Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

Therapeutic Approaches to Increase the Survival Rate of Cancer Patients in the Younger and Older Population

Author(s): Tharrun Paul, Kanagaraj Palaniyandi* and Dhanavathy Gnanasampanthapandian*

Volume 17, Issue 1, 2024

Published on: 07 December, 2023

Page: [16 - 30] Pages: 15

DOI: 10.2174/0118746098241507231127114248

Price: $65

Abstract

Various developments have been observed in the treatment of cancer patients, such as higher survival rates and better treatment outcomes. However, expecting similar outcomes in older patients remains a challenge. The main reason for this conclusion is the exclusion of older people from clinical trials for cancer drugs, as well as other factors, such as comorbidity, side effects, age-related frailties and their willingness to undergo multiple treatments. However, the discovery of new techniques and drug combinations has led to a significant improvement in the survival of the elderly population after the onset of the disease. On the other hand, cancer treatments have not become more complex for the younger population when compared to the older population, as the younger population tends to respond well to treatment trials and their physiological conditions are stable in response to treatments. In summary, this review correlates recent cancer treatment strategies and the corresponding responses and survival outcomes of older and younger patients.

Keywords: Cancer, ageing, chemotherapy, cell therapy, radiotherapy, survival rate.

Graphical Abstract
[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Van Herck Y, Feyaerts A, Alibhai S, et al. Is cancer biology different in older patients? Lancet Healthy Longev 2021; 2(10): e663-77.
[http://dx.doi.org/10.1016/S2666-7568(21)00179-3] [PMID: 36098020]
[3]
Age and Cancer Risk 2021. Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/age
[4]
Laconi E, Marongiu F, DeGregori J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. Br J Cancer 2020; 122(7): 943-52.
[http://dx.doi.org/10.1038/s41416-019-0721-1] [PMID: 32042067]
[5]
Chatsirisupachai K, Lagger C, de Magalhães JP. Age-associated differences in the cancer molecular landscape. Trends Cancer 2022; 8(11): 962-71.
[http://dx.doi.org/10.1016/j.trecan.2022.06.007] [PMID: 35811230]
[6]
Berben L, Floris G, Wildiers H, Hatse S. Cancer and aging: Two tightly interconnected biological processes. Cancers 2021; 13(6): 1400.
[http://dx.doi.org/10.3390/cancers13061400] [PMID: 33808654]
[7]
Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017; 355(6331): 1330-4.
[http://dx.doi.org/10.1126/science.aaf9011] [PMID: 28336671]
[8]
van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 2018; 6(8): 647-58.
[http://dx.doi.org/10.1016/S2213-8587(18)30026-3] [PMID: 30017799]
[9]
Pataky MW, Young WF, Nair KS. Hormonal and metabolic changes of aging and the influence of lifestyle modifications. Mayo Clin Proc 2021; 96(3): 788-814.
[http://dx.doi.org/10.1016/j.mayocp.2020.07.033] [PMID: 33673927]
[10]
Ma H, Bernstein L, Ross RK, Ursin G. Hormone-related risk factors for breast cancer in women under age 50 years by estrogen and progesterone receptor status: Results from a case–control and a case–case comparison. Breast Cancer Res 2006; 8(4): R39.
[http://dx.doi.org/10.1186/bcr1514] [PMID: 16846528]
[11]
Akoko LO, Rutashobya AK, Lutainulwa EW, Mwanga AH, Kivuyo SL. The effect of reproductive, hormonal, nutritional and lifestyle on breast cancer risk among black Tanzanian women: A case control study. PLoS One 2022; 17(2): e0263374.
[http://dx.doi.org/10.1371/journal.pone.0263374] [PMID: 35139096]
[12]
Warraich UA, Hussain F, Kayani HUR. Aging - Oxidative stress, antioxidants and computational modeling. Heliyon 2020; 6(5): e04107.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04107] [PMID: 32509998]
[13]
Rajendran P, Jayaraman S, Munuswamy-Ramanujam G, et al. Cancer stem cells: Reactive oxygen species-induced drug resistance in cancer. In: Chakraborti S, Ed. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects.Singapore: Springer Nature Singapore 2021; pp. 1-23.
[14]
Waris G, Ahsan H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J Carcinog 2006; 5(1): 14.
[http://dx.doi.org/10.1186/1477-3163-5-14] [PMID: 16689993]
[15]
Nimse SB, Sonawane MD, Song KS, Kim T. Biomarker detection technologies and future directions. Analyst 2016; 141(3): 740-55.
[http://dx.doi.org/10.1039/C5AN01790D] [PMID: 26583164]
[16]
Garcia-Schwarz G, Santiago JG. Rapid high-specificity microRNA detection using a two-stage isotachophoresis assay. Angew Chem Int Ed 2013; 52(44): 11534-7.
[http://dx.doi.org/10.1002/anie.201305875] [PMID: 24038732]
[17]
Lee H, Park JE, Nam JM. Bio-barcode gel assay for microRNA. Nat Commun 2014; 5(1): 3367.
[http://dx.doi.org/10.1038/ncomms4367] [PMID: 24569571]
[18]
Law WC, Yong KT, Baev A, Prasad PN. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 2011; 5(6): 4858-64.
[http://dx.doi.org/10.1021/nn2009485] [PMID: 21510685]
[19]
Krishnan S, Mani V, Wasalathanthri D, Kumar CV, Rusling JF. Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels. Angew Chem Int Ed 2011; 50(5): 1175-8.
[http://dx.doi.org/10.1002/anie.201005607] [PMID: 21268221]
[20]
Syriopoulou E, Bower H, Andersson TML, Lambert PC, Rutherford MJ. Estimating the impact of a cancer diagnosis on life expectancy by socio-economic group for a range of cancer types in England. Br J Cancer 2017; 117(9): 1419-26.
[http://dx.doi.org/10.1038/bjc.2017.300] [PMID: 28898233]
[21]
Yeh JM, Ward ZJ, Chaudhry A, et al. Life expectancy of adult survivors of childhood cancer over 3 decades. JAMA Oncol 2020; 6(3): 350-7.
[http://dx.doi.org/10.1001/jamaoncol.2019.5582] [PMID: 31895405]
[22]
Botta L, Dal Maso L, Guzzinati S, et al. Changes in life expectancy for cancer patients over time since diagnosis. J Adv Res 2019; 20: 153-9.
[http://dx.doi.org/10.1016/j.jare.2019.07.002] [PMID: 31467707]
[23]
Miglietta F, Bottosso M, Griguolo G, Dieci MV, Guarneri V. Major advancements in metastatic breast cancer treatment: When expanding options means prolonging survival. ESMO Open 2022; 7(2): 100409.
[http://dx.doi.org/10.1016/j.esmoop.2022.100409] [PMID: 35227965]
[24]
Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-drug conjugates and their targets in advanced cancer therapies. Front Chem 2020; 8: 571.
[http://dx.doi.org/10.3389/fchem.2020.00571] [PMID: 32733853]
[25]
Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin 2022; 72(5): 409-36.
[http://dx.doi.org/10.3322/caac.21731] [PMID: 35736631]
[26]
Bae K, Kim E, Kong JS, et al. Integrative cancer treatment may have a survival benefit in patients with lung cancer. Medicine 2019; 98(26): e16048.
[http://dx.doi.org/10.1097/MD.0000000000016048] [PMID: 31261510]
[27]
Browder T, Butterfield CE, Kräling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60(7): 1878-86.
[PMID: 10766175]
[28]
de Steur WO, van Amelsfoort RM, Hartgrink HH, et al. Adjuvant chemotherapy is superior to chemoradiation after D2 surgery for gastric cancer in the per-protocol analysis of the randomized CRITICS trial. Ann Oncol 2021; 32(3): 360-7.
[http://dx.doi.org/10.1016/j.annonc.2020.11.004] [PMID: 33227408]
[29]
Versteijne E, van Dam JL, Suker M, et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: Long-term results of the dutch randomized PREOPANC trial. J Clin Oncol 2022; 40(11): 1220-30.
[http://dx.doi.org/10.1200/JCO.21.02233] [PMID: 35084987]
[30]
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep 2023; 6(2): e1764.
[http://dx.doi.org/10.1002/cnr2.1764] [PMID: 36607830]
[31]
Ileana Dumbrava E, Meric-Bernstam F, Yap TA. Challenges with biomarkers in cancer drug discovery and development. Expert Opin Drug Discov 2018; 13(8): 685-90.
[http://dx.doi.org/10.1080/17460441.2018.1479740] [PMID: 29792354]
[32]
Thompson IM, Ankerst DP. Prostate-specific antigen in the early detection of prostate cancer. CMAJ 2007; 176(13): 1853-8.
[http://dx.doi.org/10.1503/cmaj.060955] [PMID: 17576986]
[33]
Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran 2016; 30: 369.
[PMID: 27493913]
[34]
Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol 2012; 6(2): 140-6.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010] [PMID: 22356776]
[35]
Wu L, Qu X. Cancer biomarker detection: Recent achievements and challenges. Chem Soc Rev 2015; 44(10): 2963-97.
[http://dx.doi.org/10.1039/C4CS00370E] [PMID: 25739971]
[36]
Lesterhuis WJ, Bosco A, Millward MJ, Small M, Nowak AK, Lake RA. Dynamic versus static biomarkers in cancer immune checkpoint blockade: Unravelling complexity. Nat Rev Drug Discov 2017; 16(4): 264-72.
[http://dx.doi.org/10.1038/nrd.2016.233] [PMID: 28057932]
[37]
Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20(5): 548-54.
[http://dx.doi.org/10.1038/nm.3519] [PMID: 24705333]
[38]
Han X, Wang J, Sun Y. Circulating tumor DNA as biomarkers for cancer detection. GPB 2017; 15(2): 59-72.
[http://dx.doi.org/10.1016/j.gpb.2016.12.004] [PMID: 28392479]
[39]
Fakhry C, Waterboer T, Westra WH, et al. Distinct biomarker and behavioral profiles of human papillomavirus-related oropharynx cancer patients by age. Oral Oncol 2020; 101: 104522.
[http://dx.doi.org/10.1016/j.oraloncology.2019.104522] [PMID: 31881446]
[40]
Yao H, Li C, Tan X. An age stratified analysis of the biomarkers in patients with colorectal cancer. Sci Rep 2021; 11(1): 22464.
[http://dx.doi.org/10.1038/s41598-021-01850-x] [PMID: 34789836]
[41]
Aguiar PN Jr, De Mello RA, Hall P, Tadokoro H, Lima Lopes G. PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy 2017; 9(6): 499-506.
[http://dx.doi.org/10.2217/imt-2016-0150] [PMID: 28472902]
[42]
Nadaraja S, Schledermann D, Herrstedt J, Østrup O, Ditzel HJ. ARAP1 is an independent prognostic biomarker in older women with ovarian high-grade serous adenocarcinoma receiving first-line platinum-based antineoplastic therapy. Acta Oncol 2020; 59(1): 40-7.
[http://dx.doi.org/10.1080/0284186X.2019.1657941] [PMID: 31478407]
[43]
Szász AM, Lánczky A, Nagy Á, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 2016; 7(31): 49322-33.
[http://dx.doi.org/10.18632/oncotarget.10337] [PMID: 27384994]
[44]
Lin P, Xing W, Ren Q, Wang Q, Yan J, Mao G. LncRNAs as theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Front Oncol 2022; 12: 767750.
[http://dx.doi.org/10.3389/fonc.2022.767750] [PMID: 35692742]
[45]
Xie Y, Han J, Xie K, Gou Q. LncRNAs as biomarkers for predicting radioresistance and survival in cancer: A meta-analysis. Sci Rep 2022; 12(1): 18494.
[http://dx.doi.org/10.1038/s41598-022-21785-1] [PMID: 36323697]
[46]
Rossiello F, Jurk D, Passos JF, d’Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 2022; 24(2): 135-47.
[http://dx.doi.org/10.1038/s41556-022-00842-x] [PMID: 35165420]
[47]
Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process. Nature 2021; 592(7856): 695-703.
[http://dx.doi.org/10.1038/s41586-021-03307-7] [PMID: 33911272]
[48]
Soto-Perez-de-Celis E, Li D, Yuan Y, Lau YM, Hurria A. Functional versus chronological age: geriatric assessments to guide decision making in older patients with cancer. Lancet Oncol 2018; 19(6): e305-16.
[http://dx.doi.org/10.1016/S1470-2045(18)30348-6] [PMID: 29893262]
[49]
Song C, Cui Z, Hui M, Liu Y, Li Y, Li X. Comparative transcriptomic analysis provides insights into the molecular basis of brachyurization and adaptation to benthic lifestyle in Eriocheir sinensis. Gene 2015; 558(1): 88-98.
[http://dx.doi.org/10.1016/j.gene.2014.12.048] [PMID: 25542812]
[50]
Massa E, Madeddu C, Astara G, et al. An attempt to correlate a “Multidimensional Geriatric Assessment” (MGA), treatment assignment and clinical outcome in elderly cancer patients: Results of a phase II open study. Crit Rev Oncol Hematol 2008; 66(1): 75-83.
[http://dx.doi.org/10.1016/j.critrevonc.2007.11.002] [PMID: 18164209]
[51]
Marosi C, Köller M. Challenge of cancer in the elderly. ESMO Open 2016; 1(3): e000020.
[http://dx.doi.org/10.1136/esmoopen-2015-000020] [PMID: 27843603]
[52]
Fishman WH. Clinical and biological significance of an isozyme tumor marker—PLAP. Clin Biochem 1987; 20(6): 387-92.
[http://dx.doi.org/10.1016/0009-9120(87)90003-8] [PMID: 3325192]
[53]
Zhang C, Zhang QZ, Zhang K, et al. Dual-biomarker-triggered fluorescence probes for differentiating cancer cells and revealing synergistic antioxidant effects under oxidative stress. Chem Sci 2019; 10(7): 1945-52.
[http://dx.doi.org/10.1039/C8SC03781G] [PMID: 30931093]
[54]
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 2015; 115(19): 10530-74.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[55]
Zhang H, Fan J, Wang J, et al. Fluorescence discrimination of cancer from inflammation by molecular response to COX-2 enzymes. J Am Chem Soc 2013; 135(46): 17469-75.
[http://dx.doi.org/10.1021/ja4085308] [PMID: 24200121]
[56]
Blackburn EH. Structure and function of telomeres. Nature 1991; 350(6319): 569-73.
[http://dx.doi.org/10.1038/350569a0] [PMID: 1708110]
[57]
Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266(5193): 2011-5.
[http://dx.doi.org/10.1126/science.7605428] [PMID: 7605428]
[58]
Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33(5): 787-91.
[http://dx.doi.org/10.1016/S0959-8049(97)00062-2] [PMID: 9282118]
[59]
Hirano Y, Fujita K, Suzuki K, Ushiyama T, Ohtawara Y, Tsuda F. Telomerase activity as an indicator of potentially malignant adrenal tumors. Cancer 1998; 83(4): 772-6.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980815)83:4<772:AID-CNCR21>3.0.CO;2-O] [PMID: 9708944]
[60]
Yoshida K, Sakamoto S, Sumi S, Higashi Y, Kitahara S. Telomerase activity in renal cell carcinoma. Cancer 1998; 83(4): 760-6.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980815)83:4<760:AID-CNCR19>3.0.CO;2-Q] [PMID: 9708942]
[61]
Anker P, Mulcahy H, Qi Chen X, Stroun M. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 1999; 18(1): 65-73.
[http://dx.doi.org/10.1023/A:1006260319913] [PMID: 10505546]
[62]
Sozzi G, Conte D, Leon M, et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 2003; 21(21): 3902-8.
[http://dx.doi.org/10.1200/JCO.2003.02.006] [PMID: 14507943]
[63]
Sozzi G, Conte D, Mariani L, et al. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res 2001; 61(12): 4675-8.
[PMID: 11406535]
[64]
Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14(9): 985-90.
[http://dx.doi.org/10.1038/nm.1789] [PMID: 18670422]
[65]
Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 2016; 7(30): 48832-41.
[http://dx.doi.org/10.18632/oncotarget.9453] [PMID: 27223063]
[66]
Kato R, Hayashi H, Sakai K, et al. CAPP-seq analysis of circulating tumor DNA from patients with EGFR T790M–positive lung cancer after osimertinib. Int J Clin Oncol 2021; 26(9): 1628-39.
[http://dx.doi.org/10.1007/s10147-021-01947-3] [PMID: 34117553]
[67]
Shah AT, Azad TD, Breese MR, et al. A comprehensive circulating tumor DNA assay for detection of translocation and copy-number changes in pediatric sarcomas. Mol Cancer Ther 2021; 20(10): 2016-25.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0987] [PMID: 34353895]
[68]
Siddiqui N, Borden KLB. mRNA export and cancer. Wiley Interdiscip Rev RNA 2012; 3(1): 13-25.
[http://dx.doi.org/10.1002/wrna.101] [PMID: 21796793]
[69]
Pandolfi PP. Aberrant mRNA translation in cancer pathogenesis: an old concept revisited comes finally of age. Oncogene 2004; 23(18): 3134-7.
[http://dx.doi.org/10.1038/sj.onc.1207618] [PMID: 15094762]
[70]
Perrotti D, Neviani P. From mRNA metabolism to cancer therapy: Chronic myelogenous leukemia shows the way. Clin Cancer Res 2007; 13(6): 1638-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2320] [PMID: 17363515]
[71]
Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci 2001; 98(24): 13790-5.
[http://dx.doi.org/10.1073/pnas.191502998] [PMID: 11707567]
[72]
Cuschieri K, Wentzensen N. Human papillomavirus mRNA and p16 detection as biomarkers for the improved diagnosis of cervical neoplasia. Cancer Epidemiol Biomarkers Prev 2008; 17(10): 2536-45.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0306] [PMID: 18842994]
[73]
Li Y, Elashoff D, Oh M, et al. Serum circulating human mRNA profiling and its utility for oral cancer detection. J Clin Oncol 2006; 24(11): 1754-60.
[http://dx.doi.org/10.1200/JCO.2005.03.7598] [PMID: 16505414]
[74]
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435(7043): 834-8.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[75]
Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol 2011; 223(2): 102-15.
[http://dx.doi.org/10.1002/path.2806] [PMID: 21125669]
[76]
Brase JC, Johannes M, Schlomm T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 2011; 128(3): 608-16.
[http://dx.doi.org/10.1002/ijc.25376] [PMID: 20473869]
[77]
Boeri M, Verri C, Conte D, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci 2011; 108(9): 3713-8.
[http://dx.doi.org/10.1073/pnas.1100048108] [PMID: 21300873]
[78]
Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 2010; 5(10): e13735.
[http://dx.doi.org/10.1371/journal.pone.0013735] [PMID: 21060830]
[79]
Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64(11): 3753-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0637] [PMID: 15172979]
[80]
Garcia-Schwarz G, Rogacs A, Bahga SS, Santiago JG. On-chip isotachophoresis for separation of ions and purification of nucleic acids. J Vis Exp 2012; (61): e3890.
[http://dx.doi.org/10.3791/3890] [PMID: 22415002]
[81]
Wegman DW, Krylov SN. Direct quantitative analysis of multiple miRNAs (DQAMmiR). Angew Chem Int Ed 2011; 50(44): 10335-9.
[http://dx.doi.org/10.1002/anie.201104693] [PMID: 21919168]
[82]
Gu LQ, Wanunu M, Wang MX, McReynolds L, Wang Y. Detection of miRNAs with a nanopore single-molecule counter. Expert Rev Mol Diagn 2012; 12(6): 573-84.
[http://dx.doi.org/10.1586/erm.12.58] [PMID: 22845478]
[83]
Wanunu M, Dadosh T, Ray V. Jin J. McReynolds L. Drndić M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 2010; 5(11): 807-14.
[http://dx.doi.org/10.1038/nnano.2010.202] [PMID: 20972437]
[84]
Wang Y, Zheng D, Tan Q, Wang MX, Gu LQ. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 2011; 6(10): 668-74.
[http://dx.doi.org/10.1038/nnano.2011.147] [PMID: 21892163]
[85]
Paganin-Gioanni A, Bellard E, Paquereau L, Ecochard V, Golzio M, Teissié J. Fluorescence imaging agents in cancerology. Radiol Oncol 2010; 44(3): 142-8.
[http://dx.doi.org/10.2478/v10019-010-0031-y] [PMID: 22933906]
[86]
Dong H, Ding L, Yan F, Ji H, Ju H. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 2011; 32(15): 3875-82.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.001] [PMID: 21354613]
[87]
Li N, Chang C, Pan W, Tang B. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew Chem Int Ed 2012; 51(30): 7426-30.
[http://dx.doi.org/10.1002/anie.201203767] [PMID: 22806948]
[88]
Si P, Razmi N, Nur O, et al. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv 2021; 3(10): 2679-98.
[http://dx.doi.org/10.1039/D0NA00961J] [PMID: 36134176]
[89]
Lone SN, Nisar S, Masoodi T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 2022; 21(1): 79.
[http://dx.doi.org/10.1186/s12943-022-01543-7] [PMID: 35303879]
[90]
Alix-Panabières C, Pantel K. Liquid biopsy: From discovery to clinical application. Cancer Discov 2021; 11(4): 858-73.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1311] [PMID: 33811121]
[91]
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clin Proteomics 2020; 17(1): 17.
[http://dx.doi.org/10.1186/s12014-020-09283-w] [PMID: 32489335]
[92]
Benjamin DJ. The efficacy of surgical treatment of cancer – 20years later. Med Hypotheses 2014; 82(4): 412-20.
[http://dx.doi.org/10.1016/j.mehy.2014.01.004] [PMID: 24480434]
[93]
Simon C, Nicolai P, Paderno A, Dietz A. Best practice in surgical treatment of malignant head and neck tumors. Front Oncol 2020; 10: 140.
[http://dx.doi.org/10.3389/fonc.2020.00140] [PMID: 32117778]
[94]
Meulemans J, Hauben E, Peeperkorn S, Nuyts S, Delaere P, Vander Poorten V. Transoral Laser Microsurgery (TLM) for glottic cancer: Prospective assessment of a new pathology workup protocol. Front Surg 2020; 7: 56.
[http://dx.doi.org/10.3389/fsurg.2020.00056] [PMID: 33005622]
[95]
Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol 2015; 12(2): 115-24.
[http://dx.doi.org/10.1038/nrclinonc.2014.191] [PMID: 25384943]
[96]
Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat Rev Drug Discov 2020; 19(9): 589-608.
[http://dx.doi.org/10.1038/s41573-020-0073-9] [PMID: 32728208]
[97]
Vijayakumar K, Anand K, Boomi P, Surendrakumar R. Theranostics and radiopharmaceuticals in cancer treatment.Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications. Elsevier 2021; pp. 341-60.
[http://dx.doi.org/10.1016/B978-0-12-821013-0.00020-9]
[98]
Baumann M, Krause M, Overgaard J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer 2016; 16(4): 234-49.
[http://dx.doi.org/10.1038/nrc.2016.18] [PMID: 27009394]
[99]
Hall WA, Bergom C, Thompson RF, et al. Precision oncology and genomically guided radiation therapy: A report from the american society for radiation oncology/american association of physicists in medicine/national cancer institute precision medicine conference. Int J Radiat Oncol Biol Phys 2018; 101(2): 274-84.
[http://dx.doi.org/10.1016/j.ijrobp.2017.05.044] [PMID: 28964588]
[100]
Bristow RG, Alexander B, Baumann M, et al. Combining precision radiotherapy with molecular targeting and immunomodulatory agents: A guideline by the American Society for Radiation Oncology. Lancet Oncol 2018; 19(5): e240-51.
[http://dx.doi.org/10.1016/S1470-2045(18)30096-2] [PMID: 29726389]
[101]
Kręcisz P, Czarnecka K, Królicki L, Mikiciuk-Olasik E, Szymański P. Radiolabeled peptides and antibodies in medicine. Bioconjug Chem 2021; 32(1): 25-42.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00617] [PMID: 33325685]
[102]
Thompson S, Ballard B, Jiang Z, et al. 166Ho and 90Y labeled 6D2 monoclonal antibody for targeted radiotherapy of melanoma: Comparison with 188Re radiolabel. Nucl Med Biol 2014; 41(3): 276-81.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.12.015] [PMID: 24533987]
[103]
Sherbenou DW, Druker BJ. Applying the discovery of the Philadelphia chromosome. J Clin Invest 2007; 117(8): 2067-74.
[http://dx.doi.org/10.1172/JCI31988] [PMID: 17671641]
[104]
Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int J Mol Sci 2014; 15(8): 13768-801.
[http://dx.doi.org/10.3390/ijms150813768] [PMID: 25110867]
[105]
Steeghs N, Nortier JWR, Gelderblom H. Small molecule tyrosine kinase inhibitors in the treatment of solid tumors: an update of recent developments. Ann Surg Oncol 2007; 14(2): 942-53.
[http://dx.doi.org/10.1245/s10434-006-9227-1] [PMID: 17103252]
[106]
Tong CWS, Wu M, Cho WCS, To KKW. Recent advances in the treatment of breast cancer. Front Oncol 2018; 8: 227.
[http://dx.doi.org/10.3389/fonc.2018.00227] [PMID: 29963498]
[107]
Jazieh K, Bell R, Agarwal N, Abraham J. Novel targeted therapies for metastatic breast cancer. Ann Transl Med 2020; 8(14): 907.
[http://dx.doi.org/10.21037/atm.2020.03.43] [PMID: 32793751]
[108]
Gajria D, Chandarlapaty S. HER2-amplified breast cancer: Mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther 2011; 11(2): 263-75.
[http://dx.doi.org/10.1586/era.10.226] [PMID: 21342044]
[109]
Wang C, Chen J, Xu X, et al. Dual HER2 blockade in neoadjuvant treatment of HER2+ breast cancer: A meta-analysis and review. Technol Cancer Res Treat 2020; 19.
[http://dx.doi.org/10.1177/1533033820960721] [PMID: 32990165]
[110]
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol 2020; 20(11): 651-68.
[http://dx.doi.org/10.1038/s41577-020-0306-5] [PMID: 32433532]
[111]
Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New strategies using antibody combinations to increase cancer treatment effectiveness. Front Immunol 2017; 8: 1804.
[http://dx.doi.org/10.3389/fimmu.2017.01804] [PMID: 29312320]
[112]
Jin S, Sun Y, Liang X, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther 2022; 7(1): 39.
[http://dx.doi.org/10.1038/s41392-021-00868-x] [PMID: 35132063]
[113]
Kuroda T, Kumagi T, Yokota T, et al. Efficacy of chemotherapy in elderly patients with unresectable pancreatic cancer: A multicenter review of 895 patients. BMC Gastroenterol 2017; 17(1): 66.
[http://dx.doi.org/10.1186/s12876-017-0623-8] [PMID: 28532457]
[114]
Ko JJ, Kennecke HF, Lim HJ, et al. Reasons for underuse of adjuvant chemotherapy in elderly patients with stage III colon cancer. Clin Colorectal Cancer 2016; 15(2): 179-85.
[http://dx.doi.org/10.1016/j.clcc.2015.09.002] [PMID: 26520019]
[115]
Holub K, Biete A. Impact of systemic inflammation biomarkers on the survival outcomes of cervical cancer patients. Clin Transl Oncol 2019; 21(7): 836-44.
[http://dx.doi.org/10.1007/s12094-018-1991-4] [PMID: 30470994]
[116]
Shrivastava S, Mahantshetty U, Engineer R, et al. Cisplatin chemoradiotherapy vs radiotherapy in FIGO stage IIIB squamous cell carcinoma of the uterine cervix. JAMA Oncol 2018; 4(4): 506-13.
[http://dx.doi.org/10.1001/jamaoncol.2017.5179] [PMID: 29423520]
[117]
Moore KN, Java JJ, Slaughter KN, et al. Is age a prognostic biomarker for survival among women with locally advanced cervical cancer treated with chemoradiation? An NRG Oncology/Gynecologic Oncology Group ancillary data analysis. Gynecol Oncol 2016; 143(2): 294-301.
[http://dx.doi.org/10.1016/j.ygyno.2016.08.317] [PMID: 27542967]
[118]
Muss HB, Berry DA, Cirrincione C, et al. Toxicity of older and younger patients treated with adjuvant chemotherapy for node-positive breast cancer: The Cancer and Leukemia Group B Experience. J Clin Oncol 2007; 25(24): 3699-704.
[http://dx.doi.org/10.1200/JCO.2007.10.9710] [PMID: 17704418]
[119]
Bebchuk JM, Arfken CL, Dolan-Manji S, Murphy J, Hasanat K, Manji HK. A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch Gen Psychiatry 2000; 57(1): 95-7.
[http://dx.doi.org/10.1001/archpsyc.57.1.95] [PMID: 10632242]
[120]
Nyrop KA, Deal AM, Chen YT, et al. Patient-reported symptom severity, interference with daily activities, and adverse events in older and younger women receiving chemotherapy for early breast cancer. Cancer 2021; 127(6): 957-67.
[http://dx.doi.org/10.1002/cncr.33329] [PMID: 33216355]
[121]
Manjelievskaia J, Brown D, McGlynn KA, Anderson W, Shriver CD, Zhu K. Chemotherapy use and survival among young and middle-aged patients with colon cancer. JAMA Surg 2017; 152(5): 452-9.
[http://dx.doi.org/10.1001/jamasurg.2016.5050] [PMID: 28122072]
[122]
Yoon TI, Hwang UK, Kim ET, et al. Survival improvement in hormone-responsive young breast cancer patients with endocrine therapy. Breast Cancer Res Treat 2017; 165(2): 311-20.
[http://dx.doi.org/10.1007/s10549-017-4331-4] [PMID: 28601930]
[123]
McKevitt E, Cheifetz R, DeVries K, et al. Sentinel node biopsy should not be routine in older patients with ER-positive HER2-negative breast cancer who are willing and able to take hormone therapy. Ann Surg Oncol 2021; 28(11): 5950-7.
[http://dx.doi.org/10.1245/s10434-021-09839-6] [PMID: 33817760]
[124]
Pepping RMC, Portielje JEA, van de Water W, de Glas NA. Primary endocrine therapy in older women with breast cancer. Curr Geriatr Rep 2017; 6(4): 239-46.
[http://dx.doi.org/10.1007/s13670-017-0223-z] [PMID: 29238654]
[125]
Rhee SG, Kang SW, Netto LE, Seo MS, Stadtman ER. A family of novel peroxidases, peroxiredoxins. Biofactors 1999; 10(2-3): 207-9.
[http://dx.doi.org/10.1002/biof.5520100218] [PMID: 10609884]
[126]
James ND, de Bono JS, Spears MR, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 2017; 377(4): 338-51.
[http://dx.doi.org/10.1056/NEJMoa1702900] [PMID: 28578639]
[127]
Ferrigni E, Bergom C, Yin Z, Szabo A, Kong AL. Breast cancer in women aged 80 years or older: An analysis of treatment patterns and disease outcomes. Clin Breast Cancer 2019; 19(3): 157-64.
[http://dx.doi.org/10.1016/j.clbc.2019.01.007] [PMID: 30819504]
[128]
Freedman RA, Tolaney SM. Efficacy and safety in older patient subsets in studies of endocrine monotherapy versus combination therapy in patients with HR+/HER2- advanced breast cancer: A review. Breast Cancer Res Treat 2018; 167(3): 607-14.
[http://dx.doi.org/10.1007/s10549-017-4560-6] [PMID: 29103175]
[129]
Derks MGM, Bastiaannet E, Kiderlen M, et al. Variation in treatment and survival of older patients with non-metastatic breast cancer in five European countries: A population-based cohort study from the EURECCA Breast Cancer Group. Br J Cancer 2018; 119(1): 121-9.
[http://dx.doi.org/10.1038/s41416-018-0090-1] [PMID: 29875471]
[130]
Xia Q, Dong S, Bian PD, Wang J, Li CJ. Effects of endocrine therapy on the prognosis of elderly patients after surgery for papillary thyroid carcinoma. Eur Arch Otorhinolaryngol 2016; 273(4): 1037-43.
[http://dx.doi.org/10.1007/s00405-015-3564-2] [PMID: 25744048]
[131]
Lee S, Seo JH. Current strategies of endocrine therapy in elderly patients with breast cancer. BioMed Res Int 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/6074808] [PMID: 29581979]
[132]
Serra F, Lapidari P, Quaquarini E, Tagliaferri B, Sottotetti F, Palumbo R. Palbociclib in metastatic breast cancer: Current evidence and real-life data. Drugs Context 2019; 8: 1-16.
[http://dx.doi.org/10.7573/dic.212579] [PMID: 31391852]
[133]
Rugo HS, Turner NC, Finn RS, et al. Palbociclib plus endocrine therapy in older women with HR+/HER2– advanced breast cancer: A pooled analysis of randomised PALOMA clinical studies. Eur J Cancer 2018; 101: 123-33.
[http://dx.doi.org/10.1016/j.ejca.2018.05.017] [PMID: 30053671]
[134]
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front Oncol 2018; 8: 86.
[http://dx.doi.org/10.3389/fonc.2018.00086] [PMID: 29644214]
[135]
Pawelec G. Immunosenescence and cancer. Biogerontology 2017; 18(4): 717-21.
[http://dx.doi.org/10.1007/s10522-017-9682-z] [PMID: 28220304]
[136]
Betof AS, Nipp RD, Giobbie-Hurder A, et al. Impact of age on outcomes with immunotherapy for patients with melanoma. Oncologist 2017; 22(8): 963-71.
[http://dx.doi.org/10.1634/theoncologist.2016-0450] [PMID: 28476944]
[137]
Ribas A, Hamid O, Daud A, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 2016; 315(15): 1600-9.
[http://dx.doi.org/10.1001/jama.2016.4059] [PMID: 27092830]
[138]
Johns AC, Wei L, Grogan M, et al. Checkpoint inhibitor immunotherapy toxicity and overall survival among older adults with advanced cancer. J Geriatr Oncol 2021; 12(5): 813-9.
[http://dx.doi.org/10.1016/j.jgo.2021.02.002] [PMID: 33627226]
[139]
Hamid O, Robert C, Daud A, et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol 2019; 30(4): 582-8.
[http://dx.doi.org/10.1093/annonc/mdz011] [PMID: 30715153]
[140]
Galli G, De Toma A, Pagani F, et al. Efficacy and safety of immunotherapy in elderly patients with non-small cell lung cancer. Lung Cancer 2019; 137: 38-42.
[http://dx.doi.org/10.1016/j.lungcan.2019.08.030] [PMID: 31526910]
[141]
Luciani A, Marra A, Toschi L, et al. Efficacy and safety of anti-PD-1 immunotherapy in patients aged ≥ 75 years with non–small-cell lung cancer (NSCLC): An italian, multicenter, retrospective study. Clin Lung Cancer 2020; 21(6): e567-71.
[http://dx.doi.org/10.1016/j.cllc.2020.05.004] [PMID: 32591311]
[142]
Corbaux P, Maillet D, Boespflug A, et al. Older and younger patients treated with immune checkpoint inhibitors have similar outcomes in real-life setting. Eur J Cancer 2019; 121: 192-201.
[http://dx.doi.org/10.1016/j.ejca.2019.08.027] [PMID: 31590080]
[143]
Muroya T, Suehiro Y, Umayahara K, et al. Photodynamic therapy (PDT) for early cervical cancer. Gan To Kagaku Ryoho 1996; 23(1): 47-56.
[PMID: 8546469]
[144]
Rkein AM, Ozog DM. Photodynamic therapy. Dermatol Clin 2014; 32(3): 415-25.
[http://dx.doi.org/10.1016/j.det.2014.03.009]
[145]
Roozeboom MH, Arits AHMM, Mosterd K, et al. Three-year follow-up results of photodynamic therapy vs. imiquimod vs. fluorouracil for treatment of superficial basal cell carcinoma: A single-blind, noninferiority, randomized controlled trial. J Invest Dermatol 2016; 136(8): 1568-74.
[http://dx.doi.org/10.1016/j.jid.2016.03.043] [PMID: 27113429]
[146]
Jansen MHE, Mosterd K, Arits AHMM, et al. Five-Year results of a randomized controlled trial comparing effectiveness of photodynamic therapy, topical imiquimod, and topical 5-fluorouracil in patients with superficial basal cell carcinoma. J Invest Dermatol 2018; 138(3): 527-33.
[http://dx.doi.org/10.1016/j.jid.2017.09.033] [PMID: 29045820]
[147]
Hamblin MR. Photodynamic therapy for cancer: What’s past is prologue. Photochem Photobiol 2020; 96(3): 506-16.
[http://dx.doi.org/10.1111/php.13190] [PMID: 31820824]
[148]
Gunaydin G, Gedik ME, Ayan S. Photodynamic therapy—current limitations and novel approaches. Front Chem 2021; 9: 691697.
[http://dx.doi.org/10.3389/fchem.2021.691697] [PMID: 34178948]
[149]
Frochot C, Mordon S. Update of the situation of clinical photodynamic therapy in Europe in the 2003–2018 period. JPP 2019; 23(04n05): 347-57.
[http://dx.doi.org/10.1142/S1088424619300027]
[150]
Park YK, Park CH. Clinical efficacy of photodynamic therapy. Obstet Gynecol Sci 2016; 59(6): 479-88.
[http://dx.doi.org/10.5468/ogs.2016.59.6.479] [PMID: 27896250]
[151]
Huang S, Zheng S, Gong T, et al. Survival benefit evaluation of radiotherapy in esophageal cancer patients aged 80 and older. Oncotarget 2017; 8(67): 112094-102.
[http://dx.doi.org/10.18632/oncotarget.22884] [PMID: 29340114]
[152]
Jingu K, Takahashi N, Murakami Y, et al. Is concurrent chemotherapy with radiotherapy for esophageal cancer beneficial in patients aged 80 years or older? Anticancer Res 2019; 39(8): 4279-83.
[http://dx.doi.org/10.21873/anticanres.13592] [PMID: 31366518]
[153]
Ciabatti S, Cammelli S, Frakulli R, et al. Radiotherapy of pancreatic cancer in older patients: A systematic review. J Geriatr Oncol 2019; 10(4): 534-9.
[http://dx.doi.org/10.1016/j.jgo.2018.09.007] [PMID: 30270196]
[154]
Lancellotta V, Kovács G, Tagliaferri L, et al. Age is not a limiting factor in interventional radiotherapy (Brachytherapy) for patients with localized cancer. BioMed Res Int 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/2178469] [PMID: 29581964]
[155]
Korpics MC, Block AM, Martin B, et al. Concurrent chemotherapy is associated with improved survival in elderly patients with bladder cancer undergoing radiotherapy. Cancer 2017; 123(18): 3524-31.
[http://dx.doi.org/10.1002/cncr.30719] [PMID: 28581675]
[156]
Jin YN, Zhang WJ, Cai XY, et al. The characteristics and survival outcomes in patients aged 70 years and older with nasopharyngeal carcinoma in the intensity-modulated radiotherapy era. Cancer Res Treat 2019; 51(1): 34-42.
[http://dx.doi.org/10.4143/crt.2017.551] [PMID: 29409313]
[157]
Rotta JM, Rodrigues DB, Diniz JM, et al. Analysis of survival in patients with brain metastases treated surgically: Impact of age, gender, oncologic status, chemotherapy, radiotherapy, number and localization of lesions, and primary cancer site. Rev Assoc Med Bras 2018; 717-22.
[158]
Takakusagi Y, Kano K, Shima S, et al. Clinical outcomes of radiotherapy in elderly and younger patients with t4 esophageal cancer: A retrospective single-center analysis. Anticancer Res 2022; 42(4): 2095-104.
[http://dx.doi.org/10.21873/anticanres.15691] [PMID: 35347033]
[159]
Yang J, Cai H, Xiao ZX, Wang H, Yang P. Effect of radiotherapy on the survival of cervical cancer patients. Medicine 2019; 98(30): e16421.
[http://dx.doi.org/10.1097/MD.0000000000016421] [PMID: 31348242]
[160]
Winawer SJ, Stewart ET, Zauber AG, et al. A comparison of colonoscopy and double-contrast barium enema for surveillance after polypectomy. N Engl J Med 2000; 342(24): 1766-72.
[http://dx.doi.org/10.1056/NEJM200006153422401] [PMID: 10852998]
[161]
Rashidi A, Ebadi M, Colditz GA, DiPersio JF. Outcomes of allogeneic stem cell transplantation in elderly patients with acute myeloid leukemia: A systematic review and meta-analysis. Biol Blood Marrow Transplant 2016; 22(4): 651-7.
[http://dx.doi.org/10.1016/j.bbmt.2015.10.019] [PMID: 26529178]
[162]
Garderet L, Beohou E, Caillot D, et al. Upfront autologous stem cell transplantation for newly diagnosed elderly multiple myeloma patients: A prospective multicenter study. Haematologica 2016; 101(11): 1390-7.
[http://dx.doi.org/10.3324/haematol.2016.150334] [PMID: 27612987]
[163]
Vaxman I, Visram A, Kumar S, et al. Autologous stem cell transplantation for multiple myeloma patients aged ≥ 75 treated with novel agents. Bone Marrow Transplant 2021; 56(5): 1144-50.
[http://dx.doi.org/10.1038/s41409-020-01159-9] [PMID: 33273658]
[164]
Gudiol C, Albasanz-Puig A, Cuervo G, Carratalà J. Understanding and managing sepsis in patients with cancer in the era of antimicrobial resistance. Front Med 2021; 8: 636547.
[http://dx.doi.org/10.3389/fmed.2021.636547] [PMID: 33869250]
[165]
Sanchez L, Sylvester M, Parrondo R, Mariotti V, Eloy JA, Chang VT. In-hospital mortality and post-transplantation complications in elderly multiple myeloma patients undergoing autologous hematopoietic stem cell transplantation: A population-based study. Biol Blood Marrow Transplant 2017; 23(7): 1203-7.
[http://dx.doi.org/10.1016/j.bbmt.2017.03.012] [PMID: 28286198]
[166]
Hermine O, Hoster E, Walewski J, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): A randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet 2016; 388(10044): 565-75.
[http://dx.doi.org/10.1016/S0140-6736(16)00739-X] [PMID: 27313086]
[167]
Master S, Koshy N, Mansour R, Shi R. Effect of stem cell transplant on survival in adult patients with acute lymphoblastic leukemia: NCDB analysis. Anticancer Res 2019; 39(4): 1899-906.
[http://dx.doi.org/10.21873/anticanres.13298] [PMID: 30952731]
[168]
Barker JN, Wagner JE. Umbilical-cord blood transplantation for the treatment of cancer. Nat Rev Cancer 2003; 3(7): 526-32.
[http://dx.doi.org/10.1038/nrc1125] [PMID: 12835672]
[169]
Veluchamy J, Spanholtz J, Kok N, et al. Umbilical cord blood stem cell derived NK cells as universal treatment for metastatic colorectal cancer using EGFR independent killing mechanisms. J Clin Oncol 2016; 34(S15): e14525-5.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.e14525]
[170]
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11(12): 5675-85.
[http://dx.doi.org/10.7150/thno.46436] [PMID: 33897874]
[171]
Schulman IH, Balkan W, Hare JM. Mesenchymal stem cell therapy for aging frailty. Front Nutr 2018; 5: 108.
[http://dx.doi.org/10.3389/fnut.2018.00108] [PMID: 30498696]
[172]
Chen C, Kong ANT. Dietary cancer-chemopreventive compounds: From signaling and gene expression to pharmacological effects. Trends Pharmacol Sci 2005; 26(6): 318-26.
[http://dx.doi.org/10.1016/j.tips.2005.04.004] [PMID: 15925707]
[173]
George BP, Chandran R, Abrahamse H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants 2021; 10(9): 1455.
[http://dx.doi.org/10.3390/antiox10091455] [PMID: 34573087]
[174]
Rather RA, Bhagat M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2018; 6: 10.
[http://dx.doi.org/10.3389/fcell.2018.00010] [PMID: 29497610]
[175]
Vafadar A, Shabaninejad Z, Movahedpour A, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci 2020; 10(1): 32.
[http://dx.doi.org/10.1186/s13578-020-00397-0] [PMID: 32175075]
[176]
Ezzati M, Yousefi B, Velaei K, Safa A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci 2020; 248: 117463.
[http://dx.doi.org/10.1016/j.lfs.2020.117463] [PMID: 32097663]
[177]
Vijayababu MR, Arunkumar A, Kanagaraj P, Arunakaran J. Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells. J Carcinog 2006; 5(1): 10.
[http://dx.doi.org/10.1186/1477-3163-5-10] [PMID: 16600019]
[178]
Tezerji S, Nazari Robati F, Abdolazimi H, Fallah A, Talaei B. Quercetin’s effects on colon cancer cells apoptosis and proliferation in a rat model of disease. Clin Nutr ESPEN 2022; 48: 441-5.
[http://dx.doi.org/10.1016/j.clnesp.2022.01.004] [PMID: 35331526]
[179]
Asgharian P, Tazekand AP, Hosseini K, et al. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer Cell Int 2022; 22(1): 257.
[http://dx.doi.org/10.1186/s12935-022-02677-w] [PMID: 35971151]
[180]
Bishayee A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res 2009; 2(5): 409-18.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0160] [PMID: 19401532]
[181]
Akter R, Rahman MH, Kaushik D, et al. Chemo-preventive action of resveratrol: Suppression of p53—a molecular targeting approach. Molecules 2021; 26(17): 5325.
[http://dx.doi.org/10.3390/molecules26175325] [PMID: 34500758]
[182]
Yang ZJ, Huang SY, Zhou DD, et al. Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review. Antioxidants 2022; 11(8): 1481.
[http://dx.doi.org/10.3390/antiox11081481] [PMID: 36009200]
[183]
Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm 2010; 343(9): 489-99.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[184]
Wang H, Zhang K, Liu J, et al. Curcumin regulates cancer progression: Focus on ncRNAs and Molecular Signaling Pathways. Front Oncol 2021; 11: 660712.
[http://dx.doi.org/10.3389/fonc.2021.660712] [PMID: 33912467]
[185]
Kumar NB, Besterman-Dahan K, Kang L, et al. Results of a randomized clinical trial of the action of several doses of lycopene in localized prostate cancer: Administration prior to radical prostatectomy. Clin Med Urol 2008; 1: CMU.S718.
[http://dx.doi.org/10.4137/CMU.S718] [PMID: 20354574]
[186]
Holzapfel N, Holzapfel B, Champ S, Feldthusen J, Clements J, Hutmacher D. The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. Int J Mol Sci 2013; 14(7): 14620-46.
[http://dx.doi.org/10.3390/ijms140714620] [PMID: 23857058]
[187]
Pavese JM, Farmer RL, Bergan RC. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev 2010; 29(3): 465-82.
[http://dx.doi.org/10.1007/s10555-010-9238-z] [PMID: 20730632]
[188]
Singh RP, Dhanalakshmi S, Agarwal R. Phytochemicals as cell cycle modulators--a less toxic approach in halting human cancers. Cell Cycle 2002; 1(3): 155-60.
[http://dx.doi.org/10.4161/cc.1.3.117] [PMID: 12429925]
[189]
Kaur S, Kumar M, Kaur S. Role of phytochemicals in MAPK signaling pathway-mediated apoptosis: A possible strategy in cancer chemoprevention. In: Atta ur Rehman , Ed. Studies in Natural Products Chemistry. Elsevier 2016.
[190]
Gaikwad S, Srivastava SK. Role of phytochemicals in perturbation of redox homeostasis in cancer. Antioxidants 2021; 10(1): 83.
[http://dx.doi.org/10.3390/antiox10010083] [PMID: 33435480]
[191]
Béliveau R, Gingras D. Role of nutrition in preventing cancer. Can Fam Physician 2007; 53(11): 1905-11.
[PMID: 18000267]
[192]
Wolin KY, Carson K, Colditz GA. Obesity and cancer. Oncologist 2010; 15(6): 556-65.
[http://dx.doi.org/10.1634/theoncologist.2009-0285] [PMID: 20507889]
[193]
Hamer J, Warner E. Lifestyle modifications for patients with breast cancer to improve prognosis and optimize overall health. CMAJ 2017; 189(7): E268-74.
[http://dx.doi.org/10.1503/cmaj.160464] [PMID: 28246240]
[194]
Choi JW, Hua TNM. Impact of lifestyle behaviors on cancer risk and prevention. J Lifestyle Med 2021; 11(1): 1-7.
[http://dx.doi.org/10.15280/jlm.2021.11.1.1] [PMID: 33763336]
[195]
Jia T, Liu Y, Fan Y, Wang L, Jiang E. Association of healthy diet and physical activity with breast cancer: Lifestyle interventions and oncology education. Front Public Health 2022; 10: 797794.
[http://dx.doi.org/10.3389/fpubh.2022.797794] [PMID: 35400043]
[196]
Krishnan AV, Trump DL, Johnson CS, Feldman D. The role of vitamin D in cancer prevention and treatment. Endocrinol Metab Clin North Am 2010; 39(2): 401-18.
[http://dx.doi.org/10.1016/j.ecl.2010.02.011]
[197]
Liu J, Ma D. The role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients 2014; 6(11): 5184-223.
[http://dx.doi.org/10.3390/nu6115184] [PMID: 25412153]
[198]
Asefy Z, Tanomand A, Hoseinnejhad S, Ceferov Z, Oshaghi EA, Rashidi M. Unsaturated fatty acids as a co-therapeutic agents in cancer treatment. Mol Biol Rep 2021; 48(3): 2909-16.
[http://dx.doi.org/10.1007/s11033-021-06319-8] [PMID: 33821440]
[199]
Bosetti C, Franceschi S, Levi F, Negri E, Talamini R, Vecchia CL. Smoking and drinking cessation and the risk of oesophageal cancer. Br J Cancer 2000; 83(5): 689-91.
[http://dx.doi.org/10.1054/bjoc.2000.1274] [PMID: 10944613]
[200]
Marron M, Boffetta P, Zhang ZF, et al. Cessation of alcohol drinking, tobacco smoking and the reversal of head and neck cancer risk. Int J Epidemiol 2010; 39(1): 182-96.
[http://dx.doi.org/10.1093/ije/dyp291] [PMID: 19805488]
[201]
Yeo Y, Han K, Shin DW, et al. Changes in smoking, alcohol consumption, and the risk of thyroid cancer: A population-based korean cohort study. Cancers 2021; 13(10): 2343.
[http://dx.doi.org/10.3390/cancers13102343] [PMID: 34066228]
[202]
Gulia KK, Kumar VM. Sleep disorders in the elderly: A growing challenge. Psychogeriatrics 2018; 18(3): 155-65.
[http://dx.doi.org/10.1111/psyg.12319] [PMID: 29878472]
[203]
Townsend-Roccichelli J, Sanford JT, VandeWaa E. Managing sleep disorders in the elderly. Nurse Pract 2010; 35(5): 30-7.
[http://dx.doi.org/10.1097/01.NPR.0000371296.98371.7e] [PMID: 20395765]
[204]
Chandler PD, Chen WY, Ajala ON, et al. Effect of vitamin D 3 supplements on development of advanced cancer. JAMA Netw Open 2020; 3(11): e2025850.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.25850] [PMID: 33206192]
[205]
Li Y, Lin Q, Lu X, Li W. Post-diagnosis use of antioxidant vitamin supplements and breast cancer prognosis: A systematic review and meta-analysis. Clin Breast Cancer 2021; 21(6): 477-85.
[http://dx.doi.org/10.1016/j.clbc.2021.09.001] [PMID: 34635464]
[206]
Zhang SL, Chen TS, Ma CY, et al. Effect of vitamin B supplementation on cancer incidence, death due to cancer, and total mortality. Medicine 2016; 95(31): e3485.
[http://dx.doi.org/10.1097/MD.0000000000003485] [PMID: 27495015]
[207]
Dai S, Mo Y, Wang Y, et al. Chronic stress promotes cancer development. Front Oncol 2020; 10: 1492.
[http://dx.doi.org/10.3389/fonc.2020.01492] [PMID: 32974180]
[208]
Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: Mechanisms, significance and future directions. Nat Rev Cancer 2021; 21(12): 767-85.
[http://dx.doi.org/10.1038/s41568-021-00395-5] [PMID: 34508247]
[209]
Moreno-Smith M, Lutgendorf SK, Sood AK. Impact of stress on cancer metastasis. Future Oncol 2010; 6(12): 1863-81.
[http://dx.doi.org/10.2217/fon.10.142] [PMID: 21142861]
[210]
Khodabakhshi Koolaee A, Falsafinejad MR, Akbari ME. The effect of stress management model in quality of life in breast cancer women. Iran J Cancer Prev 2015; 8(4): e3435.
[http://dx.doi.org/10.17795/ijcp-3435] [PMID: 26478793]
[211]
Oh HM, Son CG. The risk of psychological stress on cancer recurrence: A systematic review. Cancers 2021; 13(22): 5816.
[http://dx.doi.org/10.3390/cancers13225816] [PMID: 34830968]
[212]
Hulbert-Williams NJ, Beatty L, Dhillon HM. Psychological support for patients with cancer: Evidence review and suggestions for future directions. Curr Opin Support Palliat Care 2018; 12(3): 276-92.
[http://dx.doi.org/10.1097/SPC.0000000000000360] [PMID: 30074924]
[213]
Agarwal R, Epstein A. The role of palliative care in oncology. Semin Intervent Radiol 2017; 34(4): 307-12.
[http://dx.doi.org/10.1055/s-0037-1608702] [PMID: 29249853]
[214]
Cao Z, Xu C, Yang H, Li S, Wang Y. The role of healthy lifestyle in cancer incidence and temporal transitions to cardiometabolic disease. JACC: CardioOncology 2021; 3(5): 663-74.
[http://dx.doi.org/10.1016/j.jaccao.2021.09.016] [PMID: 34988474]
[215]
Li Y, Schoufour J, Wang DD, et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study. BMJ 2020; 368: l6669.
[http://dx.doi.org/10.1136/bmj.l6669] [PMID: 31915124]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy