Review Article

CRISPR/Cas在桥本甲状腺炎中的治疗潜力:综述

卷 24, 期 3, 2024

发表于: 02 January, 2024

页: [179 - 192] 页: 14

弟呕挨: 10.2174/0115665232266508231210154930

价格: $65

conference banner
摘要

桥本甲状腺炎(HT)是一种常见的自身免疫性内分泌疾病。它通常与其他众所周知的疾病(如1型胰岛素依赖型糖尿病)一起出现在儿科年龄组。这种疾病的主要特征是免疫介导的对甲状腺的攻击,导致甲状腺组织和细胞的破坏。鉴于HT经常影响家庭成员,人们普遍认为个体在遗传上易患这种疾病。HT患者还显示出几种不同癌症的风险显著增加,证明了开发管理和治疗HT疗法的迫切需要。基因编辑在分子生物学领域取得了一些进展,并已成为纠正几种自身免疫性疾病的有前途的方法。目前,CRISPR/Cas是一种基于核酸酶的编辑技术,被宣传为治疗多种遗传疾病和癌症的有前途的工具。然而,目前通过CRISPR/Cas技术对自身免疫性疾病的管理和治疗进行的研究非常有限。本综述提供了与桥本甲状腺炎相关的潜在候选基因的描述,并且只有少数动物和人类模型通过CRISPR/Cas基因编辑技术生成。通过CRISPR/Cas基因编辑技术靶向候选基因生成自身免疫性甲状腺炎小鼠模型,将为我们更深入地了解HT的病理生理,并进一步为基因编辑对HT的免疫调节铺平道路。

关键词: 桥本甲状腺炎,CRISPR/Cas, TSH激素,Cas9,基因组编辑,免疫调节。

Next »
图形摘要
[1]
Kisielow P. How does the immune system learn to distinguish between good and evil? The first definitive studies of T cell central tolerance and positive selection. Immunogenetics 2019; 71(8-9): 513-8.
[http://dx.doi.org/10.1007/s00251-019-01127-8] [PMID: 31418051]
[2]
Cashman KS, Jenks SA, Woodruff MC, et al. Understanding and measuring human B-cell tolerance and its breakdown in autoimmune disease. Immunol Rev 2019; 292(1): 76-89.
[http://dx.doi.org/10.1111/imr.12820] [PMID: 31755562]
[3]
Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol 2023; 19(8): 509-24.
[http://dx.doi.org/10.1038/s41581-023-00720-1] [PMID: 37165096]
[4]
Kalarani IB, Veerabathiran R. Impact of iodine intake on the pathogenesis of autoimmune thyroid disease in children and adults. Ann Pediatr Endocrinol Metab 2022; 27(4): 256-64.
[http://dx.doi.org/10.6065/apem.2244186.093] [PMID: 36567462]
[5]
Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Roliński J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? J Immunol Res 2015; 2015
[6]
Hiromatsu Y, Satoh H, Amino N. Hashimoto’s thyroiditis: History and future outlook. Hormones 2013; 12(1): 12-8.
[http://dx.doi.org/10.1007/BF03401282] [PMID: 23624127]
[7]
Radetti G. Clinical aspects of Hashimoto’s thyroiditis. Endocr Dev 2014; 26: 158-70.
[http://dx.doi.org/10.1159/000363162] [PMID: 25231451]
[8]
Ralli M, Angeletti D, Fiore M, et al. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev 2020; 19(10): 102649.
[http://dx.doi.org/10.1016/j.autrev.2020.102649] [PMID: 32805423]
[9]
Hu X, Wang X, Liang Y, et al. Cancer risk in hashimoto’s thyroiditis: A systematic review and meta-analysis. Front Endocrinol 2022; 13: 937871.
[http://dx.doi.org/10.3389/fendo.2022.937871] [PMID: 35903279]
[10]
Vanderpump M.P. Epidemiology of thyroid disorders. In: The thyroid and its diseases: A comprehensive guide for the clinician. Cham Springer 2019; pp. 75-85.
[http://dx.doi.org/10.1007/978-3-319-72102-6_6]
[11]
Atia A, Alathream R, Al-Deib A. Incidence of hashimoto thyroiditis among libyans: A retrospective epidemiological study. J Med Res Innov 2021; 5(1): e000251.
[http://dx.doi.org/10.32892/jmri.251]
[12]
Philippe C, Moineau S. The endless battle between phages and CRISPR-Cas systems in Streptococcus thermophilus. Biochem Cell Biol 2021; 99(4): 397-402.
[http://dx.doi.org/10.1139/bcb-2020-0593] [PMID: 33534660]
[13]
Garcia-Robledo JE, Barrera MC, Tobón GJ. CRISPR/Cas: From adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases. Int Rev Immunol 2020; 39(1): 11-20.
[http://dx.doi.org/10.1080/08830185.2019.1677645] [PMID: 31625429]
[14]
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Transac R Soci B 1772; 374(1772): 20180087.
[15]
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017; 37: 67-78.
[http://dx.doi.org/10.1016/j.mib.2017.05.008] [PMID: 28605718]
[16]
Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 2017; 46(1): 505-29.
[http://dx.doi.org/10.1146/annurev-biophys-062215-010822] [PMID: 28375731]
[17]
Lee MH, Shin JI, Yang JW, et al. Genome editing using CRISPR- Cas9 and autoimmune diseases: A comprehensive review. Int J Mol Sci 2022; 23(3): 1337.
[http://dx.doi.org/10.3390/ijms23031337] [PMID: 35163260]
[18]
Williams D, Le S, Godlewska M, Hoke D, Buckle A. Thyroid peroxidase as an autoantigen in Hashimoto’s disease: Structure, function, and antigenicity. Horm Metab Res 2018; 50(12): 908-21.
[http://dx.doi.org/10.1055/a-0717-5514] [PMID: 30360003]
[19]
Luty J, Ruckemann-Dziurdzińska K, Witkowski JM, Bryl E. Immunological aspects of autoimmune thyroid disease - Complex interplay between cells and cytokines. Cytokine 2019; 116: 128-33.
[http://dx.doi.org/10.1016/j.cyto.2019.01.003] [PMID: 30711852]
[20]
Farh KKH, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518(7539): 337-43.
[http://dx.doi.org/10.1038/nature13835] [PMID: 25363779]
[21]
Ragusa F, Fallahi P, Elia G, et al. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab 2019; 33(6): 101367.
[http://dx.doi.org/10.1016/j.beem.2019.101367] [PMID: 31812326]
[22]
Guo Y, Zynat JZ, Xing S, et al. Immunological changes of T helper cells in flow cytometer-sorted CD4+ T cells from patients with Hashimoto’s thyroiditis. Exp Ther Med 2018; 15(4): 3596-602.
[http://dx.doi.org/10.3892/etm.2018.5825] [PMID: 29556254]
[23]
Wang Y, Fang S, Zhou H. Pathogenic role of Th17 cells in autoimmune thyroid disease and their underlying mechanisms. Best Pract Res Clin Endocrinol Metab 2023; 37(2): 101743.
[http://dx.doi.org/10.1016/j.beem.2023.101743] [PMID: 36841747]
[24]
Li D, Cai W, Gu R, et al. Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin Immunol 2013; 149(3): 411-20.
[http://dx.doi.org/10.1016/j.clim.2013.10.001] [PMID: 24211715]
[25]
Ferrari SM, Fallahi P, Elia G, et al. Novel therapies for thyroid autoimmune diseases: An update. Best Pract Res Clin Endocrinol Metab 2020; 34(1): 101366.
[http://dx.doi.org/10.1016/j.beem.2019.101366] [PMID: 31813786]
[26]
Pezzano M. MIG in autoimmune thyroiditis: review of the literature. Clin Ter 2019; 170(4): e295-300.
[PMID: 31304519]
[27]
Song J, Sun R, Zhang Y, Fu Y, Zhao D. Role of the specialized pro-resolving mediator resolvin D1 in hashimotoʼs thyroiditis. Exp Clin Endocrinol Diabetes 2021; 129(11): 791-7.
[http://dx.doi.org/10.1055/a-1345-0173] [PMID: 33465800]
[28]
Xiao H, Liang J, Liu S, et al. Proteomics and organoid culture reveal the underlying pathogenesis of hashimoto’s thyroiditis. Front Immunol 2021; 12: 784975.
[http://dx.doi.org/10.3389/fimmu.2021.784975] [PMID: 34925365]
[29]
Xiao ZX, Miller JS, Zheng SG. An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev 2021; 20(2): 102743.
[http://dx.doi.org/10.1016/j.autrev.2020.102743] [PMID: 33333232]
[30]
Bai X, Huang M, Chen X, et al. Microarray profiling and functional analysis reveal the regulatory role of differentially expressed plasma circular RNAs in Hashimoto’s thyroiditis. Immunol Res 2022; 70(3): 331-40.
[http://dx.doi.org/10.1007/s12026-021-09241-0] [PMID: 35064448]
[31]
Lu X, Sun J, Liu T, Zhang H, Shan Z, Teng W. Changes in histone H3 lysine 4 trimethylation in Hashimoto’s thyroiditis. Arch Med Sci 2019; 18(1): 153-63.
[http://dx.doi.org/10.5114/aoms.2019.85225] [PMID: 35154536]
[32]
Tagoe CE, Sheth T, Golub E, Sorensen K. Rheumatic associations of autoimmune thyroid disease: A systematic review. Clin Rheumatol 2019; 38(7): 1801-9.
[http://dx.doi.org/10.1007/s10067-019-04498-1] [PMID: 30927115]
[33]
Yoo WS, Chung HK. Recent advances in autoimmune thyroid diseases. Endocrinol Metab 2016; 31(3): 379-85.
[http://dx.doi.org/10.3803/EnM.2016.31.3.379] [PMID: 27586448]
[34]
Danailova Y, Velikova T, Nikolaev G, et al. Nutritional management of thyroiditis of Hashimoto. Int J Mol Sci 2022; 23(9): 5144.
[http://dx.doi.org/10.3390/ijms23095144] [PMID: 35563541]
[35]
Jia X, Zhai T, Qu C, et al. Metformin reverses hashimoto’s thyroiditis by regulating key immune events. Front Cell Dev Biol 2021; 9: 685522.
[http://dx.doi.org/10.3389/fcell.2021.685522] [PMID: 34124070]
[36]
Ghosh D, Venkataramani P, Nandi S, Bhattacharjee S. CRISPR–Cas9 a boon or bane: The bumpy road ahead to cancer therapeutics. Cancer Cell Int 2019; 19(1): 12.
[http://dx.doi.org/10.1186/s12935-019-0726-0] [PMID: 30636933]
[37]
Zhang F, Cheng D, Wang S, Zhu J. Crispr/Cas9-mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region. Biotechnol Bioeng 2020; 117(9): 2816-26.
[http://dx.doi.org/10.1002/bit.27441] [PMID: 32449788]
[38]
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[39]
Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018; 36(8): 765-71.
[http://dx.doi.org/10.1038/nbt.4192] [PMID: 30010673]
[40]
Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair 2023; 130: 103547.
[http://dx.doi.org/10.1016/j.dnarep.2023.103547] [PMID: 37556875]
[41]
Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther 2014; 2(1): 27.
[http://dx.doi.org/10.1186/2052-8426-2-27] [PMID: 26056594]
[42]
Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21(4): 255-72.
[http://dx.doi.org/10.1038/s41576-019-0205-4] [PMID: 32042148]
[43]
Gruntman AM, Flotte TR. The rapidly evolving state of gene therapy. FASEB J 2018; 32(4): 1733-40.
[http://dx.doi.org/10.1096/fj.201700982R] [PMID: 31282760]
[44]
Go DE, Stottmann RW. The impact of CRISPR/Cas9-based genomic engineering on biomedical research and medicine. Curr Mol Med 2016; 16(4): 343-52.
[http://dx.doi.org/10.2174/1566524016666160316150847] [PMID: 26980700]
[45]
Uddin F, Rudin CM, Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front Oncol 2020; 10: 1387.
[http://dx.doi.org/10.3389/fonc.2020.01387] [PMID: 32850447]
[46]
Zhao K, Hu Y. Microbiome harbored within tumors: A new chance to revisit our understanding of cancer pathogenesis and treatment. Signal Transduct Target Ther 2020; 5(1): 136.
[http://dx.doi.org/10.1038/s41392-020-00244-1] [PMID: 32728023]
[47]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[48]
Nidhi S, Anand U, Oleksak P, et al. Novel CRISPR-Cas systems: An updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci 2021; 22(7): 3327.
[http://dx.doi.org/10.3390/ijms22073327] [PMID: 33805113]
[49]
Li T, Yang Y, Qi H, et al. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct Target Ther 2023; 8(1): 36.
[http://dx.doi.org/10.1038/s41392-023-01309-7] [PMID: 36646687]
[50]
Hochstrasser ML, Doudna JA. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci 2015; 40(1): 58-66.
[http://dx.doi.org/10.1016/j.tibs.2014.10.007] [PMID: 25468820]
[51]
Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18(2): 67-83.
[http://dx.doi.org/10.1038/s41579-019-0299-x] [PMID: 31857715]
[52]
Gleditzsch D, Pausch P, Müller-Esparza H, et al. PAM identification by CRISPR-Cas effector complexes: Diversified mechanisms and structures. RNA Biol 2019; 16(4): 504-17.
[http://dx.doi.org/10.1080/15476286.2018.1504546] [PMID: 30109815]
[53]
Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med 2018; 215(3): 985-97.
[http://dx.doi.org/10.1084/jem.20171626] [PMID: 29436394]
[54]
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014; 507(7490): 62-7.
[http://dx.doi.org/10.1038/nature13011] [PMID: 24476820]
[55]
Li B, Niu Y, Ji W, Dong Y. Strategies for the CRISPR-based therapeutics. Trends Pharmacol Sci 2020; 41(1): 55-65.
[http://dx.doi.org/10.1016/j.tips.2019.11.006] [PMID: 31862124]
[56]
Collias D, Beisel CL. CRISPR technologies and the search for the PAM-free nuclease. Nat Commun 2021; 12(1): 555.
[http://dx.doi.org/10.1038/s41467-020-20633-y] [PMID: 33483498]
[57]
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR- Cas9 nucleases with altered PAM specificities. Nature 2015; 523(7561): 481-5.
[http://dx.doi.org/10.1038/nature14592] [PMID: 26098369]
[58]
Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR- Cas9 variants. Science 2020; 368(6488): 290-6.
[http://dx.doi.org/10.1126/science.aba8853] [PMID: 32217751]
[59]
Guo C, Ma X, Gao F, Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 2023; 11: 1143157.
[http://dx.doi.org/10.3389/fbioe.2023.1143157] [PMID: 36970624]
[60]
Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 2015; 33(2): 179-86.
[http://dx.doi.org/10.1038/nbt.3101] [PMID: 25503383]
[61]
Mortensen R, Nissen TN, Blauenfeldt T, Christensen JP, Andersen P, Dietrich J. Adaptive immunity against Streptococcus pyogenes in adults involves increased IFN-γ and IgG3 responses compared with children. J Immunol 2015; 195(4): 1657-64.
[http://dx.doi.org/10.4049/jimmunol.1500804] [PMID: 26163588]
[62]
Chew WL, Tabebordbar M, Cheng JKW, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 2016; 13(10): 868-74.
[http://dx.doi.org/10.1038/nmeth.3993] [PMID: 27595405]
[63]
Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25(2): 249-54.
[http://dx.doi.org/10.1038/s41591-018-0326-x] [PMID: 30692695]
[64]
Mehta A, Merkel OM. Immunogenicity of Cas9 protein. J Pharm Sci 2020; 109(1): 62-7.
[http://dx.doi.org/10.1016/j.xphs.2019.10.003] [PMID: 31589876]
[65]
Hussen BM, Rasul MF, Abdullah SR, et al. Targeting miRNA by CRISPR/Cas in cancer: Advantages and challenges. Mil Med Res 2023; 10(1): 32.
[http://dx.doi.org/10.1186/s40779-023-00468-6] [PMID: 37460924]
[66]
Paul B, Montoya G. CRISPR-Cas12a: Functional overview and applications. Biomed J 2020; 43(1): 8-17.
[67]
Hsu JY, Grünewald J, Szalay R, et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun 2021; 12(1): 1034.
[http://dx.doi.org/10.1038/s41467-021-21337-7] [PMID: 33589617]
[68]
Nakagawa R, Ishiguro S, Okazaki S, et al. Engineered Campylobacter jejuni Cas9 variant with enhanced activity and broader targeting range. Commun Biol 2022; 5(1): 211.
[http://dx.doi.org/10.1038/s42003-022-03149-7] [PMID: 35260779]
[69]
Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91.
[http://dx.doi.org/10.1038/nature14299] [PMID: 25830891]
[70]
Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. Nat Rev Cancer 2022; 22(5): 259-79.
[http://dx.doi.org/10.1038/s41568-022-00441-w] [PMID: 35194172]
[71]
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18: 2401-15.
[http://dx.doi.org/10.1016/j.csbj.2020.08.031] [PMID: 33005303]
[72]
Dominguez AA, Lim WA, Qi LS. Beyond editing: Repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2016; 17(1): 5-15.
[http://dx.doi.org/10.1038/nrm.2015.2] [PMID: 26670017]
[73]
Shakirova KM, Ovchinnikova VY, Dashinimaev EB. Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems. Front Bioeng Biotechnol 2020; 8: 882.
[http://dx.doi.org/10.3389/fbioe.2020.00882] [PMID: 32850737]
[74]
Hori T, Ohnishi H, Kadowaki T, et al. Autosomal dominant Hashimoto’s thyroiditis with a mutation in TNFAIP3. Clin Pediatr Endocrinol 2019; 28(3): 91-6.
[http://dx.doi.org/10.1297/cpe.28.91] [PMID: 31384100]
[75]
Kuribayashi-Hamada Y, Ishibashi M, Tatsuguchi A, et al. Clinicopathologic characteristics and A20 mutation in primary thyroid lymphoma. J Nippon Med Sch 2022; 89(3): 301-8.
[http://dx.doi.org/10.1272/jnms.JNMS.2022_89-305] [PMID: 34840214]
[76]
Lu X, Liu Y, Xu L, et al. Role of Jumonji domain-containing protein D3 and its inhibitor GSK-J4 in Hashimoto’s thyroiditis. Open Med 2023; 18(1): 20230659.
[http://dx.doi.org/10.1515/med-2023-0659] [PMID: 36874364]
[77]
Kalantar K, Khansalar S, Vakili M, Ghasemi D, Dabbaghmanesh MH, Amirghofran Z. Association of Foxp3 gene variants with risk of Hashimoto’s thyroiditis and correlation with anti-Tpo antibody levels. Acta Endocrinol 2019; 15(4): 423-9.
[http://dx.doi.org/10.4183/aeb.2019.423] [PMID: 32377237]
[78]
Goodwin M, Lee E, Lakshmanan U, et al. CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. Sci Adv 2020; 6(19): eaaz0571.
[http://dx.doi.org/10.1126/sciadv.aaz0571] [PMID: 32494707]
[79]
Chinen T, Kannan AK, Levine AG, et al. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol 2016; 17(11): 1322-33.
[http://dx.doi.org/10.1038/ni.3540] [PMID: 27595233]
[80]
Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: Conditions of disease induction affect dominant effector category. J Exp Med 2008; 205(4): 799-810.
[http://dx.doi.org/10.1084/jem.20071258] [PMID: 18391061]
[81]
Riese MJ, Moon EK, Johnson BD, Albelda SM. Diacylglycerol kinases (DGKs): Novel targets for improving T cell activity in cancer. Front Cell Dev Biol 2016; 4: 108.
[http://dx.doi.org/10.3389/fcell.2016.00108] [PMID: 27800476]
[82]
Luo X, Zheng T, Mao C, et al. Aberrant MRP14 expression in thyroid follicular cells mediates chemokine secretion through the IL-1β/MAPK pathway in Hashimoto’s thyroiditis. Endocr Connect 2018; 7(6): 850-8.
[http://dx.doi.org/10.1530/EC-18-0019] [PMID: 29764904]
[83]
Mizobuchi H, Fujii W, Ishizuka K, et al. MRP14 is dispensable for LPS-induced shock in BALB/c mice. Immunol Lett 2018; 194: 13-20.
[http://dx.doi.org/10.1016/j.imlet.2017.12.003] [PMID: 29253495]
[84]
Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T cell therapy beyond oncology: Autoimmune diseases and viral infections. Biomedicines 2021; 9(1): 59.
[http://dx.doi.org/10.3390/biomedicines9010059] [PMID: 33435454]
[85]
Chen Y, Sun J, Liu H, Yin G, Xie Q. Immunotherapy deriving from CAR-T cell treatment in autoimmune diseases. J Immunol Res 2019; 2019
[http://dx.doi.org/10.1155/2019/5727516]
[86]
Lee HJ, Stefan-Lifshitz M, Li CW, Tomer Y. Genetics and epigenetics of autoimmune thyroid diseases: Translational implications. Best Pract Res Clin Endocrinol Metab 2023; 37(2): 101661.
[http://dx.doi.org/10.1016/j.beem.2022.101661] [PMID: 35459628]
[87]
Zheng L, Dou X, Song H, Wang P, Qu W, Zheng X. Bioinformatics analysis of key genes and pathways in Hashimoto thyroiditis tissues. Biosci Rep 2020; 40(7): BSR20200759.
[http://dx.doi.org/10.1042/BSR20200759] [PMID: 32662826]
[88]
Narooie-Nejad M, Taji O, Tamandani DM, Kaykhaei MA. Association of CTLA-4 gene polymorphisms -318C/T and +49A/G and Hashimoto’s thyroidits in Zahedan, Iran. Biomed Rep 2017; 6(1): 108-12.
[http://dx.doi.org/10.3892/br.2016.813] [PMID: 28123718]
[89]
Enciso-Vargas M, Ruíz-Madrigal B, Hernández-Nazara ZH, Maldonado-González M. Single nucleotide polymorphisms of cytotoxic T-lymphocyte antigen 4 (CTLA-4) and susceptibility to chronic viral Hepatitis B and C infections. J Renal Hepatic Disord 2018; 2(1): 10-7.
[http://dx.doi.org/10.15586/jrenhep.2018.27]
[90]
Fox TA, Houghton BC, Petersone L, et al. Therapeutic gene editing of T cells to correct CTLA-4 insufficiency. Sci Transl Med 2022; 14(668): eabn5811.
[http://dx.doi.org/10.1126/scitranslmed.abn5811] [PMID: 36288278]
[91]
Naghibi FS, Miresmaeili SM, Javid A. Association of TSHR gene single nucleotide intronic polymorphism with the risk of hypothyroid and hyperthyroid disorders in Yazd province. Sci Rep 2022; 12(1): 15745.
[http://dx.doi.org/10.1038/s41598-022-19822-0] [PMID: 36130976]
[92]
Zaaber I, Mestiri S, Marmouch H, Tensaout BHJ. Polymorphisms in TSHR gene and the risk and prognosis of autoimmune thyroid disease in Tunisian population. Acta Endocrinol 2020; 16(1): 1-8.
[http://dx.doi.org/10.4183/aeb.2020.1] [PMID: 32685031]
[93]
Klein JR. Biological impact of the TSHβ splice variant in health and disease. Front Immunol 2014; 5: 155.
[http://dx.doi.org/10.3389/fimmu.2014.00155] [PMID: 24778635]
[94]
John R. Crispr/Cas9 gene editing targeted to an intron of a novel isoform of the β-subunit of thyroid stimulating hormone in peripheral leukocytes. J Immunol 2019; 202(1): 50.
[http://dx.doi.org/10.4049/jimmunol.202.Supp.50.1]
[95]
Yang J, Yi N, Zhang J, et al. Generation and characterization of a hypothyroidism rat model with truncated thyroid stimulating hormone receptor. Sci Rep 2018; 8(1): 4004.
[http://dx.doi.org/10.1038/s41598-018-22405-7] [PMID: 29507327]
[96]
Wu Y, Han J, Vladimirovna KE, et al. Upregulation of protein tyrosine phosphatase receptor type C associates to the combination of hashimoto’s thyroiditis and papillary thyroid carcinoma and is predictive of a poor prognosis. OncoTargets Ther 2019; 12: 8479-89.
[http://dx.doi.org/10.2147/OTT.S226426] [PMID: 31686862]
[97]
Wu H, Wan S, Qu M, Ren B, Liu L, Shen H. The relationship between PTPN22 R620W polymorphisms and the susceptibility to autoimmune thyroid diseases: An updated meta-analysis. Immunol Invest 2022; 51(2): 438-51.
[http://dx.doi.org/10.1080/08820139.2020.1837154] [PMID: 33103521]
[98]
Gong L, Liu B, Wang J, et al. Novel missense mutation in PTPN22 in a Chinese pedigree with Hashimoto’s thyroiditis. BMC Endocr Disord 2018; 18(1): 76.
[http://dx.doi.org/10.1186/s12902-018-0305-8] [PMID: 30384852]
[99]
Bray C, Wright D, Haupt S, Thomas S, Stauss H, Zamoyska R. Crispr/Cas mediated deletion of PTPN22 in Jurkat T cells enhances TCR signaling and production of IL-2. Front Immunol 2018; 9: 2595.
[http://dx.doi.org/10.3389/fimmu.2018.02595] [PMID: 30483260]
[100]
Prade S, Wright D, Logan N, Teagle AR, Stauss H, Zamoyska R. CRISPR-mediated deletion of the Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) improves human T cell function for adoptive T cell therapy. bioRxiv 2020; 2020: 410043.
[http://dx.doi.org/10.1101/2020.12.03.410043]
[101]
Roehlen N, Doering C, Hansmann ML, et al. FOXO3a, and Sirtuin1 in Hashimoto’s thyroiditis and differentiated thyroid cancer. Front Endocrinol 2018; 9: 527.
[http://dx.doi.org/10.3389/fendo.2018.00527] [PMID: 30271381]
[102]
Pani F, Caria P, Yasuda Y, et al. The immune landscape of papillary thyroid cancer in the context of autoimmune thyroiditis. Cancers 2022; 14(17): 4287.
[http://dx.doi.org/10.3390/cancers14174287] [PMID: 36077831]
[103]
Yilmaz HO, Cebi AH, Kocak M, Ersoz HO, Ikbal M. MicroRNA expression levels in patients with hashimoto thyroiditis: A single centre study. Endocr Metab Immune Disord Drug Targets 2021; 21(6): 1066-72.
[http://dx.doi.org/10.2174/1871530320999200918142429]
[104]
Menegatti J, Nakel J, Stepanov YK, et al. Changes of protein expression after CRISPR/Cas9 knockout of miRNA-142 in cell lines derived from diffuse Large b-cell lymphoma. Cancers 2022; 14(20): 5031.
[http://dx.doi.org/10.3390/cancers14205031] [PMID: 36291816]
[105]
Peng W, Li W, Zhang X, Cen W, Liu Y. The intercorrelation among CCT6A, CDC20, CCNB1, and PLK1 expressions and their clinical value in papillary thyroid carcinoma prognostication. J Clin Lab Anal 2022; 36(9): e24609.
[http://dx.doi.org/10.1002/jcla.24609] [PMID: 35838025]
[106]
Ding J, Frantzeskos A, Orozco G. Functional interrogation of autoimmune disease genetics using CRISPR/Cas9 technologies and massively parallel reporter assays. In: Seminars in Immunopathology. Berlin Heidelberg: Springer 2022.
[107]
Krishan K, Kanchan T, Singh B. Human genome editing and ethical considerations. Sci Eng Ethics 2016; 22(2): 597-9.
[http://dx.doi.org/10.1007/s11948-015-9675-8] [PMID: 26154417]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy