L.V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20858-20863.
[http://dx.doi.org/10.1073/pnas.0808723105] [PMID: 19075245]
[124]
Ogino, S.; Nosho, K.; Shima, K.; Baba, Y.; Irahara, N.; Kirkner, G.J.; Hazra, A.; De Vivo, I.; Giovannucci, E.L.; Meyerhardt, J.A.; Fuchs, C.S. p21 expression in colon cancer and modifying effects of patient age and body mass index on prognosis. Cancer Epidemiol. Biomarkers Prev., 2009, 18(9), 2513-2521.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0451] [PMID: 19723919]
[125]
Larki, P.; Ahadi, A.; Zare, A.; Tarighi, S.; Zaheri, M.; Souri, M.; Zali, M.R.; Ghaedi, H.; Omrani, M.D. Up-Regulation of miR-21, miR-25, miR-93, and miR-106b in Gastric Cancer. Iran. Biomed. J., 2018, 22(6), 367-373.
[http://dx.doi.org/10.29252/.22.6.367] [PMID: 29859516]
[126]
Hu, S.; Dong, T.S.; Dalal, S.R.; Wu, F.; Bissonnette, M.; Kwon, J.H.; Chang, E.B. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One, 2011, 6(1), e16221.
[http://dx.doi.org/10.1371/journal.pone.0016221] [PMID: 21283757]
[127]
Encarnação, J.C.; Pires, A.S.; Amaral, R.A.; Gonçalves, T.J.; Laranjo, M.; Casalta-Lopes, J.E.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Abrantes, A.M.; Botelho, M.F. Butyrate, a dietary fiber derivative that improves irinotecan effect in colon cancer cells. J. Nutr. Biochem., 2018, 56, 183-192.
[http://dx.doi.org/10.1016/j.jnutbio.2018.02.018] [PMID: 29587241]
[128]
Ryu, T.Y.; Kim, K.; Han, T.S.; Lee, M.O.; Lee, J.; Choi, J.; Jung, K.B.; Jeong, E.J.; An, D.M.; Jung, C.R.; Lim, J.H.; Jung, J.; Park, K.; Lee, M.S.; Kim, M.Y.; Oh, S.J.; Hur, K.; Hamamoto, R.; Park, D.S.; Kim, D.S.; Son, M.Y.; Cho, H.S. Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer. ISME J., 2022, 16(5), 1205-1221.
[http://dx.doi.org/10.1038/s41396-021-01119-1] [PMID: 34972816]
[129]
Ryu, T.Y.; Kim, K.; Son, M-Y.; Min, J-K.; Kim, J.; Han, T-S.; Kim, D-S.; Cho, H-S. Downregulation of PRMT1, a histone arginine methyltransferase, by sodium propionate induces cell apoptosis in colon cancer. Oncol. Rep., 2019, 41(3), 1691-1699.
[PMID: 30569144]
[130]
Marques, C.; Oliveira, C.S.F.; Alves, S.; Chaves, S.R.; Coutinho, O.P.; Côrte-Real, M.; Preto, A. Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death Dis., 2013, 4(2), e507-e507.
[http://dx.doi.org/10.1038/cddis.2013.29] [PMID: 23429293]
[131]
Gomes, S.; Baltazar, F.; Silva, E.; Preto, A. Microbiota-derived short-chain fatty acids: New road in colorectal cancer therapy. Pharmaceutics, 2022, 14(11), 2359.
[http://dx.doi.org/10.3390/pharmaceutics14112359] [PMID: 36365177]
[132]
Tian, S.; Liu, X.; Lei, P.; Zhang, X.; Shan, Y. Microbiota: A mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. J. Sci. Food Agric., 2018, 98(4), 1255-1260.
[http://dx.doi.org/10.1002/jsfa.8654] [PMID: 28869285]
[133]
Higdon, J.; Delage, B.; Williams, D.; Dashwood, R. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res., 2007, 55(3), 224-236.
[http://dx.doi.org/10.1016/j.phrs.2007.01.009] [PMID: 17317210]
[134]
Song, X.; Sun, X.; Oh, S.F.; Wu, M.; Zhang, Y.; Zheng, W.; Geva-Zatorsky, N.; Jupp, R.; Mathis, D.; Benoist, C.; Kasper, D.L. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature, 2020, 577(7790), 410-415.
[http://dx.doi.org/10.1038/s41586-019-1865-0] [PMID: 31875848]
[135]
Campbell, C.; McKenney, P.T.; Konstantinovsky, D.; Isaeva, O.I.; Schizas, M.; Verter, J.; Mai, C.; Jin, W.B.; Guo, C.J.; Violante, S.; Ramos, R.J.; Cross, J.R.; Kadaveru, K.; Hambor, J.; Rudensky, A.Y. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020, 581(7809), 475-479.
[http://dx.doi.org/10.1038/s41586-020-2193-0] [PMID: 32461639]
[136]
Mager, L.F.; Burkhard, R.; Pett, N.; Cooke, N.C.A.; Brown, K.; Ramay, H.; Paik, S.; Stagg, J.; Groves, R.A.; Gallo, M.; Lewis, I.A.; Geuking, M.B.; McCoy, K.D. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science, 2020, 369(6510), 1481-1489.
[http://dx.doi.org/10.1126/science.abc3421] [PMID: 32792462]
[137]
Sakatani, A.; Fujiya, M.; Ueno, N.; Kashima, S.; Sasajima, J.; Moriichi, K.; Ikuta, K.; Tanabe, H.; Kohgo, Y. Polyphosphate derived from Lactobacillus brevis inhibits colon cancer progression through induction of cell apoptosis. Anticancer Res., 2016, 36(2), 591-598.
[PMID: 26851013]
[138]
Okumura, S.; Konishi, Y.; Narukawa, M.; Sugiura, Y.; Yoshimoto, S.; Arai, Y.; Sato, S.; Yoshida, Y.; Tsuji, S.; Uemura, K.; Wakita, M.; Matsudaira, T.; Matsumoto, T.; Kawamoto, S.; Takahashi, A.; Itatani, Y.; Miki, H.; Takamatsu, M.; Obama, K.; Takeuchi, K.; Suematsu, M.; Ohtani, N.; Fukunaga, Y.; Ueno, M.; Sakai, Y.; Nagayama, S.; Hara, E. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat. Commun., 2021, 12(1), 5674.
[http://dx.doi.org/10.1038/s41467-021-25965-x] [PMID: 34584098]
[139]
Bultman, S.J.; Jobin, C. Microbial-derived butyrate: An oncometabolite or tumor-suppressive metabolite? Cell Host Microbe, 2014, 16(2), 143-145.
[http://dx.doi.org/10.1016/j.chom.2014.07.011] [PMID: 25121740]
[140]
Krouwer, V.J.D.; Hekking, L.H.P.; Langelaar-Makkinje, M.; Regan-Klapisz, E.; Post, J. Endothelial cell senescence is associated with disrupted cell-cell junctions and increased monolayer permeability. Vasc. Cell, 2012, 4(1), 12.
[http://dx.doi.org/10.1186/2045-824X-4-12] [PMID: 22929066]
[141]
Goodwin, A.C.; Shields, C.E.D.; Wu, S.; Huso, D.L.; Wu, X.; Murray-Stewart, T.R.; Hacker-Prietz, A.; Rabizadeh, S.; Woster, P.M.; Sears, C.L.; Casero, R.A., Jr Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis -induced colon tumorigenesis. Proc. Natl. Acad. Sci. USA, 2011, 108(37), 15354-15359.
[http://dx.doi.org/10.1073/pnas.1010203108] [PMID: 21876161]
[142]
Wright, D.P.; Rosendale, D.I.; Roberton, A.M. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol. Lett., 2000, 190(1), 73-79.
[http://dx.doi.org/10.1111/j.1574-6968.2000.tb09265.x] [PMID: 10981693]
[143]
Yang, S.; Dai, H.; Lu, Y.; Li, R.; Gao, C.; Pan, S. Trimethylamine n-oxide promotes cell proliferation and angiogenesis in colorectal cancer. J. Immunol. Res., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/7043856] [PMID: 35832644]
[144]
Bianconi, D.; Herac, M.; Posch, F.; Schmeidl, M.; Unseld, M.; Kieler, M.; Brettner, R.; Müllauer, L.; Riedl, J.; Gerger, A.; Scheithauer, W.; Prager, G. Microvascular density assessed by CD31 predicts clinical benefit upon bevacizumab treatment in metastatic colorectal cancer: results of the PassionATE study, a translational prospective Phase II study of capecitabine and irinotecan plus bevacizumab followed by capecitabine and oxaliplatin plus bevacizumab or the reverse sequence in patients in mCRC. Ther. Adv. Med. Oncol., 2020, 12, 1758835920928635.
[http://dx.doi.org/10.1177/1758835920928635] [PMID: 32922518]
[145]
Guertin, K.A.; Li, X.S.; Graubard, B.I.; Albanes, D.; Weinstein, S.J.; Goedert, J.J.; Wang, Z.; Hazen, S.L.; Sinha, R. Serum Trimethylamine N-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study. Cancer Epidemiol. Biomarkers Prev., 2017, 26(6), 945-952.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0948] [PMID: 28077427]
[146]
Alvandi, M.; Farzipour, S.; Shaghaghi, Z.; Raeispour, M.; Jalali, F.; Yazdi, A. Evaluation of the effect of chelating arms and carrier agents on the radiotoxicity of TAT agents. Curr. Radiopharm., 2023, 16(1), 2-22.
[http://dx.doi.org/10.2174/1874471015666220510161047] [PMID: 35538822]
[147]
Rondanelli, M.; Faliva, M.A.; Perna, S.; Giacosa, A.; Peroni, G.; Castellazzi, A.M. Using probiotics in clinical practice: Where are we now? A review of existing meta-analyses. Gut Microbes, 2017, 8(6), 521-543.
[http://dx.doi.org/10.1080/19490976.2017.1345414] [PMID: 28640662]
[148]
Zitvogel, L.; Ma, Y.; Raoult, D.; Kroemer, G.; Gajewski, T.F. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science, 2018, 359(6382), 1366-1370.
[http://dx.doi.org/10.1126/science.aar6918] [PMID: 29567708]
[149]
Mego, M.; Holec, V.; Drgona, L.; Hainova, K.; Ciernikova, S.; Zajac, V. Probiotic bacteria in cancer patients undergoing chemotherapy and radiation therapy. Complement. Ther. Med., 2013, 21(6), 712-723.
[http://dx.doi.org/10.1016/j.ctim.2013.08.018] [PMID: 24280481]
[150]
Biasco, G.; Paganelli, G.M.; Brandi, G.; Brillanti, S.; Lami, F.; Callegari, C.; Gizzi, G. Effect of lactobacillus acidophilus and bifidobacterium bifidum on rectal cell kinetics and fecal pH. Ital. J. Gastroenterol., 1991, 23(3), 142.
[PMID: 1742509]
[151]
Bernstein, H.; Bernstein, C.; Payne, C.M.; Dvorakova, K.; Garewal, H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. Rev. Mutat. Res., 2005, 589(1), 47-65.
[http://dx.doi.org/10.1016/j.mrrev.2004.08.001] [PMID: 15652226]
[152]
Jia, W.; Xie, G.; Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(2), 111-128.
[http://dx.doi.org/10.1038/nrgastro.2017.119] [PMID: 29018272]
[153]
Górska, A.; Przystupski, D.; Niemczura, M.J.; Kulbacka, J. Probiotic bacteria: A promising tool in cancer prevention and therapy. Curr. Microbiol., 2019, 76(8), 939-949.
[http://dx.doi.org/10.1007/s00284-019-01679-8] [PMID: 30949803]
[154]
Garrett, W.S. Cancer and the microbiota. Science, 2015, 348(6230), 80-86.
[http://dx.doi.org/10.1126/science.aaa4972] [PMID: 25838377]
[155]
Requena, T.; Martínez-Cuesta, M.C.; Peláez, C. Diet and microbiota linked in health and disease. Food Funct., 2018, 9(2), 688-704.
[http://dx.doi.org/10.1039/C7FO01820G] [PMID: 29410981]
[156]
Zhang, K.; Ji, X.; Song, Z.; Wu, F.; Qu, Y.; Jin, X.; Xue, X.; Wang, F.; Huang, Y. Butyrate inhibits gastric cancer cells by inducing mitochondria-mediated apoptosis. Comb. Chem. High Throughput Screen., 2023, 26(3), 630-638.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy